"INTERCOMM

ASSEMBLER LANGUAGE PROGRAMMERS
GUIDE

C ::s: RGPC:)I\I;ATION

330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR
Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Assembler Language Programmers Guide

Publishing History

Publication ate Remarks

First Edition September 1973 This manual corresponds to Intercomm
Release 6.0.

Second Edition June 1989 This manual corresponds to Intercomm

Releases 8.0, 9.0, and 10.0.

NOTES:

The following enhancements are for Release 10 only:

3-byte MSGHBMN number

INTSORT (in-core table sort) service routine
Dynamically loaded programs above the lémeg line
GETDATE macro

SCTL command for subsystem activity display

VSAM data set access under Dynamic File Allocation (DFA)
Subsystem message flushing.

The following are desupported under Release 10:

° AMIGOS file access method
° DISAM file access method.

The following are not supported under Release &:

e BINSRCH3 entry for binaxy search processing
e IJKWHOIT Csect name conversion
e Enhanced VSAM facilities:

Sharing files across regions

RRDS support

ESDS empty file load

FAR parameters: DSN, LSR, WRITEOVER.

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system
executing on the IBM System/370 family of computers and operating under
the control of IBM Operating Systems (MVS/370, XA, ESA). Intercomm
monitors the transmission of messages to and from terminals, concurrent
message processing, centralized access to I/0 files, and the routine
utility operations of editing input messages and formatting output
messages, as required. ’

The Assembler Language Programmers Guide explains the
organization of Intercomm from the application programmer'’'s point of
view and illustrates the procedures for creating Assembler Language

application programs and integrating them into the Intercomm
environment.

Syntax wused 1in describing the codlng of JCL or application
program statements is: :

° { } A pair of braces indicates the presence of a choice:
code elements contained within the brac¢es represent
alternatives, one of which must be chosen. The braces

are not to be coded.

° [] A pair of brackets indicates an optional parameter which
may be omitted depending on access ‘requirements as
described in the accompanying text. The brackets are not
to be coded.

e A parameter consisting partially or solely of lower case
letters represents the generic (Intercomm) name of the value.
The programmer must substitute the actual name used for
defining the data area within the specific program.

As a prerequisite to this manual, it is assu.med'thdt_ the user is
familiar with the Intercomm Concdepts' and Facilities "Manual. The

following manuals describe in furthe1 detail fac111t1es ‘referericed in
this manual: . LA

° Basic_ System Macros v

° Message Mapping Utilities

° Utilities Users Guide

° Store/Fetch Facility Users Guide

e Dynamic Data Queuing Facility S,

° Page Facility :] ..i“« © 1:‘"
e Operating Refererice Manual: "Message ’Maﬁagem(é‘ﬁt"

‘"File Mariagemefit"

INTERCOMM PUBLICATIONS ’

GENERAL INFORMATION MANUALS FEATURE IMPLEMENTATION MANUALS
Concepts_and Facilities Autogen Facility
Planning Guide ASMF Users Guide

DBMS Users Guide
APPLICATION PROGRAMMERS MANUALS Data Entry Installation Guide

Assembler Language Programmers Guide Data Entry Terminal Operators Guide

COBOL Programmers Guide Dynamic Data Queuing Facility
PL/1 Programmers Guide Dynamic File Allocation

Extended Security System

SYSTEM PROGRAMMERS MANUALS File Recovery Users Guide
Basic System Macros Generalized Front End Facility
BTAM Terminal Support Cuide Message Mapping Utilities
Installation Guide Model System Generatoxr V)
Messages and Codes Multiregion Support Facility
Operating Reference Manual Page Facility
System Control Commands Store/Fetch Facility

SNA Termwinal Support Guide

CUSTOMER INFORMATION MANUALS TCAM Support Users Guide
Customer Education Course Catalog Utilities Users Guide

Technical Information Bulletins

User Contributed Program Description EXTERNAL FEATURES MANUALS

SNA 1U6.2 Support Guide

iv

TABLE OF CONTENTS

Page
Chapter 1 INTRODUCTORY CONCEPTS OF ON-LINE SYSTEMS 1
1.1 Introduction ittt ittt 1
1.2 The On-Line System Environment 1
1.3 Batch Environment vs. On-Line Environment 3
1.4 Single-Thread vs. Multithread Processing 4
1.5 Program Functions in the On-Line Environment 6
1.5.1 Monitor Control Functions 7
1.5.2 Application Processing Functions 7
Chapter 2 MESSAGE PROCESSING AND CONTROL UNDER INTERCOMM 9
2.1 The Intercomm Environmentco0vu... 9
2.2 System Componentscciiuiiiiiennennenneineas 11
2.2.1 Front End it 11
2.2.2 Back Endttt i 11
2.3 System Programsc.ciiiiiiiiiininiinneennn, 12
2.4 SUbSYStemSt e e 16
2.4.1 Reentrant vs Nonreentrant Subsystems 16
2.5 Intercomm Tables iiiiinnnnn. 17
2.6 Interfacing with the Intercomm Monitor 18
2.7 Intercomm Message Header 19
2.7.1 MSGHQPR and MSGHVMI Fields 22
2.8 Intercomm Message Flow Using Message Mapping 22
2.9 Intercomm Message Flow Using Edit and Output 24
2.10 The Intercomm System Logiiiiiennnnnnnn 26
2.11 Additional Application Processing Facilities 30

Chapter 3 CODING AN INTERCOMM SUBSYSTEM IN ASSEMBLER LANGUAGE .. 31

3.1 Program Structure 0ttty S 31
3.2 Message Processing Conceptsevuuun.. 35
3.3 Subsystem Coding e ~... 38
3.3.1 Subsystem Entry A 1
3.3.2 Linkage i e 40
3.3.3 Message Processing 40
3.3.4 Additional Coding Techniques PP R 42
3.3.5 Subsystem Illustration 44
3.3.6 Message-Switching Between. Sybsystems 4621
3.4 Restarted Messagesc.uu... e b6.1
3.5 MVS/XA Extended Storage Loading Requirements........ 462
Chapter 4 USING THE MESSAGE MAPPING UTILITIES O 47
4.1 ’ Concepts B e 47
4.2 Processing i e 47
Chapter 5 USING THE EDIT UTILITYcciiiiiinininnannnnnn. 49
5.1 07 o 0 17 o 1 o - PP 49
5.2 Processing Results00t iiinennnnnnn. 50

Chapter 6 USING THE FILE HANDLERcittiitininnneenennnnnn
General CONCEPLSvviiiitteniereenneeeennneenns

.1 Subsystem Processingc i,
Calling Service Routines,

.1 Automatic Error Checking
Select, Release Functions

.1 Closing a Filettt
Exclusive Control for Non-VSAM Files

.1 Release Exclusive Control--RELEX

Sequential Access Method Processing
1 File Handler Service Routines
.2 Undefined Record Format and Record Length
3 Variable-Length Record Format and Record Length...
Indexed Sequential Access Method Processing
.1 File Handler Service Routines
Direct Access Method Processing
.1 File Handler Service Routinmes
Virtual Storage Access Method (VSAM) Processing
File Handler Service Routines
VSAM Processing Optionscooiviiinn...
FHCW Reason Codes for VSAM
Exclusive Control for VSAM Files
Alternate Index Processing of Keyed VSAM Files ...
ISAM/VSAM Compatibility Under Intercomm

VS WN e

6
6
6
6
6
6
6
6
6
6
6
6.
6
6
6
6
6
6
6
6
6
6
6

oMM~ ~NAOAOTULLULULUEREPRFWWNDNEHE

Chapter 7 USING THE OUTPUT UTILITYcttiiinnnnneeeennnnnns
7.1 (0 o3 o o= o 1 -
7.2 Processing i i i

hapter 8 CONVERSATIONAL SUBSYSTEMSccceiiiennnnn.
General COMCEPLS ...t irieeeerrteeeneennnns
.1 Conversational Applications
.2 Conversational Tramsactions
.3 Retention of Information
Implementing Conversational Subsystems
Saving Information in USERSPA
Saving Information with Store/Fetch
Saving Information on a Dynamic Data Queue
Saving Information via the CONVERSE Service

Routine i i ittt

Subsystem Design Using CONVERSE
Design Considerations in Conversational

Processing i i i
8.7.1 Control of the Input to Conversations

7.2 Assigning a Verb to a Terminal

(o
8
8
8
8.
8
8
8
8
8

NP WNHEFERPE

(o]
~N o
[

vi

Chapter 9

O O WO WOWOOVWOOY
aaouvuuunmpPHwN R

O O O OO
0000 ~N NN

O WO WO O WYY

Chapter 10 INTERCOMM MACROS FOR ASSEMBLER LANGUAGE PROGRAMS

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

Chapter 11 SAMPLE PROCESSING PROGRAMS

wnN =

N -

WWWWWNRNDNNNNNNNNNNDNNNNNNND R

oV PWNRE

USING INTERCOMM SERVICE ROUTINES AND FACILITIES
Service Routines and Facilities
Message Switching (MSGCOL)cviiiunn..
User Log Entries (LOGPUT)covveeunnnn Neees
Pass Message to Front End (FESEND, FESENDC)
Front End Control Messagesc.coveeneunens
Front End Data Queuing (FECMDDQ)
Front End Feedback Messages (FECMFDBK)
Front End Queue Release (FECMRLSE)

Performing Binary Table Search

(BINSRCH, BINSRCH2, BINSRCH3)ovuvvuuun..
Data Field Search Routines (PMIFINDB,PMIDLTDB)
PMIFINDB - Find a Data Field
PMIDLTDB - Delete or Add a Data Field
Segmented Message Input (GETSEG)

Segmented Message Output Terminal Assignment

(DVASN) ittt e it i et et i
Dispatcher Related Routines

IJKPRINT - Direct Output Line to SYSPRINT

IJKDELAY - Request Time Delay
In-Core Table Sort Facility (INTSORT)
Other Intercomm Service Facilities

Introduction

PASS ... i e

PMIWTO

vii

IJKTRACE - Print Dispatcher Queues

................

Loading Service Routine Entry Points from the SPA..

I

......................................

Macro Descriptionscciiiiiinninnnnnennn,
L7 O]
DISPATCHottt ittt ittt enne s
INTDEQ . ii ittt ittt ittt tneineannannen
INTENQ ..ottt ittt et n et eneen
INTPOST ..ottt i i it i it e e
0 N
MODCNTRL ..ttt ittt ittt innenaannns

......................................

PMIWTORvniiiiinnnnnennnnnnnnn e
SUBTASK ..o, P
USRTRACK .. ittt ittt ittt eenann
Macro Coding Examplesutieriumnennnnnnn
DISPATCH Macro Usage e
PASS/CATCH Macro Usagecovvvvuvunnn.
INTENQ/INTDEQ Macro Usagecco0euu..
MODCNTRL Macro Usagecoveueumennnnn

..........................

Chapter 12 SUBSYSTEM TESTINGucittuiuiiuinreneeannonsennenns 129
12.1 Introductioncciiiiiiiiiiiiiiiiiiiiennn. 129
12.2 Debugging Application Program Problems 129
12.3 Testing a Subsystem with the Front End Simulator ... 130
Chapter 13 SUBSYSTEM TESTING IN TEST MODEciuiuiueueenee.. 167
13.1 Introductionciiiiiiiiiiiiiiii it 167
13.2 Testing a Subsystem in Test Mode 167
Appendix A ASSEMBLER LANGUAGE JCL PROCEDURES0c.. 197
Appendix B DSECTS FOR ASSEMBLER LANGUAGE PROGRAMS 199
Appendix C INTERCOMM TABLE SUMMARYciiuiuiuuueneeeennnn. 205
Appendix D SPA AND SPAEXT FIELD NAMES FOR ROUTINE ENTRY POINTS .. 209
D.1 Fields in the SPA it 209
D.2 Fields in the SPAEXTttt iiiennnnn 210
Appendix E NONREENTRANT SUBSYSTEMStiuinninninnnenennnns 215
E.1 Introductioniiiiiiiiiiiiiiiiiiiiiiien 215
INDE X ittt e e e e e e e 221

LIST OF ILLUSTRATIONS

Figure
1 On-line Transaction Processing in a Multiprogramming
Environmentttt
2 Differences Between Batch and On-line Environments
3 Multithreading in an On-line Enviromment
4 The Intercomm Environmentciiiiiiun..
5 Intercomm Control Sequencec..eueueeeeennnnn
6 Intercomm System COmMPONENLScuovvuneuneneennens
7 Intercomm Message Header Fields
8 Intercomm Message Flow Using Message Mapping
9 Intercomm Message Flow Using Edit and Output
10 Sequence of Log Entries,
11 INTERLOG Entriesc.ciiiiiiiiiiiiiinnnnneennnnnnn.
12 Reentrant Assembler Subsystem Structure
13 Reentrant Application Program Enviromment
14 Intercomm System Return Codes
15 Subsystem Logic Using Message Mapping Utilities
16 Subsystem Logic Using Edit and Output Utilities
17 Echo Message Example; Reentrant Assembler Language
18 Message Processing Using MMU
19 Edit Utility Processing of Fields Omitted or in Error .
20 Functions of File Handler Service Routines
21 DD Statement Parameters for the File Handler
22 Defining File Handler Control Areas

ix

32
33
34
36
37
46
48
50
51
52

53

Figure
23

24
25

26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

File Handler Service Routine Parameters
Outline of File Handler Return Codes
File Handler SELECT/RELEASE Return Codes
Exclusive Control Processing

File Handler Release Exclusive Control (RELEX) Return
Codes

File Handler Sequential Access Method Return Codes

File Handler ISAM Return Codescvvuuuunn.
File Handler BDAM Option Codesciviuiuunnn.
File Handler BDAM Return Codescccuun..
File Handler VSAM Call Summaryco0cuiueunn.
File Handler VSAM Return and Feedback Codes
Message Header Specifications for the Output Utility ..
Typical Conversational Transactions
Input Message Data Retention During a Conversation
User and Terminal Table Space in the USERSPA
Sample USERSPA Declaration Within a Subsystem
Conversational Processing Using Store/Fetch
Conversational Processing Using Dynamic Data Queuing ..
Conversational Subsystem Logic Using Converse
CONVERSE Return Codesc.iiuiiteninnnennnnnnnnnnn
Message Collection Return Codes
FESEND Return Codesc.ciiiiiiiiiinnnnnennnnns
FECM Return Codesoiiiiiiiiinninnnenneneneens

GETSEG Return Codesttt iiteeenneeeeeeeeneeeannnn

INTSORT Return Codestiiiitinnreeenennnennns

56

58

59

60

63

65

66

72

73

77

80

80

82

83

85

87

89

91

96

Figure
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

A-1

B-1

E-2

E-3

Page
Sample Reentrant Subsystem (Assembler) 124
Sample Assembler Subroutine 0., 125
Table Updates to Implement Simulation Mode Testing 132
MMU Maps Used by Sample Subsystemcc00u... 133
Input Test Messages Generated via CREATSIM 134
Linkedit and Execution JCL for Simulation Mode 136
SIM3270 Printout from Simulation Mode Execution 139
Simulation Mode Execution Log Printout 159
Sample Inquiry Subsystem; Reentrant Assembler 169
Table Updates to Implement Test Mode Testing 180
Utilities Table Coding for Test Mode Subsystem 181
Test Mode Message Card Formats 183
Sample Input Test Messages for Test Mode 184
Linkedit and Execution JCL for Test Mode 185
Sample Test Mode Execution Smaps 188
Test Mode Execution Log Printout 191
Intercomm-supplied Assembler JCL Procedures 197
Intercomm Dsects for Assembler Programs 200
Table Names and Associated Macro Instructions 205
Components and Associated Table Names 207
Nonreentrant Assembler Subsystem Structure 216
Nonreentrant Application‘Program Environment 217

xi

Chapter 1

INTRODUCTORY CONCEPTS OF ON-LINE SYSTEMS

1.1 INTRODUCTION
The objective of most on-line systems is to reduce the time
factor from source of input data to the results of data processing.
Typical on-line systems applications in the business environment are:
e Data Collection
Transactions may be edited partially on receipt, batch totals
may be transmitted and verified, but the bulk of processing
of the collected data takes place in the batch mode off-line.

° Inquir date Systems

Transactions are processed immediately to retrieve and/or
update information in an on-line data base.

° Message Switching

Transactions consist of administrative data to be rerouted to
other terminals in the system.

On-line systems are characterized by a mode of operation which is

nonscheduled and transaction-oriented. An operator at a terminal
remote from the data processing center enters a transaction (unit of
work) by transmitting a message over communication facilities. Each

individual transaction is processed immediately, as opposed to batch
systems, where transactions are accumulated for processing on a
periodic basis (monthly, daily, etc.).

Online systems are designed to satisfy a response time
requirement which is the elapsed time between a request for processing
of an input message from a terminal to receipt of an acknowledgement,
or response to that input message (completion of a transaction).

1.2 THE ON-LINE SYSTEM ENVIRONMENT

Typical on-line message processing application programs operate
on one transaction at a time as they come in from terminals.
Application programs are usually designed to process only one type of
transaction, and the whole environment can be said to be transaction

oriented. Input messages can be processed as received, in any order,
and the files to be referenced should not be read from beginning to end
for each transaction. Instead, the records 1in files are accessed

directly, either through a specific key or some form of cross-reference
look-up.

Chapter 1 . Introductory Concepts of Online Systems

A few applications might require some sequential or list
processing of a file, and while this is possible, message processing
times for such applications would tend to be high.

Figure 1 shows a computer system schematic depicting a memory
layout with an on-line system such as Intercomm, operating in a region
or address space as a job under an operating system such as IBM's MVS.
The on-line system has its own Transaction Monitor which schedules the
activation of transaction processing according to the varying demands
in message traffic.

COMPUTER PROCESSOR

TRANSACTION FILE
DEVICES OPERATING SYSTEM DEVICES

ON-LINE OTHER
SYSTEM JOBS
MONITOR

A, text ‘ TYPE A

RETRIEV

PROCESS

REPLY

1O

TRANSACTION
X, text TYPE B

RETRIEVE,

PROCESS

REPLY

TRANSACTION
TYPE n
OTHER
REGION 1 REGIONS
Figure 1. On-line Transaction Processing in a

Multiprogramming Environment

Chapter 1 Introductory Concepts of Online Systems

The transaction processing programs do mnot conduct input or
output operations with the terminals. This function is provided by the
on-line system, which reads input messages from terminals and saves
them (queues them) until the appropriate processing program can be
activated (scheduled). The message is then retrieved from the queue
and passed directly to the processing program by the Monitor. The
processing program then requests the Monitor to queue its output
response message, and the Monitor handles the terminal output function.

1.3 BATCH ENVIRONMENT VS. ON-LINE ENVIRONMENT

The classical batch processing system flow of
input/process/output can be expanded to include message queuing and

retrieving in the on-line environment. However, the typical on-line
application program need only be concerned with actual transaction
processing, because the on-line system does the rest. Figure 2

summarizes some of the differences between batch and on-line
environments.

Batch Online
Scheduled input Unscheduled input
..................................... e emmeeiaaaad
Single-application job Multiple-application job
Delayed processing of transactions {Immediate processing of individual
in batches by type transactions by type
Transaction input, processing, and |[Terminal input/output events are
output controlled by processing asynchronous to the processing
program logic program
Figure 2. Differences Between Batch and On-line Environments

Chapter 1 Introductory Concepts of Online Systems

l.4 SINGLE-THREAD VS, MULTITHREAD PROCESSING

In the on-line environment, the logical path of a program in
execution is called a thread. A single-thread system processes one
message at a time. However, in a multiple application environment,
message volume is such that all message traffic could not be adequately
serviced in a single-thread mode. Large queues (waiting lines) tend to
develop because messages arrive faster than they can be processed. To
" alleviate this problem and improve system throughput, the delay time in
the processing of one message waiting for an I/O operation may be used
for simultaneously processing another message. In this way, several
message processing logic paths, or threads, may be active at once.
This is referred to as multithreading.

Multithreading is coordinated by the Transaction Monitor, and,
depending on message traffic, can occur between two or more programs oOr
within a single program.

To illustrate this, let us assume that we have two transaction
processing programs, A and B, and that three messages have arrived for
processing; two A-type transactions and one B-type transaction.
Programs A and B both require access to records in a file, affording an
opportunity for some processing overlap or multithreading.
Multithreading would occur between programs A and B if while program A
is waiting for file retrieval, program B is activated by the Monitor to
carry out its message processing. However, if program A were
reentrant, that 1is, written in such a way that it could handle more
than one thread at a time, then multithreading could also occur within
program A. This means that while reentrant program A is waiting for a
file retrieval for the processing of one message, it may be activated
again to carry out the parallel processing of a second, or nth,
message. Figure 3 illustrates these concepts.

Chapter 1

Introductory Concepts of Online Systems

POST

ACCESS ACCESS
RECORD RECORD PROCESS
A2 D MESSAGE
B
I I
PREPROCESS GET POST OUTPUT
MESSAGE MESSAGE PROCESS MESSAGE
Al C MESSAGE B
Al
l]
ACCESS PREPROCESS OUTPUT
RECORD MESSAGE MESSAGE
Al C Al

GET ACCESS REFILE
MESSAGE RECORD RECORD
B C A2

PREPROCESS REFILE
MESSAGE RECORD
B B
ACCESS REFILE GET REFILE
RECORD RECORD MESSAGE RECORD
B Al E c
I |
GET GET PREPROCESS POST
MESSAGE MESSAGE MESSAGE PROCESS
A2 D E MESSAGE
A2
PREPROCESS PREPROCESS ACCESS OUTPUT
MESSAGE MESSAGE RECORD MESSAGE
D E A2

{

v, *

TO NEXT TASK

Figure 3.

Multithreading in an On-line Environment

Chapter 1 Introductory Concepts of Online Systems

1.5 PROGRAM FUNCTIONS IN THE ON-LINE ENVIRONMENT

An on-line system consists of programs to serve four different
functions:

° Line Control and Terminal Control

-- Servicing input requests from the various terminal types
including transmission error recovery

-- Directing output to the various terminal types including
transmission error recovery

-- Intercepting and storing messages to mnon-operational
devices, and retrieval of messages when devices become
operational

-- Translation of messages to and from terminal transmission
code and EBCDIC code for processing

° Message Processing Control

-- Queuing new input messages until the associated message
processing program is scheduled for execution

-- Scheduling message processing programs to obtain best
system throughput for message traffic

-- Controlling multithread operation for concurrent
processing of several messages

-- Centralizing data file accesses to eliminate redundant

operations and provide exclusive control over records
during file updates

e Systems Operation Control
-- Security checking functions to restrict certain
transactions to specific operators and/or terminals, and
to prevent access to unauthorized functions/files.

-- Logging (journaling) of all message traffic

-- Checkpointing, Message Restart, File Recovery and
Backout-On-The-Fly (dynamic file backout) facilities

-- Cancellation of message processing programs when a
program check or program loop occurs

-- Collect and display system statistics

-- Display and modify system status

Chapter 1 Introductory Concepts of Online Systems

° Message (Transaction) Processin

-- Editing text data from terminal input, including format
conversion and content editing of individual fields

-- Retrieval and updating of data from on-line files
-- Preparation of response (output) messages to terminals

-- Queuing of response messages for output to terminals

1.5.1 Monitor Control Functions
The Intercomm System provides complete facilities for:
° Line control and terminal control
e Message processing control

e Systems operation control

1.5.2 Application Processing Functions

Transaction processing logic lies within the coding domain of the

application programmer. Intercomm provides the following message and
file handling support:

e Format conversion and editing of input fields
e Centralized control of data files

° Format conversion and placement of constant and wvariable
information in response messages and terminal displays

® Queuing of messages (for the same or another terminal, or
another application)

The installation-dependent application logic functions then need
include only the following:

e Content editing of individual input message fields
e Retrieval and updating of data from on-line files

° Selection of individual fields for the output message(s)

Chapter 2

MESSAGE PROCESSING AND CONTROL UNDER INTERCOMM

2.1 THE INTERCOMM ENVIRONMENT

Intercomm operates under MVS as a job in a region or address
space. The job is loaded at the beginning of on-line operations and
continues to operate until the terminal network is closed down.
Intercomm contains many system programs and application subsystems.
Intercomm system programs include the Monitor and other subprograms to
handle such things as terminal and peripheral I/0O operations.
Subsystems are message processing application programs activated by the
monitor. The term "subsystem" includes both application-oriented
message processing programs written by wusers and Intercomm system
command processing and utility programs. The Intercomm region contains
the execution module itself plus dynamically allocated storage or work
space, as illustrated in Figure 4.

TO PERIPHERAL
ON-LINE DEVICES
TERMINALS COMPUTER

OPERATING SYSTEM [

REGIONS

o

SYSTEM
PROGRAMS

MESSAGE
PROCESSING
SUBSYSTEMS

RRoam™mEAAZH

Figure 4. The Intercomm Environment

Chapter 2 Message Processing and
Control Under Intercomm

The system programs are time- or event-driven; the subsystems are
message-driven. The Intercomm Monitor calls system programs to handle
events and exceptional conditions as they occur, for example, terminal
and peripheral I/0 interrupts, time-dependent processing, excessive
message traffic, and system operator commands.

A subsystem, on the other hand, is called by the system monitor
when there are messages queued for it and it has been scheduled for
- execution. Subsystems, while executing, can use the IBM CALL macro to
call user subroutines or to call system programs to perform services,
such as accessing data files and queuing messages for output or for
additional processing by other subsystems. Figure 5 shows that called
system programs and user subroutines will always return to the calling
subsystem (or subroutine), just as the subsystem itself, executing as a
subroutine of Intercomm, must always return to the system monitor that
originally activated it.

SYSTEM PROGRAMS TRANSACTION SUBSYSTEMS
MONITOR PROGRAM AA SYBSYSTEM
CALL SUBAA P | ENTRY AA AA
. SYSX |— CALL SYSX
.4 : > . PROGRAM AB
. CALL AC
CALL AB = . &
. ¢ .
LN PROGRAM AC
END
SYSn SUBSYSTEM
nn
Figure 5. Intercomm Control Sequence

10

Chapter 2 Message Processing and
Control Under Intercomm

2.2 SYSTEM COMPONENTS

On-line system component programs are often categorized as
resident or nonresident, system or user, but typical on-line
terminology also distinguishes between Front End and Back End system
components.

2.2.1 Front End

The Front End communicates with and monitors all terminals in the
network. It receives and sends messages, checks validity, performs
security checking 1if specified, and accomplishes appropriate code
translation. The Front End communicates with the Intercomm message
processing Back End via input message queuing and output message
dequeuing routines. Although Intercomm has its own VTAM Front End, it
can also interface with other software Front Ends such as TCAM and
BTAM. :

2.2.2 Back End

The Back End accomplishes all message processing control, system
operation control, and processing of individual messages. It is,
essentially, the "director" of the entire on-line system operation.

The Front End and the Monitor portion of the Back End are always
resident, whereas message processing subsystems can be any combination
of resident and loadable. (See Figure 6.) The decision to make a
message processing subsystem permanently resident, or loadable, is
based upon the trade-offs between response time, frequency of use, and
total system core storage requirements.

11

Chapter 2 Message Processing and
Control Under Intercomm

2.3 SYSTEM PROGRAMS

Intercomm system programs are written in Assembler language and
include the Monitor, File Handler, high-level language interface
routines to maintain reentrancy, and message processing service
routines.

_ The Monitor interfaces with the Front End via message queues and

controls the processing of messages by subsystems. It is essentially a
traffic director, analyzing message traffic and scheduling subsystems
based upon traffic volume and priority criteria. The Monitor has four
key components:

e The TP queuing interface, which communicates with the Front
End to dequeue Input messages or to queue output messages
created by subsystems.

¢ The Subsystem Controller, which schedules, loads and
activates the application subsystems, and performs clean up
processing when the subsystem returns.

e The Dispatcher, which controls the execution of all events in
the system to accomplish multithreading.

e¢ The Resource Manager, which allocates/deallocates and
controls dynamic resources (such as core storage) used by
system and application programs.

The File Handler is the central Intercomm routine where all
peripheral I/0 service for data files is controlled. The File Handler
issues OPENs, CLOSEs, GETs, PUTs, READs, and WRITEs via the operating
system data management facility. Subsystems merely call an appropriate
File Handler routine. Therefore, all access methods supported by
Intercomm are available to any subsystem program, regardless of the
programming language used. The File Handler maintains a single set of
control blocks for each file defined to it via standard Job Control
Language Data Definition statements, and all programs share this one
set of control blocks. Intercomm can control overlapping of peripheral
1/0 processing, as well as provide standardized error analysis. A file
is usually opened only once during an on-line session: at the time the
first I/0 is requested. Since files can be accessed concurrently by
different subsystems, an exclusive control feature 1is provided to
eliminate difficulties arising when two or more subsystems (or
subsystem threads) attempt to update the same record at the same time.

Language interface routines are described in Chapter 3.

12

Chapter 2 Message Processing and
Control Under Intercomm

R FRONT - END

E

[S T T R

I

D BACK-END

E

N

T SYSTEM PROGRAMS

I Monitor

N

T File Handler

E

R Language Interface Routines

C

0 Message Service Routines:

M

M Mapping Utilities
Fesend

M Logput

0 Message Collection

N

I

T

0]

R

SUBSYSTEMS
Intercomm supplied:
Output Utility

Change/Display Utility
Paging Facility

User Applications:

Figure 6. Intercomm System Components

13

Chapter 2 Message Processing and
Control Under Intercomm

The basic message processing service routines are:

° FESEND--which passes an output message to the Front End for
transmission to a terminal.

e LOGPUT--which copies a message onto the system log whenever
called by a system program or subsystem.

e MESSAGE COLLECTION--which handles the queuing and dequeuing
of all messages destined for subsystems.

Intercomm provides service routines to convert terminal-dependent
input messages to a terminal-independent form for application
processing. This transformation includes removal of terminal-dependent
control characters and conversion of numeric data fields to

computational or binary form, if required. Similarly, for output
messages, service routines provide transformation from
terminal-independent results of application subsystem processing to
terminal -dependent messages for transmission. This includes insertion

of terminal-dependent control characters, conversion of data fields to
character format, if required, and inclusion of title information, if
specified. Each of these routines function via user-specified
descriptions (tables) of input and output message formats. These
service routines are:

° Message Mapping Utilities

This is a set of service routines called by an application
program to perform the device-dependent transformations
specified by the user for both input and output messages.
Validity checking, conversion, justification and
padding/truncation of data fields 1is also performed. This
utility also executes output message disposition
(queuing/spooling), if requested.

e Edit Utility
This is a service routine called by the Monitor to process
input messages, performing device-dependent transformations,

and field validity checking, conversion and padding according
to user-specified editing characteristics.

e Output Utility
This is a service routine executing as a subsystem to process
output messages by performing device-dependent
transformations, and then pass the messages to the Front End.

For detailed documentation of these facilities, see Message
Mapping Utilities and the Utilities Users Guide.

14

Chapter 2 Message Processing and
Control Under Intercomm

‘ Other service routines of the Intercomm system for processing
requests associated with special subsystem design requirements are:

° Store/Fetch

This facility allows a subsystem to save and retrieve a
temporary or permanent data string identified by a
user-defined key. One or more subsystems can access each

stored data string. (See Store/Fetch Facility.)

° Dynamic Data Queuin DD

This facility allows a subsystem to save and retrieve a set
of related data strings (a data queue) identified by a
user-defined name. One or more subsystems can access each
DDQ which may be transient or permanent. A DDQ may also be
used for collecting messages destined for another subsystem,

a printer, or even a batch program. (See Dynamic Data
Queuing.)

° CRT Page Facility

This facility allows a subsystem to write a set of output
messages to a CRT terminal-oriented Page Data Set. The first
message of a set is also sent to the Front End

automatically. The terminal operator may then enter commands

processed by the Page subsystem to retrieve and browse

through the pages of a set of output messages. (See Page
- Facility.)

° Data Base Management System Support (DBMS

This facility consists of separate service routines for each
supported DBMS (IDMS, System 2000, Model 204, ADABAS, TOTAL,
DL/I, or a user DBMS), which allows access to the DBMS from

Intercomm. (See the Data Base Management System Users
Guide.)

° Dynamic File Allocation (DFA)

This facility allows a subsystem to create (allocate) and/or
access a sequential data set, or to access a VSAM data set,
specifying its DSNAME as part of subsystem logic, rather than
with execution JCL. (See Dynamic File Allocation.)

° Signed-on Operator-Id Checking

When executing under the security control of the Intercomm
Extended Security System, a subsystem may call a service
routine (SECUSER) to determine the user-ID of the operator at
the terminal from which the transaction to be processed was

entered. (See Extended Security System.)

15

Chapter 2 Message Processing and
Control Under Intercomm

2.4 SUBSYSTEMS

Intercomm-supplied subsystems are written in reentrant Assembler
Language, and include the Output Utility, the Change/Display Utility,
the Page Browsing Subsystem and many command processing subsystems.

The Output Utility allows a programmer to specify predefined
report and display formats so that simply constructed output messages
. from a subsystem can be expanded, columnized, headed and subheaded, and
displayed upon different types of devices without concern to the
subsystem creating the message. Output Utility display formats can be
changed without program modifications.

The Change/Display Utility allows simple inquiry and file
maintenance via predefined keyword input messages from terminals
causing access to data files defined by tables. The Display Utility is
used in conjunction with the Output Utility to produce varied report or
display formats.

The Page Facility processes commands from CRT-type terminals to
browse through a file of output display screens created by the PAGE
system program. Subsystems make use of this feature by calling the
page storage program during message processing. The terminal operator
interacts with the Page Facility directly.

Command processing subsystems process Intercomm standard messages
to accomplish the start/stop of system functions, message switching
between terminals, displaying and changing the status of system control
parameters, display of statistics, etc. The commands and text syntax

are described in System Control Commands.

User-supplied subsystems accomplish application-dependent message
processing. Each may call any Intercomm service routine or
user-supplied subroutine, and may be written in COBOL, Assembler or
PL/1.

2.4.1 Reentrant vs Nonreentrant Subsystems

In an interactive on-line environment, the probability is wvery
high for more than one terminal operator to enter concurrent requests
to be processed by the same subsystem. To accomplish the
multithreading of concurrent requests, application subsystems should be
coded as reentrant, that is, variable data is defined and processed in
a dynamic working storage area obtained for the exclusive use of one
processing thread. For Assembler Language subsystems, Intercomm
provides entry and exit macros for obtaining and freeing the dynamic
working storage area (save/work area), in addition to Intercomm
equivalents of the IBM GETMAIN and FREEMAIN macros to obtain and free
additional storage to hold messages, etc. to be passed to other
programs. These macros are described in Chapter 3.

16

C

Chapter 2 Message Processing and
Control Under Intercomm

2.5 INTERCOMM TABLES

Intercomm 1is a generalized on-line system monitor, requiring
information about specific operating characteristics of a particular
installation. This information 1is supplied in the form of tables
generated with Intercomm macro instructions. Application programmers
are usually not involved in defining the Intercomm tables, except for
table specifications which pertain to their own applications. The
basic tables controlling message processing are as follows:

°® Front End Verb Table (BTVRBTB

A table listing all valid transaction identifiers (verbs),
and relating them to the subsystem required for message
processing. There 1is one entry per verb, defined via a
BTVERB macro.

e Front End Network Table
Tables describing the terminal network (relating individual
devices to five-character station identifications), device
hardware and operating characteristics, and output message

queuing specifications.

° Back End Station Table (PMISTATB) and Device Table (PMIDEVTB)

Tables describing terminal identifications and
device-dependent characteristics to the Message Mapping
Utilities and/or the Edit and Output Utilities.

° System Parameter List (SPA

A table describing system-wide operating characteristics, and
consisting of two Csects: SPA and SPAEXT. The SPA Csect may
be extended to include installation-defined table entries,
accessible to all user subsystems and subroutines (see
Chapter 8). This table is generated via the SPALIST macro.

° Data Set Control Table (DSCT

A table generated by the File Handler describing on-line data
sets. Information in this table is derived from JCL and file
control (FAR) parameters at execution startup time.

° Subsystem Control Table (SCT)

A table listing the program properties (reentrancy, language,
entry point, etc.), message queue specifications (core and/or

disk queues), and scheduling (resident or 1loadable,
concurrent message processing 1limits, priority, etc.) for
each subsystem. There is one entry per subsystem, defined

via a SYCTTBL macro.

The above listed tables are described in detail in the Operating
Reference Manual. Additional tables describe detailed functions for
the system programs, service routines and utilities.

17

Chapter 2 Message Processing and
Control Under Intercomm

2.6 INTERFACING WITH THE INTERCOMM MONITOR

Each message processed by Intercomm consists of a 42-byte header
prefix, plus application-oriented message text. The message header is
prefixed to each input message by the Front End and is analyzed by the
System Monitor for all message processing control. The particular
fields of the header which control message routing are Receiving

Subsystem Code (MSGHRSC) and Receiving Subsystem Code High-Order
~ (MSGHRSCH) . This two-byte code is initialized by the teleprocessing
interface when it constructs the header from the verb supplied at the
beginning of the message text. The Front End Verb Table relates user
verbs to their corresponding subsystem codes via coding of BTVERB
macros (see Basic System Macros) in a user member USRBTVRB copied into
the system BTVRBTB containing Intercomm system verbs.

All subsystems are defined to Intercomm by an entry in the
Subsystem Control Table (SCT). There is one entry for each subsystem
which defines the program’s general characteristics, scheduling
requirements and message queuing specifications. Each subsystem must
be assigned a unique two-character subsystem code for message routing.
Definition of Intercomm system subsystems for utility and command
processing is provided in the released member INTSCT (formerly in
PMISPA under Release 8).

The Subsystem Control Table entry for each user subsystem is
defined using the SYCTTBL macro which is coded in a user member USRSCTS
copied into the system INTSCT at assembly time. A full description of
the macro may be found in the Intercomm Basic System Macros manual.

Many installations assign the responsibility of coding the
Subsystem Control Table entries for individual user subsystems to the
application programmer. At other installations, the Intercomm System
Support Manager performs this task. In either case, the SYCTTBL macros
must be coded with care, as there is one table controlling all user and
system subsystems in operation when Intercomm is executing.

The most significant SYCTTBL macro parameters for Assembler
Language subsystems are:

e LANG=RBAL

For reentrant assembler language subsystems (LANG=NBAL if
nonreentrant) .

° SBSP=xxxxxxxx or LOADNAM=xxxxxxxX (for dynamic load)

Label of entry point to which control is transferred when
work is forwarded to subsystem (SBSP), or the load module
name for dynamically loaded subsystems (LOADNAM).

18

Chapter 2

Message Processing and
Control Under Intercomm

TCTV=nnn

Expected maximum processing time (in seconds) in a
high-volume environment before the subsystem is assumed to be
looping, or in an extended wait for file or data base access,
and should be timed out. Considerations for this wvalue
depend on subsystem processing such as data base access, file
updates, number and type of file accesses, exclusive control
for file updates, number of output messages created, enqueue
lock-out possibilities, etc.

MNCL=nn

Specifies the maximum number of concurrent threads that can
be executed through this specific subsystem during a high
activity period (when more than one operator enters
transactions routed to this subsystem).

RESOURC=name

This parameter is used to control concurrent access to a
resource (file, table, data base, etc.) across several
subsystems in one Intercomm region. The name is also coded
for the ID parameter of a RESOURCE macro (coded before all
SYCTTBLs in the SCT) which identifies the shared resource and
the maximum concurrent subsystem threads that may be
activated for that resource. Note that the maximum share
count coded on the RESOURCE macro overrides the combined MNCL
value for all the subsystems "naming" that resource. An
internal enqueue is issued (no time-out). While using this
feature will affect response time during peak activity, it
does not affect the TCTV for a subsystem, which goes into
effect after shared control of the resource is granted.

2.7 INTERCOMM MESSAGE HEADER

The

Intercomm message header is constructed by the Front End for

each message when it arrives from a terminal. New messages created
within the subsystem must be prefixed with the standard forty-two-byte
header format, which is constructed by copying the input message header
to an output message area and then altering appropriate fields. Figure
7 lists the names and formats of all the fields in the message header,
and describes their contents and changeability.

19

Chapter 2

Message Processing and
Control Under Intercomm

Alter

Field Name Length Description Legend*
MSGHLEN 2 Length of message including Y

header (binary number)
MSGHQPR 1 Teleprocessing segment I/0 code: N

02/F2=full message;

00/FO=header segment;

01/Fl=intermediate segment

03/F3=final (trailer) segment
MSGHRSCH 1 High-order receiving subsystem code Y
MSGHRSC 1 Low-order receiving subsystem code Y
MSGHSSC 1 Low-order sending subsystem code M
MSGHMMN 3 Monitor message number assigned by N

Message Collection (binary)

.. B

MSGHDAT 6 Julian date (YY.DDD)#*%
MSGHTIM 8 Time stamp (HHMMSSTH) N
MSGHTID 5 Terminal identification (originating Y

terminal on input messages,

destination terminal on output)

or Broadcast Group name
MSGHCON 2 Reserved area N
MSGHCON+1 (1) Subsystem return code (for log code N
(MSGHRETN) X'FA' entries only)
MSGHFLGS 2 Message indicator flags N

......................... G P

MSGHBMN 3 Front End message number (binary) N
MSGHSSCH 1 High-order sending subsystem code M
MSGHUSR 1 Reserved*+** L
ORG MSGHUSR (@D) Used for special processing N
MSGHADDR 2 by the Front End (MSGHBMN-Rel. 8/9)
MSGHLOG 1 Log code (see Figure 11)
MSGHBLK 1 Reserved area N
MSGHVMI 1 Verb or message identifier Y

interpreted by receiving subsystem

as required, and by FESEND

Figure 7. Intercomm Message Header Fields (Page 1 of 2)

20

Chapter

2

Message Processing and
Control Under Intercomm

Y

L

1.

* Alter Legend:

Must be filled in for intersubsystem message switching and
output messages passed to FESEND (MSGHVMI should be set to
X'57' or X'67', as appropriate, for output messages passed
directly to FESEND)

Should be filled in for user’'s own information (required by
Intercomm for message restart/file recovery and Log Analysis)

Do Not Touch (must be copied from input to output message
header area)

May be modified for user codes based on subsystem logic

*% The period represents a one-byte message thread number (for resource
management and/or message restart purposes).

***MSGHUSR is used by Intercomm modules as follows:

If the BTVERB macro for the input verb has HPRTY=YES coded;
contains a C'P’ to request priority queuing for the
subsystem. The user may move a C'P’ to this field to request
priority queuing for output messages to a terminal (via
FESEND) or to another subsystem (via Message Collection).

For messages to be processed by the Edit Utility, contains a
C'F' to indicate that the input message was from a 3270 CRT
and contains SBA sequences.

For output messages to a switched async device (Teletype,
Dataspeed 40, and 2740); a C'B’ requests disconnect after
transmitting the output message.

For output messages to a switched Teletype or Dataspeed 40
device; a C'X’ requests using the alternate call-list for the
next input message (as described in the BTAM Terminal Support
Guide).

For output messages discarded by the Front End, a C'F’'
indicates the message was flushed by command, a C'Z’ that it
was discarded by the VTAM OTQUEUE user exit (Release 10
only).

If none of the above considerations are applicable, the subsystem
may use this field for messages queued to other user subsystems,
or for special logging information. The LOGPRINT utility always
prints the value coded in this field (in hexadecimal).

Figure 7. Intercomm Message Header Fields (Page 2 of 2)

21

Chapter 2 Message Processing and
Control Under Intercomm

2.7.1 MSGHQPR and MSGHVMI Fields

In general, an Assembler Language application subsystem does not
need to be concerned with the MSGHQPR field, unless processing long
input from a Teletype or similar device where message input may be
segmented. In this case, the DDQ Facility must be used to store and
forward the input message segments. Otherwise, input messages from the
Front End always contain a QPR of C'2'. Both MMU and the Output
- Utility set the QPR to X'02' for output messages unless the Output
Utility finds it necessary to segment an output message, in which case
a segment code 1is used. The various uses of the MSGHVMI field for
input and output message processing may be determined from the index
references to this field at the end of this manual.

2.8 INTERCOMM MESSAGE FIOW USING MESSAGE MAPPING

The interaction of Intercomm system components, tables and
subsystems with the Message Mapping Utilities (MMU) is summarized in
Figure 8; the path of one input message and its corresponding output
message is traced, and the numbered arrows in the diagram correspond to
the numbered paragraphs below.

1 The Front End reads an input message and prefixes a 42-byte
control header containing routing information, time, date,
originating terminal and message length. The message is then
queued for subsystem processing by Message Collection.

2 The System Monitor schedules the subsystem and retrieves the
message based upon the Subsystem Control Table (SCT)
scheduling criteria.

3 The message is passed to the subsystem.

4 Input in terminal-dependent format 1is transformed to a
terminal independent form by a call to a Message Mapping
Utility (MMU).

5 The subsystem performs message processing logic, requesting
I/0 service functions from the File Handler or Data Base
Manager interface.

6 The subsystem creates one or more terminal-dependent output
messages by calling MMU.

7 The subsystem passes the message formatted by MMU to the
Front End by a call to FESEND (unless MMU is asked to perform
this function).

8 The subsystem returns control to the System Monitor, passing

a return code indicating normal completion or an error
condition.

22

Chapter 2 Message Processing and
Control Under Intercomm

‘ In the Intercomm multithread environment, this same sequence of
events is carried out concurrently for many messages.

VERB

TABLE
1 MESSAGE
FRONT END COLLECTION

MAPS

MESSAGE
MAPPING
UTILITIES

o OO
SYSTEM APPLICATION

MONITOR SUBSYSTEM
() ;

| FESEND F @

ACCESS FILE HANDLER

METHOD OR < I OR DATA BASE
MANAGER

DATA BASE
MANAGER INTERFACE

Figure 8. Intercomm Message Flow Using Message Mapping

23

Chapter 2 Message Processing and
Control Under Intercomm

2.9 INTERCOMM MESSAGE FLOW USING EDIT AND OUTPUT

The path of one input message and its corresponding output
message is traced in Figure 9; the numbered arrows in the diagram
correspond to the numbered paragraphs below.

1 The Front End reads an input message and prefixes a 42-byte
control header containing routing information, time, date,
originating terminal, and message length. The message 1is
then queued for subsystem processing by Message Collection.

2 The System Monitor schedules the subsystem and retrieves the
message based upon the Subsystem Control Table (SCT)
scheduling criteria.

3 The unedited message is passed to the subsystem.

4 The subsystem calls the Edit Utility (if required) and the
input message is edited according to the Edit Control Table
(ECT) .

5 If editing is not successful due to invalid input data, the
Edit Utility optionally creates an error message for the
originating terminal and queues it for the Output Utility by
calling Message Collection, before returning an error code to
the subsystem. If editing is successful, the edited message
is passed back to the subsystem.

6 The subsystem performs message processing logic, requesting
I/0 service functions from the File Handler or Data Base
Manager interface.

7 The subsystem creates one or more output messages and queues
them for the Output Utility by calling Message Collection.

8 The subsystem returns control to the System Monitor, passing
a return code indicating normal completion or an error
condition.

9 The System Monitor schedules the Output Utility and passes
the output message(s) to it for processing.

10 The Output Utility performs formatting, if specified in the
header, according to entries in the Output Format Table
(OFT), finally passing the message to the Front End via a
call to FESEND.

11 The Output Utility returns to the System Monitor.

24

Chapter 2 Message Processing and
Control Under Intercomm

VERB {
TABLE
—@-——H MESSAGE
FRONT END COLLECTION

SUB-
SYSTEM
QUEUES

FESEND EDIT

2
UTILITY
(2 a
OUTPUT 7\ SYSTEM APPLICATION
©

O

ECT

UTILITY 11 | MONITOR SUBSYSTEM
_/ [er

OFT

ACCESS FILE HANDLER
METHOD OR ¢ > OR DATA BASE
DATABASE MANAGER

MANAGER INTERFACE

Figure 9. Intercomm Message Flow Using Edit and Output

25

Chapter 2 Message Processing and
Control Under Intercomm

2.10 THE INTERCOMM SYSTEM LOG

The Intercomm system log (INTERLOG) provides system journaling
and maintains a historical record of all traffic within the system.
Complete documentation of performance during on-line processing is
thus provided, along with system control for restart/recovery.

Message traffic is recorded at the time of entry on a subsystem
queue, and at the time message processing begins and ends within each
subsystem. Subsystems may make user entries on the system log by
calling an Intercomm system program (LOGPUT).

An installation may suppress some or all log entries, depending

on its own requirements. The system log is optionally used at
Intercomm system restart time to restore message traffic within the
system at the time of failure. The logging entries are blocked and

written to a variable-length sequential data set which may reside on
disk or tape.

Log entries are in one of two formats: HT--42-byte message
header and full text, as the message arrives from a terminal and is
queued for a subsystem, or queued for a terminal; or HO--header-only
entries, to mark progress through the system or error conditions.

Log entries are identified by a code in the MSGHLOG field of the
message header. The time and date stamps (MSGHTIM and MSGHDAT) in the
message header are updated for each log entry.

Progress of a message through a specific subsystem, or through
the Front End, 1is indicated by the same Monitor Message Number
(MSGHMMN) in each log record (01-30-FA or F2-F3). Complete progress
of a message, from the first processing subsystem to final
transmission, is indicated by the same Front End Message Number
(MSGHBMN). The log may be printed completely or selectively wvia the
Intercomm off-line wutility LOGPRINT, described in the Operating
Reference Manual.

A timing analysis utility (Log Analysis), which is supplied with
Intercomm, may be used off-line to produce a report of message queuing

and processing time. Statistics for messages by terminal, verb,
subsystem, and/or system totals are provided. See the Operating

Reference Manual.

The logging entries may be input to user-written batch programs
to provide performance analysis in detail, such as traffic vs. network
configurations, accounting routines, etc.

Figure 10 illustrates the log entries for one input message and a

corresponding output message generated via the Output Utility. Number
6 appears only if executing in Test mode, since there is no Front End.

26

J

Chapter 2 Message Processing and
Control Under Intercomm

For live or simulated mode Intercomm, two additional entries are an F2
log code (HT) when the message is queued for the Front End via FESEND
(appears in place of the 40 log entry between the 30 and FA entries),
and an F3 log code (HO) when the message was transmitted by the Front
End. Logging of the message to be transmitted (log code F2) occurs
before final Front End processing (idles insertion, New Line to SBA
sequence conversion, etc.).

If Message Mapping is used and the message is passed to the Front
End via FESEND (Figure 8), only the log entries numbered 1, 2, and 7
appear for each message processing thread. Log codes 3, 4, and 5
represent the additional processing for a message passed to the Output
Utility (receiving code U).

MSGCOL MONITOR
log code 01 (:::) log code FA
B \HO/_
MONITOR MONITOR
log code 30 log code 30
HO HO
APPLICATION FESEND
OPTIONAL log code log code 40
41-6F HT
o
MSGCOL MONITOR
log code 01 log code FA
\H_T/_- | *
HT = Intercomm message header and message data
HO = Intercomm message header only
Figure 10. Sequence of Log Entries
Figure 11 describes all the Intercomm log codes. Note that user

log entries may only use the codes in the range X'41l' to X'6F'.

27

Chapter 2

Message Processing and
Control Under Intercomm

Internal [External Restart
Code Code Format | Description Origin Use
X'00’ 00 HT Checkpoint Record Checkpoint | Yes
cr2’ 01 HT Message queued for subsystem Message

by Front End or a subsystem Collection | User
C'R’ 02 HT Message restarted through LOGPROC User
the system

... -
C'P' 03 HT Message restarted--related LOGPROC User

| to Data Base Recovery
................. g o
c'T’ W 30 HO Message passed to subsystem Subsystem | User
| for processing Controller
crz’ W 40 HT Message passed to Front End FESEND No
(test mode only)
X'41"' - 41- HT User called LOGPUT Any No
X'6F’ 6F Subsystem
X'80'- 80- HT File Recovery before-images IXFLOG User
X'8E’ 8E
X'8F 8F W HO Checkpoint Records indicator IXFCHKPT Yes

X'90' - 90- HT File Recovery after-images IXFLOG User

X'9E' 9E
......... B e [
X'9F' 9F HT Intercomm Startup LOGPUT Yes

X'AO' A0 HO Message restart begun LOGPROC Yes
X'Al' Al HO Message restart finished: LOGPROC Yes

all subsequent log entries
produced by live Intercomm

X'AA' AA HT Intercomm Closedown LOGPUT No

X'co’ co HT Region started (Multiregion MRINTER No
only) (Text=Region-id(s))

C'A’ cl HT Message successfully queued MRQMNGR User
for Satellite Region CR only

Internal Code: Log code in core during processing (snaps and dumps)

External Code: Log code after tramnslation by LOGPUT (INTERLOG printout)

Format: HT for header and text, HO for header only

Restart Use: Yes, No, User (specified via user-coded system macros)

Figure

11.

28

INTERLOG Entries (Page 1 of 2)

Chapter 2

Message Processing and
Control Under Intercomm

29

Internal [External Restart
Code Code Format | Description Origin Use
C'B’ (0] HO Message successfully passed MRQMNGR User
to Satellite Region CR only
c'c’ c3 HO Message lost (Region/Hold Q MRQMNGR User
| full) or flushed (SR/SS down) CR only
...)
c'1’ c9 HT Sign on/off processing, ESS No
security violation messages I
......... g QP ey
c'3’ FA HO Normal message complete Subsystem User
Controller
_________ O U SRR R
c'5! FB HO Unprocessed message--invalid Message User
subsystem/QPR code Collection
......................... R LR EEEEEPEEEPEES PEPPEEPTEPE EEPPPPPRE
c'e6’ FC HO Unprocessed message--core and Message User
disk queue full Collection
......... g oo
crsg’ FD HO T Message cancelled--program Subsystem User
error or time-out, I/0 error, Controller
or flushed by command (Rel 10)
c'9’ FE HO Message flushed by Retriever, Retriever No W
used when application program
does not obtain (via GETSEG)
all parts of a segmented
message; or message failed
j security check SYCT400
c'l’ Fl HT Message after verb USRBTLOG No
verification (optional)
c'2' F2 HT Message queued for FESEND User
transmission
.. e
c'3’ F3 HO Message transmitted, Front User
discarded (MSGHUSR=Z), (Rel 10)| End
or flushed (MSGHUSR=F) (Rel 10)
.. L e e e - - -
c'4! F4 HO 3270 output message content BLHOT No
invalid- -message dropped.
C'5'- F5-F6 HO Transmitted DDQ msg status: Front No
c'8’ F7-F8 HT see SNA Term. Support Gd. End
X'FF' FF HT Intercomm Restart Accounting MSGAC Yes
Figure 11. 1INTERLOG Entries (Page 2 of 2)

Chapter 2 Message Processing and
Control Under Intercomm

2.11 ADDITIONAL APPLICATION PROCESSING FACILITIES

In addition to the application programming facilities described
in this and related manuals, the application designer should be aware
of the following processing options available under Intercomm:

. Off-1ine batch region execution: the Intercomm File Handler,
DFA, DDQ, Store/Fetch and MMU may be executed by an off-line
program (coded as non-reentrant) to prepare a file, data
strings, or messages for on-line access. See the associated
manuals for linkedit considerations.

e Multiregion Facility batch region interface: when executing
an on-line Multiregion system, any batch application region
may pass a message or a FECMDDQ (see also Chapter 9) to an
on-line subsystem or to the Front End via the Output Utility

subsystem. See Multiregion Support Facility.

e Time controlled processing: instead of being triggered by an
input terminal message, an application may be designed to
execute at a particular time of day. See the Operating

Reference Manual.

. Segmented input message processing via DDQ: segmented input
messages, whether gathered by Intercomm from a remote device

(CPU, etc.) or generated by an application program, are
placed on a DDQ and may be serially passed to an application
subsystem via a DDQ Facility interface. See Dynamic Data

Queuing.

e Dynamic linkedit feature: dynamically loaded user subsystems
and subroutines are linkedited to called Intercomm resident
routines at startup, thus reducing the size of the load
modules. The LOAD system control command is used to force a
relinkedit of a new version of a dynamically loaded program
Placed on the load library while Intercomm is executing. See
the Operating Reference Manual.

e User exits: various user exits for installation dependent
processing are listed in the QOperating Reference Manual.

30

Chapter 3

CODING AN INTERCOMM SUBSYSTEM IN ASSEMBLER LANGUAGE

3.1 PROGRAM STRUCTURE

An application subsystem executing under Intercomm control is
activated to process one message. The following examples typify the
concerns of message processing logic:

1. Interpretation of message text to reroute administrative data
to another terminal.

2. Editing of message text, creation of a record on a sequential
data set for later off-line processing and preparation of an
acknowledgement message to the originating terminal.

3. Editing and analysis of message text to determine file
retrieval and/or update criteria, data file access,
preparation of a response message for the operator at the
originating terminal.

4. Analysis of an application-oriented control message and
appropriate action, such as checking batch totals from
example 2, above, or acting on a special request to close a
file or perform some other control function.

This chapter presents techniques for coding a BAL application
subsystem to execute in the Intercomm region, and to use Intercomm
message processing facilities. While some facilities are referenced
here, they are fully described in another chapter: check the index for
specific routines. To bring all the coding requirements into proper
perspective, this chapter includes a sample Intercomm application
subsystem. Its objective is to "echo" the text of an incoming message
back to the originating terminal.

A BAL application subsystem is coded as a reentrant subroutine,

as 1illustrated in Figure 12. A subsystem’s logic is designed to
analyze and process one input message, it does not contain logic for
terminal I/O operations. Figure 13 depicts the components of a BAL

application program environment.

Subsystem Controller activation of the application subsystem is
achieved via the equivalent of a CALL macro instruction. On entry to
the subsystem, the address of a three-word parameter list, as listed
below, is passed via register 1:

° Address (fullword-aligned) of message to be processed,
consisting of a 42-byte header and text (edited or unedited)

° Address of the System Parameter Area (SPA), for accessing
addresses of Intercomm service routines and user data that
may be used for processing the message (see Appendix D)

e Address of the program’s Subsystem Control Table (SCT) entry,
which allows the subsystem to reference such information as
its subsystem code, execution priority, etc.

31

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

Reference
SUBSYSXX CSECT description
REGS | in text
*SUBSYSTEM ENTRY
LINKAGE

*MESSAGE PROCESSING LOGIC

*GET CORE FOR OUTPUT MESSAGE
STORAGE

Build Output Message

*PASS THE MESSAGE TO THE FRONT END VIA FESEND, OR
*QUEUE THE OUTPUT MSG VIA MSGCOL
CALL

*FREE THE INPUT MESSAGE
STORFREE

*SUBSYSTEM EXIT

RTNLINK
%
INMSG DSECT
INHDR DS CLA42
INTEXT DS

ONONONONOIONO,

. define input text format
INLEN EQU * - INHDR

*
OUTMSG DSECT
OUTHDR DS 0CL42

COPY MSGHDRC
OUTTEXT DS

. define output text format
OUTLEN EQU *-OUTHDR
*
WORKAREA DSECT (::)
REGSAVE DS 18F
COREADDR DS F
PARMSAVE DS 5F
SUBSYSWK DS
define subsystem dynamic work area

WORKLEN EQU *-REGSAVE

END

Figure 12. Reentrant Assembler Subsystem Structure

32

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

(2a\n] SYSTEM
INTERCOMM \2B /" | PARAMETER
SYSTEM AREA
SUBSYSTEM
REENTSBS CONTROL
LANGUAGE TABLE
INTERFACES AA XX YY
SUBSYSTEMS | SUBSYSTEM XX
SUBSYSTEM AA
BB SUBSYSTEM YY
REENTRANT
BAL SUBSYSTEM BB
LINKAGE
_REGISTERS |
1A) IN-MSG
2A) SPA
3A) SCT
[———4A) WORK AREA
CONSTANTS
MVS
INTERCOMM DYNAMIC POOL STORAGE SUBPOOLS
BB INPUT @ BB INPUT
MESSAGE A MESSAGE B FILE
AREAS
Dynamic Work Dynamic Work
Space For Space For
SUBSYSTEM BB SUBSYSTEM BB
Thread A: Thread B:
| SAVE AREA SAVE AREA | MVS ACCESS
| INDEP_ITEMS | [INDEP ITEMS METHODS
| RECORD_AREAS | RECORD _AREAS |
OUTPUT MSG OUTPUT MSG

Figure 13. Reentrant Application Program Environment

33

Chapter 3

Coding an Intercomm Subsystem
in Assembler Language

After a subsystem completes processing and returns control to the

Subsystem Controller (see Chapter 2),

the Intercomm return code (in

Register 15) 1is checked to determine whether the message should be

cancelled due to an error.

Then the return code is placed in the

externally saved input message header in MSGHRETN (MSGHCON+1l), and the

header is logged with an appropriate log code (see Chapter 2).
14 describes Intercomm return codes.

subroutine) program checks, or the
returns an appropriate error message

is a user exit provided by Intercomm under the name PMICANC,

Figure
If the subsystem (or a called

return code is 8 or 12, USRCANC
to the terminal operator. USRCANC
and 1is

described in the Operating Reference Manual.

Return Subsystem Controller
Code Meaning Error Action
0 Successful completion None
4 Edit reject (unsuccessful) None
8 Unrecoverable error Message canceled, CALL to USRCANC
condition (no core,
MAPEND error, etc.)
12 I/0 error Message canceled, CALL to USRCANC
16 (Not used, reserved) T ---
20-60 |User codes to identify None
unusual condition
64 File or DBMS Update None
Subsystem, no message
restart required¥*
68 File or DBMS Inquiry None
Subsystem, message
restart required¥*
72-254|Same as 20-60 None
912 Force Backout-on-the-Fly* File updates or additions backed out

Users Guide

*See File Recovery Users Guide or Data Base Management System

Figure 14.

Intercomm System Return Codes

34

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

3.2 MESSAGE PROCESSING CONCEPTS

The application program receiving the message may analyze the
Verb Message Identifier (MSGHVMI) in the header and/or message text
fields to further control message processing logic. The meaning of
different VMI values is dependent on the design requirements of the
program receiving the message. For example, the Front End sets the VMI
to X'00' to indicate to the Assembler subsystem that editing by the
Edit Utility 1is required, based on the specification in the Front End
Verb Table for a given verb (BTVERB macro, EDIT parameter). The
Assembler subsystem then analyzes the VMI to determine if the Edit
Utility should be called. A VMI value of X'FF’ (high-values) indicates
that no processing is required by, or was performed by, the Edit
Utility. Any other value in the VMI indicates that the Edit Utility
has already processed the message or that a user subsystem has placed a
code in the field before switching (queuing) the message to the
currently processing subsystem.

An application subsystem creates an output message by building a
42-byte header and appropriate message text. This new message is
either passed to the Front End via FESEND for transmission to the
terminal, or is queued for later processing by the Output Utility or
some other subsystem by calling the Intercomm system program MSGCOL.
The subsystem destined to receive this new message is determined by the
receiving subsystem code fields (MSGHRSC, MSGHRSCH) in the message
header. The receiving subsystem may then analyze the VMI, as
appropriate. The Output Utility, for example, analyzes the VMI to
determine whether or not prespecified output message formatting is to
be performed. If the output message is passed directly to FESEND,
MSGHRSCH and MSGHRSC should be set to binary zeros.

Subsystem logic for input message text analysis and output
message text creation varies, depending whether Message Mapping or the
Edit and Output Utilities are wused. Figures 15 and 16 illustrate
subsystem processing logic for these two cases.

It is very important to mnote that the input message area
(Intercomm header and message text) may only be examined (treated as a
read-only area) by the application program. It may also be copied to
an output message area (header only, or header and text) where it may
be added to or changed, depending on program logic. Never add to, or
change, the input message text area.

35

Chapter 3

Coding an Intercomm Subsystem
in Assembler Language

Subsystem Logic

Comments

ENTRY

Initial-
ization
Logic

MAPIN
according to
user specifi-
cations

Processing
logic

Prepare

Output

Data
L2

MAPOUT
according to
user speci-

fications

MAPEND
place message
header and
text in DWS

FESEND

place message
in terminal
queue for

transmission

The subsystem determines (perhaps based
on the particular verb entered) if the
input message requires mapping.

MAPIN is called to convert the input
message to text consisting of fixed
length fields with a three-byte prefix of
length (two bytes) and flag (one byte),
indicating the result of field conversion.
All terminal-dependent characters are
removed.

Processing logic is application-dependent.

Output text data has a format similar to
mapped input text: fixed length data
fields with a three-byte prefix of length
(two bytes) and attribute (one byte),
indicating terminal-dependent field
characteristics, if applicable.

MAPOUT is called to build an output
message text stream, padding, justifying
and/or converting data fields from
computational form, as necessary, and
adding constant heading information as
required.

MAPEND is called to return the output
message (header and text) in terminal-
dependent format ready for transmission,
or to dispose of the output message.

FESEND is called to pass the output
message to the Front End (if MAPEND has
not disposed of the output message).

Subsystem completes its processing and
returns to Intercomm.

Figure 15. Subsystem Logic Using Message Mapping Utilities

36

Chapter 3

Coding an Intercomm Subsystem
in Assembler Language

Subsystem Logic

Comments

ENTRY

The subsystem determines whether or not the input
Initial- message requires Edit (VMI=X'00’' if yes) and CALLs
ization the Edit Utility, EDITCTRL, to accomplish field
Logic conversion. After Editing, the message text
consists of fixed length data fields, or variable
length data fields prefixed with a 1-byte ident-
ification and a 1l-byte length code (binary
values). Return codes indicate error conditions.
Processing Processing logic is application-dependent.
Logic
The subsystem prepares an output message by
creating a message header and the appropriate
Prepare text. Output message text fields are either
Output fixed length data fields or variable length
Message fields with a prefix as described for Edit, above.
Message header fields RSCH, RSC, and VMI identify
the specific message text format.
MSGCOL

queue the
message for

MSGCOL is called to queue the output message for
processing by the Output Utility subsystem.

Output

Final Subsystem completes its processing and returns to
Processing Intercomm.

RETURN

Figure 16. Subsystem Logic Using Edit and Output Utilities

(Page 1 of 2)

37

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

Subsystem Logic Comments

‘ ENTRY ’

Output Utility The Output Utility performs message formatting
message for- according to user specifications, adding constant
matting logic heading information as required.
FESEND
put message FESEND is called to pass the output message to the
in terminal Front End. Output completes its processing and
queue returns to Intercomm.

Figure 16. Subsystem Logic Using Edit and Output Utilities
(Page 2 of 2)

3.3' SUBSYSTEM CODING

When a message is received in the Intercomm region, it undergoes
various preprocessing functions by the system. The Front End prefixes
the message with a 42-byte header and the message is queued for

processing. The Subsystem Controller, a component of the Intercomm
Monitor, will schedule, 1load (if necessary), and activate the
application subsystem for the message. If the subsystem is loaded

above the l6meg line under XA, it will receive control in 31 Amode.

At this point, message processing logic begins. At least eight
major functions will be included in the subsystem's structure to
process a message. These are paired as follows:

° Entry and Exit from the Subsystem

The subsystem must provide necessary 1logic to 1link with
Intercomm (that is, initialize registers, acquire and chain a
save area, etc.), and to return to the monitor (restore
registers, free the save area). The LINKAGE and RTNLINK
macros are provided for subsystem linkage processing.

38

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

° Edit and Process Message

The incoming message 1is often unedited. The subsystem is
responsible for all conversion or editing. Message Mapping
Utilities or the Edit Utility may be used for this purpose.
The message 1s then analyzed and processed by subsystem
logic, using Assembler Language instructions, Intercomm or
operating system supplied macros, and/or Intercomm service
routines.

[Obtain and Free Core

The Assembler Language application subsystem 1is responsible
for obtaining storage as needed from the Intercomm dynamic
pool area, and then freeing the storage when processing is
completed (if necessary). The Intercomm STORAGE and STORFREE
macros are provided to obtain and free core.

° Build and Queue the Output Message

As part of the message processing logic, a subsystem may
create one or more messages to transmit to a terminal.
Message Mapping Utilities may be used in conjunction with the
FESEND routine, or the Page or Dynamic Data Queuing
Facilities, to create and queue the output message(s) for

transmission. Or, the output message(s) may be created and
queued for processing by the Output Utility via a call to
MSGCOL. The Output Utility may be used to format the

message(s), and subsequently pass the message(s) to FESEND
for transmission.

The subsystem consists of two areas: the actual message
processing logic; and the definition of areas of core in the Intercomm
dynamic pool storage area. Figure 12 illustrates the structural flow
of an application subsystem. The circled numbers are included to
facilitate reference in the following text discussion.

3.3.1 Subsystem Entry

Entry into the subsystem is identified by the CSECT name or an

ENTRY name. The address of the three-word parameter list passed on
entry by the Subsystem Controller is in register 1. The input message
resides in the dynamic pool area. The message format must be defined
within the application program by a DSECT (see in Figure 12).

Parameters 2 (SPA) and 3 (SCT-entry) addresses are resident areas in
the Intercomm load module, but a DSECT must be geperated if these areas
are to be referenced. The LINKAGE macro (see in Figure 12) will
provide these Dsects (as described in the next section), or the
programmer may generate the Dsects as part of the subsystem structure.
Intercomm Dsects for use by Assembler Language application programs,
and methods for generating them (macro or COPY statement) are described
in Appendix B.

39

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

3.3.2 Linkage

To allow concurrent processing of messages within a subsystem,
the subsystem must be coded in a reentrant form. The LINKAGE and
RINLINK macros generate much of the code necessary to make an Assembler
Language subsystem reentrant. The LINKAGE macro generates all of the
instructions necessary to establish standard reenterable linkage from
the Subsystem Controller into the application subsystem. LINKAGE
provides addressability, and can also perform a number of other service
functions for the application subsystem:

® Provide a set of register equates
° Issue various USING statements
° Set up one or two base registers

° Set up specified registers with addresses passed in the
parameter list

® Obtain a dynamic save/work area from the dynamic pool area
and zero the core obtained

e Provide the PARMLIST, SPALIST, SCTLIST, MSGHDR, R13 DSECTs,
as desired. (See also 0 and in Figure 12.)

The LINKAGE macro must be the first executable instruction in the
application subsystem structure. The coding requirements to ensure
reentrancy are:
1) Code the LINKAGE macro at the main entry point of the sub-
system (see in Figure 12).

2) Code the RTNLINK macro (see @ in Figure 12) to return
control to the calling program (Subsystem Controller).

3) Do not modify any area within the program. Only modify
dynamic storgge obtained by using the LINKAGE and STORAGE
macros (see és in Figure 12).

4) Use the list and execute forms of any IBM operating system
macros and Intercomm macros (when applicable). Intercomm
processing macros are listed in Chapter 10.

3.3.3 Message Processing

The next section of the subsystem gtructure contains the message
processing logic as indicated by in Figure 12. Further
considerations for message editing and text formats are described in
Chapter 2. If a file is to be accessed as part of the processing of
the message, a File Handler service routine must be called to read from
or write to a file (described in detail in Chapter 6). See other
chapters in this manual for detailed descriptions of service routine
calls for other processing facilities, and Chapter 10 for a list of
available macros.

40

C

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

Once the processing has been performed, an area of dynamic core
may be needed to construct the output message. _The Intercomm STORAGE
macro must be used to obtain dynamic core (see in Figure 12). The
STORAGE macro instruction issues a request for ownership of a portion
of core. If the request 1is satisfied, register 15 will contain a
return code of 0 and the core allocated will commence on a double word
boundary. If the request for dynamic core is not satisfied, register
15 will contain a return code of 8. Core obtained via the STORAGE
macro must be released through the use of the STORFREE macro
instruction, unless that core 1is utilized for a message queued for
another subsystem, or the Front End.

Once dynamic core has been obtained, the subsystem can construct
the message for output, consisting of a 42-byte header prefix, plus
application-oriented message text. This new message is passed directly
to the Front End by calling the system program FESEND, or is queued for
later processing by the Output Utility or some other subsystem by
calling the Intercomm system program MSGCOL, indicated by (:) in Figure
12. The subsystem destined to receive this new message is determined
by the receiving subsystem code fields (RSC, RSCH) in the message
header. The Receiving Subsystem may then analyze the Verb/Message
Identifier (VMI), as appropriate. The Output Utility, for example,
analyzes the VMI to determine whether or not prespecified formatting is
to be performed.

If the output message text 1is shorter than the actual area
obtained, the STORFREE macro is used to free the extra area. This is
accomplished by calculating the difference between the length of the
area obtained and the length (contained in the message header) of the
actual output message, as illustrated below:

hdr text unused
L / V00000 TTTA
obtained with STORAGE
R e I I >
A >
free with STORFREE
LA R14,0UTLEN Total LEN acquired less
SH R14 ,MSGHLEN actual LEN used=unused LEN
SRL R14,3 Drop down to nearest
SLL R14,3 multiple of 8
LTR RO,R14 RO=unused length
BZ NOFREE If less than 8, nothing to free
LR R1,R7 Pick up addr of unused core by
AH R1,MSGHLEN bumping to end of used portion
ROUND R1 Up to next multiple of 8
STORFREE ADDR=(1),LEN=(0) Free unused core
NOFREE DS OH

41

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

As indicated by in Figure 12, the subsystem must use the
STORFREE macro to free e input message area, unless that area has
been freed by a call to MAPIN, or has been referenced in a call to
Message Collection (see "Additional Coding Techniques" below). The

system routines MSGCOL and FESEND take over "ownership” of the passed
message area.

The RTNLINK macro instruction is coded in coordination with the
LINKAGE macro instruction. It restores the registers saved at LINKAGE
time and optionally frees storage acquired by LINKAGE. 1In addition, it
effects the return to the Subsystem Cgntroller and passes a return code
(see Figure 14) in register 15. See on Figure 12.

Note that the SPA parameter of the RTNLINK macro must be coded if
the register containing the address of the SPA differs at the time of
RTNLINK from the register used at the time the LINKAGE macro is issued
or if the subsystem is dynamically loaded.

3.3.4 Additional Coding Techniques

To minimize the amount of dynamic subpool space utilized by an
application subsystem, the programmer may optionally use the input
message area as the output message area as text processing logic
allows. However, if using this method, the output message must never
be greater in length than the input message. This approach is well
suited (although not limited) to fixed-length message text. If the
output message is shorter than the input message, additional program
logic is required to free the remaining area of the input message not
utilized as output message text. Remember that STORFREE operates on
doubleword boundary alignment. Also, the new shorter message length
must be stored in the message header before calling MSGCOL or FESEND.

A second technique for obtaining core for an output message which
minimizes dynamic pool area fragmentation (but adds internal processing
overhead) is to allow the LINKAGE macro to obtain space for an output
message as well as other work areas. In this instance, the output
message area must appear at the "trailing end" of the obtained area.
RTNLINK must be coded to free up all of the save/work area except the
output message area, which is controlled by Message Collection (or
FESEND) . However, the subsystem must use STORFREE for any trailing
area of core not occupied by the output message.

The following illustrates the areas of dynamic core operated upon

by two different subsystems and the associated responsibilities for
obtaining and freeing core.

42

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

INTERCOMM
Application Application
Subsystem PROGRAMS Subsystem
A B
input message area A | DYNAMIC POOL AREA

On.
@O—»

Application A (:}-——N input message area B |

register save
area

@——N Application B

register save area
Application A | = Jreeemmemeeemeeeeiaaao
work area Application B e
work area

output message area B

A IR,

@—N@tput message area A [/

area obtained by Monitor, freed by subsystem A
area obtained by LINKAGE, freed by RTNLINK

area obtained by STORAGE, passed to MSGCOL or FESEND,
area not used for message freed by STORFREE (shaded area)

area obtained by Monitor, freed by subsystem B
area obtained by LINKAGE

area freed by RTNLINK

OEOO VOO

passed to MSGCOL, area not used freed by STORFREE (shaded area)

43

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

3.3.5 Subsystem Illustration

, Figure 17 illustrates the basic coding required to implement an
Intercomm subsystem and the definition of an input message and
creation of an output message via an application to "echo" the text of
an incoming message back to the originating terminal. The Message
Mapping Utilities, or the Edit Utility and the formatting capabilities
of the Output Utility, are not used.

1. The message header is created by copying the input message
header to the output message header area and adjusting the
following fields:

° MSGHSSCH, MSGHSSC--Sending Subsystem Code

Move the original receiving subsystem code values,
MSGHRSCH (to MSGHSSCH) and MSGHRSC (to MSGHSSC), to
identify the current subsystem as the sending subsystem.

° MSGHRSCH, MSGHRSC--Receiving Subsystem Code

Move in a predefined code to indicate further processing
(the next subsystem) for this message (for FESEND, use
binary zeros).

e MSGHVMI--Verb/Message Identifier

Move in a predefined code to indicate the output message
is not fully formatted: X'57'. 1If an output message is
formatted by MMU, do not touch this field.

® MSGHLEN- -Message Length

Modify to total header and text length of output message
(if different from length of input message).

° MSGHTID- -Receiving Terminal Name

If the originating terminal is to receive the response
message, do not change. Otherwise, specify the receiving
terminal name for the output message.

To assist the programmer in defining the message header,
there is a source library member, MSGHDRC, that may be copied
into the appropriate DSECT area in the source code. See

Chapter 2 for a description of individual fields in the
message header.

2. The new message text is created by copying the input message
text to the output text area.

3. Queuing of the output message for the terminal is
accomplished via the service routine FESEND.

44

»

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

4. The return code from the queuing routine must be analyzed to
assure that the new message was actually queued, and recovery
action taken if not.

5. The last logical activity in the subsystem is to STORFREE the
input message and then issue the RINLINK macro, returning
control to the Subsystem Controller and passing back an
appropriate return code.

The program Csect or Entry Point name must correspond to the
subsystem entry point described in the Subsystem Control Table. If
dynamically loadable, the load module name should be the same as the
Csect name. The entry parameters for the System Parameter Area (SPA)
and Subsystem Control Table (SCT) entry for the subsystem are not
detailed as there is no need to reference any of their individual
fields.

The input and output message formats are described via Dsects,
with the message header detailed for the output message area.
Constants and an LTORG statement are usually defined between the last
code instructions and the Dsects area. Areas of storage modified
during program execution must be defined within the dynamic save/work
area Dsect. Such items also include storage areas required for
Intercomm service routines and passed to those routines as parameters,
whether or not the subsystem references or modifies those areas. For
programs eligible for loading above the l6meg line under MVS/XA or ESA,
unmodified constant values (map names, file ddnames, etc.) must be
copied to the save/work area for passing as parameter values to called
Intercomm routines. Additionally, areas passed as parameters to user
subroutines must also be defined in the save/work area.

45

Chapter 3

Coding an Intercomm Subsystem
in Assembler Language

RBALECHO

*

*

GOTCORE

QUEUED

CSECT

* REENTRANT BAL SUBSYSTEM TO 'ECHO’ A MESSAGE,

* TILLUSTRATING BAL SUBSYSTEM STRUCTURE.

* MESSAGE PROCESSING LOGIC CONSISTS ONLY OF CREATING AND QUEUING
* AN OUTPUT MESSAGE TO RETURN TO THE ORIGINATING TERMINAL

USING INMSG,R5

USING OUTMSG,R6

USING WORKAREA,R13

REGS GENERATE REGISTER EQUATES

SUBSYSTEM ENTRY

LINKAGE BASE=(R12),LEN=WORKLEN, PARM=(R2),SPA=(R3),MSG=(R5)

GET CORE FOR THE OUTPUT MESSAGE AREA

* BUILD OUTPUT MESSAGE

LH R8,INMSG INPUT MESSAGE LENGTH

STORAGE ADDR=COREADDR , LEN=(R8) , LI ST=PARMSAVE

LTR R15,R15 TEST RETURN CODE

BZ GOTCORE

LA R10,8 RETURN CODE 8 IF NO CORE

B FREEIN

L R6 , COREADDR ESTABLISH ADDRESSABILITY

MVC OUTHDR,INHDR INPUT HEADER TO OUTPUT HEADER
MVC MSHGSSCH,MSGHRSCH THIS SUBSYSTEM BECOMES THE

MVC MSGHSSC,MSGHRSC SENDING SUBSYSTEM

MVI MSGHRSCH,X’00’ THERE IS NO

MVI MSGHRSC,X’00’ RECEIVING SUBSYSTEM

MVI MSGHVMI,X'57' VMI FOR PREFORMATTED OUTPUT TEXT
LA R9,42

SR R8,R9 TEXT LENGTH=INPUT LENGTH-42
EXMVE OUTTEXT, INTEXT,R,RS8 MOVE TEXT TO OUTPUT MESSAGE AREA
AR R8,R9 RESTORE TOTAL MSG LENGTH

* QUEUE THE MESSAGE FOR THE INPUT TERMINAL

CALL FESEND, (OUTMSG),VL,MF=(E, PARMSAVE)

LTR R15,R15 TEST RETURN CODE

BZ QUEUED

LA R10,12 RETURN CODE 12 IF NOT QUEUED
B FREEIN

LA R10,0 RETURN CODE O IF ALLS WELL

* FREE THE INPUT MESSAGE

FREEIN STORFREE ADDR=(R5),LEN=(R8)
* RETURN TO SUBSYSTEM CONTROLLER
RTINLINK ADDR=(R13),LEN=WORKLEN,RC=(R10)
*
WORKAREA DSECT LINKAGE WORKAREA,FREED BY RTNLINK
REGSAVE DS 18F REGISTER SAVE AREA
COREADDR DS F STORAGE MACRO, ADDR OF CORE
PARMSAVE DS 5F PARAMETER LIST SAVE AREA
WORKLEN EQU *-WORKAREA
INMSG DSECT INPUT MESSAGE
INHDR DS CL42 HEADER
INTEXT DS CL200 200 CHARACTER TEXT MAXIMUM
OUTMSG DSECT OUTPUT MESSAGE
OUTHDR DS 0CLA2 HEADER AREA
COPY MSGHDRC HEADER FIELDS DEFINITION
OUTTEXT DS CL200 200 CHARACTER TEXT MAXIMUM
END
Figure 17. Echo Message Example; Reentrant Assembler Language

46

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

3.3.6 Message Switching Between Subsystems

Any Intercomm subsystem may send a message to any other Intercomm
subsystem. If a message is sent to some other subsystem, it is called
"message switching." An application subsystem can switch a message to
the Output Utility, which is another subsystem. The Change/Display
Utility switches messages to the Output Utility. An application
subsystem may switch (or requeue) a message to itself in the event that
reprocessing or deferred processing of the message is required. An
application subsystem may exceed an installation’s core limitations and
be broken into several subsystems. One subsystem may receive a message
input from a terminal, perform partial processing and develop
intermediate results in the form of a message sent to a second
subsystem. The second subsystem processes the intermediate results as
an input message and may complete the message processing or develop
additional intermediate results in the form of messages sent or
switched to any other subsystem or subsystems. Any one of these
subsystems might also switch messages to the Output Utility.

Message switching between subsystems is accomplished by moving
the input message to an output message area and then changing the
receiving subsystem codes in the header and calling MSGCOL as usual.
The Verb/Message Identifier (MSGHVMI) may be initialized for
interpretation by the receiving subsystem. A VMI equal to X'00’
indicates that the Edit Utility is to be called by the subsystem. To
switch messages between terminals, the destination terminal identifier
(MSGHTID) would also have to be changed, and the VMI set to X'57'.

3.4 RESTARTED MESSAGES

After an Intercomm system failure (abend or operator cancel) or
an operating system failure (requiring a re-IPL of the CPU), Intercomm
may be brought up in Restart Mode which permits reprocessing of
messages in progress at the time of failure. Additionally, previously
cancelled messages (see Figure 14), and unprocessed messages (received
and queued, but not started) will be requeued for processing after
system startup completes. This 1is accomplished by retrieving the
original input messages from the log created in the previous Intercomm
execution as described in the Operating Reference Manual, and may be
coordinated with file or database record backout as described in the
File Recovery Users Guide and DBMS Users Guide.

Restarting of messages for a particular subsystem is controlled
by the RESTART parameter of the SYCTTBL macro defining the subsystem in

the SCT. A restarted input message (in progress at failure time)
contains a log code of C'R’ or C'P’ (if data base update may be
executed by the subsystem). All other input messages contain a log
code of C'2' (see Figure 11). A subsystem may need a different

processing path for a restarted message and should be careful about
creating an output response message which might confuse a terminal
operator.

46.1

Chapter 3 Coding an Intercomm Subsystem
in Assembler Language

3.5 MVS/XA EXTENDED STORAGE LOADING REQUIREMENTS

If the user desires that an Assembler Language subsystem or
subroutine be dynamically loaded above the 1lémeg line under XA or ESA,
the following is required:

° Programs must be reassembled to ensure that the Release 10 XA
support versions of macros are used.

° Programs must be coded and defined to Intercomm as reentrant
and use the linkedit AMODE and RMODE override parameters (see
Appendix A).

e Subsystems and subroutines must be linked with INTLOAD to
provide 24-Amode interface to Intercomm. INTLOAD is serially
reusable (not reentrant), therefore do not link with the RENT
attribute.

° SYCTTBL macro: code LOADNAM (not SBSP), LANG=RBAL, BLDL=YES
(default), and REUSE=YES (default) parameters.

e LINKAGE and RTNLINK macros must be used by subsystems:
dynamic save/work area acquired in 24-Amode.

° SUBLINK and RTNLINK macros must be used in dynamically

loadable subroutines: dynamic save/work area acquired in
24 -Amode.

° If Intercomm service routines (MMU, File Handler, MSGCOL,
etc.) are called, they may only be accessed via the IBM CALL
macro using the service routine entry point name (which
causes a branch to the INTLOAD interface routine which
handles mode switching on entry and return). The address of
the routine may not be preloaded from the SPA or SPAEXT.

° Intercomm macros may be used (except the SUBTASK and CALLOVLY
macros), however the SPA and SPAEXT parameters may not be
coded, nor may the LINK parameter be wused. INTLOAD also
contains entry points for macro processing (for STORAGE,
STORFREE, DISPATCH, etc.). The SPA and SPAEXT parameters may
only be coded on the LINKAGE and SUBLINK macros. The LIST
parameter .must be used on the STORAGE macro (RENT=NO may not
be used), and the referenced list must be in 24-Amode storage
(dynamic save/work area).

e All wvariable (modifiable) fields and unmodified parameter
values (ddnames, map names, etc.) passed to Intercomm service
routines or macros (which branch to Intercomm service
routines) must be in 24-Amode storage (acquired via LINKAGE,
SUBLINK or STORAGE macros). That is, ddnames, enqueue names,
etc. defined in the program as constants (including the
module name used for MODCNTRL) must be copied to dynamic
storage before the service routine call or macro execution.

46.2

<

Chapter 3

Coding an Intercomm Subsystem
in Assembler Language

Dynamically loadable user subroutines must be defined to
Intercomm via the SUBMODS macro in the REENTSBS table: code
INAME (not NAME), TYPE=BAL (default), BLDL=YES (default), and
USAGE=REENT (default) parameters.

Resident (in Intercomm load module) user subroutines, to be
called by a program loaded above the l6émeg line, must also be
defined in the REENTSBS table via a SUBMODS macro: code NAME
parameter only (and USAGE if not reentrant).

Subsystems (and subroutines) must use the MODCNTRL macro to
access user subroutines (tables). ACTION=LINK should be used
for subroutine access so that the Intercomm MODCNTRL
interface program will handle mode-switching when necessary
for a loaded subroutine. Parameters passed to a subroutine
must be in dynamic 24-Amode storage (in case the subroutine
is resident or loaded in 24-Amode).

If a MODCNTRL macro with ACTION=LOAD is used, the address of
the loaded module is returned in register 1 when the issuing
program receives control back from MODCNTRL. If the hi-order
bit (80) is on in the address (address is negative), the
module was loaded above the lémeg line. A program executing
above the lémeg line may use (branch to) the loaded module
directly (modes are compatible). A program executing in
24-Amode must use the XASWITCH macro to switch modes before
processing the loaded module and again at the end of
processing before using the MODCNTRL macro with
ACTION=DELETE. If the address of the loaded module is not
negative (loaded or resident in 24-Amode), a program
executing in 31-Amode must immediately execute a MODCNTRL
macro with ACTION=DELETE and then use a MODCNTRL macro with
ACTION=LINK, to access the 24-Amode subroutine. A 24-Amode
table, however, may be processed by a 31-Amode program.

The 24-Amode interface routine SWMODE must be included in the
Intercomm linkedit.

Check the linkedit map of the program to be loaded above the
lémeg line for unresolved external references that may be
incorrectly vresolved (causing Intercomm to be entered in
31-Amode) by dynamic 1linkedit processing, if used.
References to the SPA (by a hard-coded Vcon) in the SUBLINK,
LINKAGE and RTNLINK macro expansions and by INTLOAD may be
ignored, as well as references to the BITSECT table by the
SSSTART, SSSTOP and SSTEST macros.

Ensure that the following Intercomm interface modules were
assembled under MVS/XA: SYCT400, DYNLLOAD, MANAGER, INTLOAD,
SWMODE.

46.3

Chapter 4

USING THE MESSAGE MAPPING UTILITIES

4.1 CONCEPTS

The Message Mapping Utilities (MMU) provide an interface between
the application subsystem and terminal-dependent message processing
logic for both input and output messages. MMU is invoked by calls to
Intercomm service routines which perform mapping functions based upon
user-specified tables (MAPs). Mapping includes justification, padding,
and conversion of character data to computational format and vice
versa.

4.2 PROCESSING

MMU input mapping produces fixed length data fields prefixed by a
two-byte 1length and one-byte flag (indicates errors or omissions)
unless the data fields are defined in a structured (named) segment
(contiguous group of fields). In this case the three-byte prefix
occurs for the entire segment, not the individual fields.

MMU output mapping operates upon data in the same format, but the
flag byte becomes the field (or segment) attribute character. The
mapped input text area and the unmapped output text area are called
symbolic maps and are defined by COPY statements in the application
program’s save/work area. The application program references data
fields and the associated prefix by symbolic name. For example, a
customer name field (CUSTMER) of twenty-five characters would appear in
an MMU symbolic definition as follows:

CUSTMERL DS XL2 (length)
CUSTMERT DS X (flag/attribute)
CUSTMER DS CL25 (data)

Output message disposition is determined by options passed to
MMU. The formatted message(s) may be returned to the subsystem; passed
to FESEND for terminal queuing; passed to the Page Facility for CRT
page browsing; or spooled to a DDQ for subsequent transmission as a
series of report pages for a printer.

A summary of message processing logic using MMU is shown in
Figure 18. For a complete description of Message Mapping and its use

by application subsystems, refer to the Intercomm Message Mapping
Utilities.

47

Chapter 4 Using the Message Mapping Utility
APPLICATION SERVICE MAP
LOGIC ROUTINES FILES
MAP
Input Initiali- Load
Message zation Modules
Prepare LOADMAP
MAPIN Offline
Calling Utility
L_Sequence
Process MAPIN
Mapped ¢ Convert/Edit
Input Input ¢
Message Message
Prepare
Output
Message
Data
Prepare MAPOUT
MAPOUT Map output L
Calling Message Data
Sequence
NO lessage
Finished
YES
Prepare
MAPEND
Calling
Sequence
MAPEND
RETURN Convert/Edit
Output Output
Message Message

Figure 18.

48

Message Processing Using MMU

Chapter 5

USING THE EDIT UTILITY

5.1 CONCEPTS

The Edit Utility may be used for input messages instead of MMU.
It provides an interface to facilitate application program logic for
message editing. When pre-editing has been requested for a verb (via
Front End Verb Table specification), Intercomm calls the Edit Utility
to produce edited message text from data fields entered by the terminal
operator, before queuing the message for the subsystem. Otherwise, the
BAL subsystem must call the Edit Utility to produce the edited message
text. Coding format:

[symbol] CALL EDITCTRL, (input-message,spa,0),VL,MF=(E,1list)
where:

e input-message is the address of the unedited message.

e spa is the address of the System Parameter Area.

° 0 reserves a third word in the parameter list (used by Edit).
On return from the Edit Utility, register 15 contains a binary return
code indicating the results of editing. Zeros indicate the message was
edited successfully. The address of the successfully edited message is
in the first word of the parameter list passed to Edit. For a nonzero
return code, a zero address also indicates the input message was not

successfully edited (original message freed). Program 1logic for
editing an input message:

LINKAGE - - -,MSG=(R5),SPA=(R3),- - -
TEST CLI MSGHVMI,X'00’ EDIT REQUIRED?
BNE OKAY NO

CALL EDITCTRL, ((R5),(R3),0),VL,MF=(E,LIST)
LTR R15,R15

BZ GOOD
RINLINK - - -,RC=4 UNSUCCESSFUL
GOOD L RS5,LIST EDITED MESSAGE ADDRESS
OKAY EQU *

The edited message becomes the input message processed by the
subsystem. During the course of editing, the Edit Control routine
strips field delimiter characters such as the system separator
character (defined in the SPA), 3270 CRT SBA sequences, TAB characters,
New Line characters, Carriage Return or combined Carriage Return/Line
Feed, End of Text, End of Message, etc. All other device control
characters mnot translated or otherwise suppressed by the Front End
translation table for a particular device will be treated as text
within a field. Editing is controlled by the Edit Control Table (ECT),
which contains all information about each message necessary to perform
editing. An edit proceeds field by field based upon the user-specified
ECT. Data fields may be edited by Intercomm or user-coded Edit
subroutines. For a complete description of the Edit Utility, its
components and return codes, refer to the Utilities Users Guide.

49

Chapter 5 Using the Edit Utility

5.2 PROCESSING RESULTS

The result of processing by EDIT is a message with a standard
forty-two-byte message header and data fields in one of the following
basic formats:

e Fixed Format--each edited field is of fixed length in a
predefined sequence as follows:

DATA | DATA DATA
HEADER 1 2 [----- N

e Variable Format--each edited field may wvary in length and
position in the edited result. The PMIFINDB service routine
(see Chapter 9) may be used to locate specific fields. Each
edited field is prefixed with a one-byte identification code,
one-byte length, and possibly a one-byte occurrence number
for fields defined as repetitive in the ECT:

DATA DATA DATA
HEADER| I | L X |I|L Y | ----- Il L Z

The Edit Utility considers a message successfully edited if there
are no required fields (as specified by the Edit Control Table) in

error or omitted. 1In the case of unsuccessful editing, Edit sends an
error message to the originating terminal for each required field
omitted or in error. If none of the required fields are omitted or in

error, it remains the responsibility of the application program to
analyze the edited result and perform recovery logic for any non-
required fields in error. Figure 19 summarizes results of Edit
processing for fields in error.

Field Type Fixed Format Variable Format
Non-Required Field appears in edited result, Field does not
Field Omitted filled with pad character appear in edited

associated with Edit Subroutine, result.

that is, spaces for alphanumeric
field, zero for numeric field, or
user-assigned.

..

Non-Required Field appears in edited result Field does not

Field in Error | filled with high-values (X'FF’'). appear in edited
result.

Required Field | Message rejected by EDIT. Message rejected

in Error or by EDIT.

Omitted

Figure 19. Edit Utility Processing of Fields Omitted or in Error

50

Chapter 6

USING THE FILE HANDLER

6.1 GENERAL CONCEPTS

The Intercomm File Handler provides centralized control over all
data file access in the on-line system. Requests for data file access
are made in message processing subsystems by calling a File Handler
service routine.

The correspondence between the normal MVS Data Management Macro
Instructions and the Intercomm File Handler service routines is shown
in Figure 20.

Function BAL Macros Service Routine

Prepare a file for access OPEN SELECT
Access logical records sequentially GET, PUT, PUTX GET, PUT
(QSAM,QISAM)
Access logical records randomly READ,WRITE READ,WRITE
(BISAM, BDAM)
Access physical blocks (BSAM, BDAM) READ,WRITE READ,WRITE
Access VSAM files GET GETV

PUT PUTV
Conclude file access CLOSE RELEASE

Figure 20. Functions of File Handler Service Routines

A data file on-line is identified to the File Handler by the
existence of a data definition (DD) statement in the execution JCL.
Files must be existing (DISP=OLD or SHR) except for sequential output
data sets (DISP=NEW or MOD).

DD statement requirements are illustrated in Figure 21.
Additional requirements for VSAM are described in that section.
Special processing definitions for particular files are defined to
Intercomm at system startup by FAR (File Attribute Record) parameters.
These 1include READONLY (prohibit output), OPEN (at startup), file
duplexing, etc., and are described in the Operating Reference Manual.
Additional parameters for file recovery (in case of program or system
failure) are described in the File Recovery Users Guide.

51

Chapter 6 Using the File Handler

//ddname* DD DSNAME=+**

// ,DISP=%%

// , DCB=(DSORG=*+*

// ,OPTCD=%*% For BSAM,BDAM,BISAM only.

// ,RECFM= Must be specified by existing
// ,BLKSIZE= data set label or explicitly
// , LRECL~ in DD statement.

// ,NCP=

// ,LIMCT=

// etc.)

*Name used to identify file in calls to SELECT.
**Marks those parameters which must be explicitly specified on the DD
statement for each data set.

Figure 21. DD Statement Parameters for the File Handler.

In centralizing data file accesses, the File Handler provides one
central set of control blocks for each file, thus reducing core
requirements in individual message processing subsystems.

Furthermore, all the facilities of the following Operating System
Data Management functions are accessible to any subsystem: BDAM, BSAM,
QSAM, BISAM, QISAM and VSAM.

The File Handler also supports the following ISAM replacement
access method available from another vendor: IAM.

Data Base interfaces supported under Intercomm (IDMS, ADABAS,
TOTAL, DL/I, Model 204, System 2K) are described in the DBMS Users
Guide and the respective vendors'’ manuals.

6.1.1 Subsystem Processing

In the on-line environment, several subsystems in concurrent
execution may require access to the same data file. Rather than each
subsystem issuing an OPEN and corresponding CLOSE for accessing a
particular file, the File Handler will open a file the first time it is
accessed (unless already opened at startup) and the file remains open
for the duration of the on-line job in execution. A SELECT request
simply establishes internal control blocks and the corresponding
RELEASE request merely disconnects those internal control blocks. 1In
each subsystem, following a SELECT for a particular file, access
functions (READ, WRITE, GET, PUT, GETV, PUTV) may be called as many
times as may be necessary for message processing logic. RELEASE must
be called for each selected file prior to the RTNLINK to the System
Monitor.

52

Chapter 6 Using the File Handler

Each subsystem must provide space for two File Handler control
areas. The information in these areas 1is unique for each message
thread, so they must be defined in the dynamic save/work area of
reentrant programs.

For each call to a File Handler service routine, the File Handler
is passed the addresses of the two control areas, as illustrated in
Figure 22, The first is a full word aligned 12-word (48 bytes) area,
called an External DSCT (EXTDSCT), which the File Handler uses to save
control information for the subsystem processing thread, from the time
that a given file is first SELECTed until it is finally RELEASEd. A
unique EXTDSCT must be defined for each file concurrently accessed
within the same processing thread and should be cleared to zeros before
calling SELECT. The other control field, called the File Handler
Control Word (FHCW), 1is an aligned full word field used for
communication between the File Handler and the calling subsystem.
Prior to each call to a service routine, the subsystem must clear the
FHCW with blanks or initialize it with a predefined request code as
described for each routine. A code of space (blank) is indicated in
the detailed access descriptions by the lower case letter P. An
example of such a request would be to establish Exclusive Control
during a call to READ with intent to update. The File Handler will
return a completion code in this word, after servicing a request, to
communicate the status of the operation back to the subsystem.

*FILE HANDLER CONTROL AREAS

*

FILEAREA DS 12F EXTERNAL DSCT

FHCW DS OF FILE HANDLER CONTROL WORD

FHSTATUS DS CL1 STATUS-BYTE

FHREQ DS CL1 REQUEST-BYTE

FHREST DS CL2 UNUSED (except for VSAM)
. I/0 AREA DEFINITION might

follow

Figure 22. Defining File Handler Control Areas

6.2 CALLING SERVICE ROUTINES

A reentrant Assembler Language subsystem calls a File Handler
service routine using the following format:

[symbol] CALL function, (parameters),VL,MF=(E,list)

where:

. function is the specified File Handler routine being
accessed, such as SELECT, READ, etc.

53

Chapter 6 Using the File Handler

e parameters are the parameters passed to the File Handler for
each specific routine

e VL indicates a variable-length parameter list, as illustrated
in the description for each File Handler function

° MF=(E,list) indicates the executable form of the macro
instruction with the parameter list saved at the location
labeled 'list’. 'list' must be defined in the dynamic
storage area unique to each processing thread in order to
maintain reentrancy.

The parameters for the File Handler service routines are
described in Figure 23. The specific parameters passed to a given
service routine depend on file requirements and the processing options
of the particular service routine called. If the calling subsystem (or
subroutine) might be loaded above the 1l6meg line (under XA or ESA),
then all parameters must be in the dynamic save/work area (or other
area acquired in 24 Amode).

Parameter Content

EXTDSCTname A 48-character fullword-aligned area supplied by the
subsystem for the File Handler'’s use for each file
SELECTed

FHCWname The 4-byte File Handler Control Word, in which the
File Handler returns a completion code to the
subsystem (see Figure 22)

ddname An eight-character constant containing the name of th¢

DD statement describing the data set to Intercomm

Record-area The area for data read from, or to be written to,
J the file
Ry | The key for file access (ISAM, Keyed BDAM, VSAM-KSDS) |
vsaM RBA | Four-byte Relative Byte Address number (ESDS)
©vsam RRN | Four-byte Relative Record Number (RRDS) |
© Block-1D | Applies only to BDAM files:

e three-byte relative block number (RBN)
e three-byte relative track and record number (TTR)

e eight-byte actual address (MBBCCHHR)

Figure 23. File Handler Service Routine Parameters

The File Handler IAM support uses the Intercomm ISAM support routines.

54

Chapter 6 Using the File Handler

On return from a File Handler service routine, the 1leftmost
position of the FHCW area will contain a character indicating the
result of the operation, as shown in Figure 24. Additionally, for VSAM
files, the rightmost position of the FHCW will contain a VSAM reason
code.

Code Meaning
0 Normal completion

BT Hardware 1/0 error

R Unusual condition (EOF, invalid key, etc.)

BER Exclusive control time-out occurred

s | Mot wsea T

e Invalid request (mo DD statement, imvalid
parameter sequence, attempt to output to an input
only file, etc.)

Figure 24. Outline of File Handler Return Codes

The application subsystem logic must then analyze this return
code and take appropriate error recovery action. An error message
might be created and queued for output to the terminal. Otherwise, the
subsystem can return to the Subsystem Controller with a return code of
12, indicating that the Subsystem Controller should call the USRCANC
routine which in turn will send an error message to the terminal.

6.2.1 Automatic Error Checking

If the application subsystem logic is such that special error
recovery processing is not required, the File Handler will perform
error checking itself and data will be returned to the subsystem only
if the return code is zero. Otherwise, the File Handler will force a
program check, which causes cancelling of the input message and return
to the Subsystem Controller, which calls the USRCANC routine. To
request this function, place a character 'C’ in the first byte of the
FHCW prior to calling a File Handler service routine.

55

Chapter 6 Using the File Handler

6.3 SELECT, RELEASE FUNCTIONS

SELECT must be called to initialize the subsystem’'s EXTDSCT prior
to any data access function performed by the File Handler. Prior to
the call to SELECT, the subsystem’'s EXTDSCT must be initialized to
binary zeros.

RELEASE must be called to notify the File Handler that its
pointers to the subsystem’s EXTDSCT should be cleared and that all data
access to a particular file within one subsystem thread is complete.
There must be a RELEASE corresponding to each SELECT of a file.
Multiple SELECTs of the same file wusing the same EXTDSCT are not
permitted without intervening RELEASEs, within the same processing
thread. After each RELEASE, the EXTDSCT should be cleared to zeros
before being reused.

Coding format:
[symbol] CALL SELECT, (EXTDSCTname, FHCWname,ddname) ,VL,MF=(E,list)
[symbol] CALL RELEASE, (EXTDSCTname,FHCWname) ,VL,MF=(E,list)

Note: the ddname must be in the dynamic save/work area if the calling

subsystem (subroutine) can be loaded above the lé6meg line under
XA or ESA.

Figure 25 describes the return codes for SELECT and RELEASE.

Return Codes
(First Byte

of FHCW) SELECT RELEASE
0 A reusable file (disk input) ready Successful
for access; sequential access begins release

at first record.
1 A nonreusable file (SYSOUT, disk Not applicable
output (DISP=NEW/MOD or DISP=SHR/OLD
and FAR WRITEOVER parm specified, or
a data set on tape) ready for access,
begins after last record previously

accessed.
9 No ddname found in File Handler File not
internal control table. (No DD selected.

statement in JCL or the file has
been "locked" by the FILE control
command.)

Figure 25. File Handler SELECT/RELEASE Return Codes

56

Chapter 6 Using the File Handler

6.3.1 Closing a File

Occasionally, it is necessary to close a file, perhaps because it
is to be updated by a batch job. A special form of RELEASE requests
the File Handler to close a file. However, unless some external
control is taken to assure that no other programs have selected the
file, a close request could cause other transactions for the file to

fail. Also, if new transactions are attempting to access the closed
file, the File Handler will open it again and unpredictable results may
occur. Intercomm provides the FILE system control command for

systemwide file access control.
To close a file from an application subsystem:

e If the file has been previously selected: first release the
EXTDSCT by calling RELEASE referencing the EXTDSCTname used
when the file was selected (as described above), then

e Move a character C to the second byte of the FHCW ('BCPP’')
and call RELEASE supplying the ddname of the file to be
closed; use the following coding format:

[symbol] CALL RELEASE, (ddname,FHCWname) ,VL,MF=(E,1list)

6.4 EXCIUSIVE CONTROL FOR NON-VSAM FILES

In a multithread environment with only inquiry applications, the
fact that several message processing programs may concurrently retrieve
data from the same file or files presents no operational problems.
However, when more than one message processing program attempts to
update or add records to a file, data integrity problems can occur.
Figure 26 illustrates the problems of concurrent updates; program B's
update nullifies that of program A. Exclusive control implies that
while one program is operating on a record, that is, the time between a
READ and a WRITE, all other requests to read or write that particular
record will be delayed. A program requesting a record held during
exclusive control by another program is not notified of this delay, but
rather stops execution in the File Handler until exclusive control is
either removed or expires so that the File Handler can then proceed
with the requested function. Exclusive control, when required, must be
requested separately with each call to File Handler READ or GET
functions. Exclusive control for basic access methods operates at the
block or record level. Exclusive control for queued access methods
operates at the data set level; thus applications should be designed to
avoid GET for update whenever feasible.

To obtain exclusive control over the entire data set in a QISAM
file or over a physical block in a BDAM or BISAM file, move 'PXPpP’' to
the File Handler Control Word prior to calling GET or READ. Exclusive
control does not apply to physical sequential (QSAM/BSAM) files.

57

Using the File Handler

Chapter 6

dvdyd FAISNTOXT HLIM

66 :XLO
VYLZ WILI
YATILASN
Frvdaq

g X4
XYOLNAANI
ASYHANINI
- o
06 :X10 o
LZ WALI 06 :Xx1L0
VvaTIZYSN T L7 WIALI
oX3da avay VATIIISN
a aLvadn
QILYILSNITH
o/1 N
\{ oT xd
aaaNnadsns XdOLNIAANI
o/1 H Fona Iy
q
VLZ WALI
VATIJESN N "] T
! d4 avdy
I
VLT WILI
d vATIINSN

OXd avdy

avdd JAISNTOXH IAOHLIM

GO0T:XL0
JLZ WALI
vATIINSN
qLvadn

S Xd
XYOLNIANI
ASYIAYONI

00T :X10
¥L2Z WALI

06 :XLO
¥YLZ WALI
vaTIIESN
divadn

01 A4
XAYOLNIANT
I0na Iy

00T :X10
YLZ WALI
VATIAESN

Exclusive Control Processing

Figure 26.

58

Chapter 6 Using the File Handler

Exclusive control will be released by:

e A call to WRITE or PUT referencing the same EXTDSCTname, that
is, the update of the previously acquired record, and no key
or block-id specified.

e A call to WRITE referencing the same EXTDSCTname and a key
and/or block-id is specified.

e A call to READ or GET referencing the same EXTDSCTname
(retrieving a new record from the file).

e A call to RELEASE referencing the same EXTDSCTname.

® An elapsed time after the call to READ with Exclusive Control
greater than the exclusive control time-out value of the File
Handler. This is set at two minutes for any given record and
a maximum of ten minutes for consecutive exclusive accesses
to a QISAM file.

NOTE: A return code of 3 after a call to WRITE or PUT to
update a record held in exclusive control indicates
that exclusive control timed out: the WRITE or PUT
did not take place. The program should re-READ or
re-GET the same record with exclusive control and
WRITE or PUT again.

® A call to RELEX, if the program logic is such that the record
does not need to be updated, or additional and time-consuming
activity (accessing other files) is required before resuming
access to the file. Such a program could call RELEX to
release exclusive control without actually RELEASEing the
file until later in the program logic.

6.4.1 Release Exclusive Control--RELEX

RELEX is called to release Intercomm or VSAM exclusive control
without having to read, update, time-out, or RELEASE the file.

Coding format:

[symbol] CALL RELEX, (EXTDSCTname,FHCWname),VL ,MF=(E,1list)

Return Code Meaning
C Exclusive control released
9 File not selected or invalid function

Figure 27. File Handler Release Exclusive Control (RELEX)
Return Codes

59

Chapter 6 Using the File Handler

6.5 SEQUENTIAL ACCESS METHOD PROCESSING

6.5.1 File Handler Service Routines--GET, PUT SAM) ; READ, WRITE
(BSAM)

GET is called to access the next sequential logical record from a
file. PUT is called to write the next sequential logical record to a
file. READ is called to access the next sequential physical block.
WRITE is called to write the next sequential physical block. If PUT-or
WRITE is called referencing a disk data set, the record last accessed
by a GET or READ will be updated, however, the length may not be
changed. GET processing is subtasked by the File Handler in order to
provide multithreading facilities; for further details, see the

Operating Reference Manual.

Coding format:

[symbol] CALL GET, (EXTDSCTname,FHCWname,record-area
[,record-length]),VL ,MF=(E,list)

[symbol] CALL PUT, (EXTDSCTname,FHCWname,record-area
[,record-length]),VL,MF=(E,list)

[symbol] CALL READ, (EXTDSCTname,FHCWname,record-area
[,record-length]),VL,MF=(E,list)

[symbol] CALL WRITE, (EXTDSCTname,FHCWname,record-area
[,record-length]),VL,MF=(E, list)

Return Codes GET, READ PUT, WRITE

0 Successful Successful

1 I/0 Error 1/0 Error

2 End-of-file (Not applicable)*

9 Not selected or invalid | Not selected or invalid
function; that is, using | function; that is, using a
an output-only file tape input file or readonly

file, or file not sequential.
* For WRITE to a disk file: indicates End-of-file (write not done)

Figure 28. File Handler Sequential Access Method Return Codes

60

Chapter 6 Using the File Handler

6.5.2 Undefined Record Format and Record Length

The record-length parameter is valid and required only when a
file with an undefined record format (DCB=RECFM=U) is accessed. The
record-length parameter points to a fullword containing the length of
the output record before a PUT or WRITE operation, or to contain the
length of the input record after a GET or READ operation. The second
character of the File Handler Control Word must be set to U to utilize
this feature. Do not code the DCB subparameter ILRECL on the DD
statement for the file in the Intercomm execution JCL. The BLKSIZE,
RECFM and DSORG subparameters are required.

6.5.3 Variable-Length Record Format and Record Length

Variable-length records start with a Record Descriptor Word (RDW)

which must be fullword aligned. The first two bytes of the word
contain the record length in binary (+4 for the RDW); the second two
bytes contain binary zeros (low values). The RDW is followed

immediately by the record data, and must be recognized by the subsystem
on input, and provided and initialized on output.

For blocked files, if GET or PUT are used, the access method will
perform the blocking and deblocking. If READ or WRITE are used, the
application program must perform the deblocking (READ) and blocking
(WRITE). In this case, the block must start with a Block Descriptor
Word (BDW) of four bytes (aligned); the first two bytes contain, in
binary, the total block length (including 4 for the BDW), and the
second two bytes contain binary zeros (low values). For JCL details,
and FAR options for defining and accessing the file, see the QOperating
Reference Manual.

61

Chapter 6 Using the File Handler

6.6 INDEXED SEQUENTIAL ACCESS METHOD PROCESSING

To use an ISAM file on-line under Intercomm, do not define three
DD statements (INDEX/PRIME/OVERFLOW) for either the off-line creation
of the ISAM data set, or the on-line execution DD statement. For
creation, let the access method set up the index and overflow areas
(use CYLOFL parameter on DD statement). For on-line execution, define
only DISP=OLD and the data set name, volser and unit parameters if not
catalogued, and the DCB parameter DSORG=IS. Optionally, the DCB
parameter OPTCD may also be specified. See also the descriptions of
FAR parameters applicable to ISAM data sets described in the Operating
Reference Manual.

6.6.1 File Handler Service Routines--GET, PUT (QISAM): READ, WRITE
(BISAM)

GET 1is called to access the next sequential record, or to
reposition (if a key 1s specified) and access the next sequential
record. READ is called to retrieve a specific record at random. PUT
is called to update the last record retrieved by a call to GET. WRITE
is called to update the last record retrieved by a call to READ, or to
add a record to the file (if a key 1is specified). For wupdate,
exclusive control may be requested; otherwise use blanks in the FHCW.

Coding format:

to retrieve next sequential record:

[symbol] CALL GET, (EXTDSCTname,FHCWname,record-area),
VL,MF=(E, list)

to reposition and retrieve record with key equal or high:

[symbol] CALL GET, (EXTDSCTname,FHCWname,record-area,key),
VL,MF=(E, list)

to update last GET:

[symbol] CALL PUT, (EXTDSCTname,FHCWname,record-area),
VL ,MF=(E, list)

to retrieve a specific record:

[symbol] CALL READ, (EXTDSCTname, FHCWname,record-area,key),
VL,MF=(E, list)

to update last READ:

[symbol] CALL WRITE, (EXTDSCTname,FHCWname,record-area),
' VL,MF=(E,list)

to add a specific record:

[symbol] CALL WRITE, (EXTDSCTname,FHCWname,record-area,key),
VL,MF=(E, list)

62

Chapter 6

Using the File Handler

Figure 29 describes return codes for ISAM access.

or invalid function

QIsAM
Return
Codes GET w/o Key GET w/Key PUT
0 Next sequential Record with equal Record from
record retrieved or next higher previous GET
key retrieved updated
........ T T L EEL T P
1] I/0 error I/0 error I/0 error
2 End of File Key out of range N/A
3 N/A N/A Exclusive Control
Time-out
9 File not selected File not selected # File not selected
or invalid function| or invalid function | or invalid function
BISAM
Return
Codes WRITE w/o Key WRITE w/Key READ
0 Record from Record with Record with equal
previous READ specified key key retrieved
updated added
1 I/0 error I/0 error I/0 error
2 N/A Key already exists | Key does not exist
or no room to add
new record
3 Exclusive Control N/A | N/A
Time-out
9 File not selected File not selected File not selected

or invalid function

or invalid function

Figure 29.

63

File Handler ISAM Return Codes

Chapter 6 Using the File Handler

6.7 DIRECT ACCESS METHOD PROCESSING

BDAM files are accessed by block-id. The form of the block-id
is defined in the OPTCD subparameter of the DCB parameter of the DD

statement and the same form must be used by all programs accessing the
file:

e OPTCD=RF--block-id is three-byte binary RBN (relative block
number) for fixed-length files only

e OPTCD=AF--block-id is eight-byte actual MBBCCHHR

e OPTCD=F--block-id is three-byte binary TTR (relative track
and record number) for fixed- or variable-length files.

The F permits feedback (of block-id) requests: the form of the
block-id is that requested by the OPTCD parameter. For Keyed BDAM with
extended search, insert an E immediately after the = sign (that is,
code OPTCD=ERF, etc.), and specify the LIMCT subparameter on the DCB
parameter of the DD statement.

6.7.1 File Handler Service Routines--READ, WRITE (BDAM)

READ is called to retrieve a physical block. WRITE is called to
update a block previously read, to replace an existing block in a
preformatted file, or to add a new block.

Coding format:

[symbol] CALL READ, (EXTDSCTname,FHCWname,record-areal, key],
block-id),VL,MF=(E,list)

[symbol] CALL WRITE, (EXTDSCTname,FHCWname,record-area[,key]
[,block-id]),VL,MF=(E,list)

Figure 30 shows FHCW options (byte 2) for standard and keyed BDAM
files, and when to use key and/or block-id fields. Figure 31 describes
the corresponding return codes. When reading a keyed BDAM file, the
key will be read into the key field if a key parameter is passed and
the key is not used as the search argument (w/o extended search). For
a keyed BDAM file, replace requires a previous read; update and replace
are synonymous.

Intercomm provides two utilities for off-line preformatting of
fixed-length BDAM files:

e CREATEGF for BDAM files without keys
e KEYCREAT for BDAM files with keys.

These utilities are described in the Operating Reference Manual.

64

Chapter 6 Using the File Handler

1. BDAM Files Without Keys

Code Request Macro
)] READ w/o exclusive control, w/block-id READ DIF
X READ w/exclusive control, w/block-id READ DIX
B WRITE to update last READ, w/o block-id WRITE DI/DIX
B WRITE to update/replace w/o previous READ, WRITE DI
w/block-id
A WRITE to add a record--variable-length only WRITE DAF
(record address returned automatically in
caller’s block-id field)
2. BDAM Files With Keys
Code Request Macro
*B READ data block only w/o exclusive control READ DKF
(w/extended search) w/key, w/block-id
*X READ data only w/exclusive control READ DKX
(w/extended search) w/key, w/block-id
J READ key and data block w/o exclusive control READ DIF
w/o extended search, w/block-id (w/key)
I READ key and data w/exclusive control READ DIX
w/o extended search, w/block-id (w/key)
*Y WRITE to update data only w/o extended search WRITE DKF/DKX
w/key
I WRITE to update key and data w/o extended WRITE DI/DIX
search, w/key
........ g
*A WRITE to add a record--next available space WRITE DAF
w/key, w/block-id (w/extended search)
*Feedback of record addresses may be requested for these options only
by placing an F in byte 3 of the FHCW.

NOTE:

Figure 30. File Handler BDAM Option Codes.

The DI form of the macros (issued in the File Handler)
requires that the block-id field contains the exact address of
the data record in the form specified by the OPTCD
subparameter on the DD statement. With the DK form, if

65

Chapter 6 Using the File Handler

extended search is not specified (via E on the OPTCD subparameter),
only one track is searched for a record with key matching that passed
in the key field, and starting at the address specified in the block-id
field. A WRITE for update of last READ does not need a block-id, as

positioning is remembered internally.

1. BDAM Files Without Keys
Return
Codes READ WRITE w/o block-id WRITE w/block-id
0 Block retrieved Block from previous | Specified block
READ updated added/replaced
1 I/0 error I/0 error I/0 error
2 Block out of range | N/A RECFM=F. ..
Block out of range
RECFM=V. ..
No space available/
block out of range
3 N/A Exclusive Control N/A
Time-Out
9 File not selected | File not selected File not selected
or invalid function| or invalid function | or invalid function
2. BDAM Files With Keys
Return
Codes READ WRITE w/o block-id | WRITE w/block-id
0 Logical record Record from Specified record
retrieved previous READ added
updated
1 I/0 error I/0 error I/0 error
2 Key not found Key not found at RECFM=F. ..
(READ w/key) block-id saved from | No dummy record found
previous READ = |-------cmmmcmnnccnnnn-
(WRITE DK only) RECFM=V. ..
No space available
3 N/A Exclusive Control N/A
Time-Out
............................. R L R E PR PP PP PP
9 File not selected |File not selected File not selected
or invalid function|or invalid function |or invalid function

Figure 31.

66

File Handler BDAM Return Codes

Chapter 6 Using the File Handler

6.8 VIRTUAL STORAGE ACCESS METHOD (VSAM) PROCESSING

VSAM support is provided for all three file types: KSDS, ESDS,
and RRDS. Subsystems designed to access VSAM files use two File
Handler service routines; GETV and PUTV. SELECT and RELEASE function
for VSAM as they do for OS data sets. Calls are similar to the
standard File Handler format, with the File Handler Control Word (FHCW)
used to specify VSAM options. DD statements for VSAM must specify
AMP=(AMORG) and for fixed-length data records, 'RECFM=F' must also be
specified on the AMP parameter: AMP=(AMORG, 'RECFM=F’'). FAR options
and execution options for VSAM files such as LSR buffer pool support,
empty ESDS file load or overwrite, and data set name sharing, are
described in the Operating Reference Manual. Most users converting
ISAM to VSAM can continue to use their current File Handler calls.
Refer to "ISAM/VSAM Compatibility wunder Intercomm" later in this
chapter for further details.

6.8.1 File Handler Service Routines--GETV, PUTV (VSAM)

A VSAM call may request either sequential or direct access and
may specify access for KSDS via keys (keyed access) or for ESDS via
Relative Byte Addresses (addressed access). A keyed access call for
direct retrieval may provide either a generic key or a full key, and
may specify a search for either an equal (generic) key or for the first
greater-or-equal (generic) key.

A VSAM Relative Record Number Data Set (RRDS) may be accessed
sequentially, or directly by Relative Record Number. A direct access
request to a RRDS is made by suppling the Relative Record Number of the
desired record instead of a key or RBA. All direct accesses to an RRDS
must specify "full key, search equal." RBA access is not allowed and
RRNs should not be converted to RBAs for access to an RRDS. Records
may be inserted into emply slots in an RRDS but a record may not be
added with a higher relative record number than the maximum allowed.
This maximum is specified when the data set is defined to VSAM.

GETV calls are processed assuming that no update will be
performed unless the caller so specifies. The caller may switch back
and forth from direct to sequential access, provided VSAM rules are not
violated, for example, keyed request against an entry-sequenced data
set. The File Handler service routine GETV is called for retrieval.
The File Handler service routine PUTV 1is called for storage or
deletion.

Coding formats:

For sequential access

[symbol] CALL GETV, (EXTDSCTname,FHCWname,record-area),
VL,MF=(E,list)

67

Chapter 6 Using the File Handler

Coding formats (continued):
For direct access

[symbol] CALL GETV, (EXTDSCTname,FHCWname,record-area, {rba}),

VL,MF=(E, list) {key)
{rrn)
For update of record retrieved by preceding GETV or for sequential

addition

[symbol] CALL PUTV, (EXTDSCTname, FHCWname,record-area),
VL,MF=(E,list)

For direct addition of a new record

[symbol] CALL PUTV, (EXTDSCTname, FHCWname,record-area, (rba)),
VL,MF=(E,list) {key)
{rrn)

where:
EXTDSCTname is the standard File Handler parameter.
FHCWname is the standard File Handler parameter. Its VSAM use is

to define processing options and to return completion codes to
the caller (see Figures 32 and 33).

record-area 1is the 1label of the user’s I/0 area. For fixed
length records, no length is specified and data will start in the
beginning of the area. For variable length records, the first

four bytes of the area are used as an 0S-type, fullword-aligned,
variable record descriptor word (RDW), the first two bytes of
which specify the appropriate length in binary (data length +4);
data begins in the fifth byte. For GETV, the File Handler will
return this length to the caller and for PUTV, the caller must
provide the length to the File Handler.

rba is the label of an aligned fullword containing the Relative
Byte Address when required for addressed access.

key is the label of a field providing a key, when required for
keyed access.. If a generic key is provided, then the first two
bytes of this field must be the length, in binary, of the generic
key which must begin in byte 3, and the field must be
fullword-aligned.

rrn is the address of a fullword-aligned field providing a
four-byte binary Relative Record Number whose value is 1 to n,
where n is the maximum record number defined for the data set.

68

Chapter 6 Using the File Handler

; 6.8.2 VSAM Processing Options

The following determine the mode of VSAM access to be performed:

) The preceding call

A VSAM call is dependent upon the preceding call only in two
cases: PUTV for update, or sequential GETV or PUTV calls
requiring initial positioning.

In the first case, the PUTV call must be immediately preceded
by a GETV for update, which identifies the record to be
updated. The PUTV for update has no fourth parameter because
the key, RRN or RBA was defined by the prior GETV. In the
second case, a direct call providing a key, RRN or RBA and
requesting positioning must be issued in order to process
sequentially starting from that point in the file. To
request positioning in this manner, specify S in the second
byte of the FHCW for the direct call to GETV; the first
record in the sequence will be returned. For an ESDS file, a
GETV call without a fourth parameter results in sequential
reads from the beginning of the file; the S in the FHCW is
unnecessary.

™ The presence or absence of the fourth parameter

With the exception of a PUTV for update, all calls for direct
access specify a fourth parameter and all subsequent calls
- for sequential access specify only three parameters.

° The contents of the File Handler Control Word

The second and third bytes of the FHCW are used to complete
the definition of the options desired. Alphabetic codes are
used and positive tests are made for each defined code. When
no defined code is present, the default option (blank) is
used.

Bytes 1 and 2 of the FHCW are utilized the same as for OS Access
Methods for Return Codes (Byte 1) and Special Requests (Byte 2). The
first byte of the FHCW will contain a zoned decimal digit upon return
from GETV or PUTV. A nonzero value indicates an error or an
exceptional condition.

Byte 2 is used in conjunction with direct access. When an S is
provided in byte 2, the direct access is treated as the first of a
series of sequential requests which begins at a point specified by the
fourth parameter. Therefore, a VSAM POINT will be issued and
sequential access will subsequently be performed for the next call.

69

Chapter 6 Using the File Handler

Byte 3 is used for all VSAM calls as illustrated in Figure 32.
There are five default (blank) cases:

o GETV with three parameters (subsequent sequential access)
e GETV with four parameters (search key/RRN equal, no update)

e PUTV with three parameters with no prior GETV for wupdate
(sequential add/insert)

e PUTV with three parameters and with a prior GETV for update

e PUTV with four parameters (direct key/RRN add/insert)

6.8.3 FHCW Reason Codes for VSAM

Byte 4 1is used to provide VSAM reason codes (from the RPL
feedback field) upon completion of a VSAM file access request. In
VSAM, a distinction is made between logical and physical errors. 1In
either case VSAM returns a supplementary reason code in hexadecimal
defining the condition more precisely. Accordingly, the File Handler
will return this reason code in FHCW byte 4, for the caller’s use. If
the File Handler was called at an ISAM entry point (GET/PUT,
READ/WRITE), the code returned in FHCW byte 1 may differ from GETV/PUTV
calls (in order to maintain compatibility with existing ISAM
subsystems) . Figure 33 summarizes VSAM and ISAM/VSAM return codes. “)
VSAM reason codes are fully documented in IBM’'s VSAM Administration
Guide.

6.8.4 Exclusive Control for VSAM Files

VSAM automatically provides exclusive control of a control
interval (physical block) whenever a GETV for update is processed if
the file was defined with SHAREOPTION 1 or 2. The subsystem must
release this exclusive control via a call to RELEX before another GETV
is issued for the same file, unless an intervening PUTV for update or
erase 1is issued. If no subsequent GETV will be issued, the call to
RELEASE will also release exclusive control. There 1is no VSAM
exclusive control time-out. If the VSAM file is accessed by more than
one region (Intercomm and/or batch), see IBM documentation on VSAM
SHAREOPTIONs, and the Intercomm Operating Reference Manual.

70

Chapter 6 Using the File Handler

E 6.8.5 Alternate Path Processing of Keved VSAM Files

Base Cluster and Alternate Path processing of keyed VSAM files is
supported with the following (VSAM-imposed) restrictions:

° If defined in the JCL, the DD statement for the base cluster
must be before those for any related paths, and open at
startup must be requested via a FAR. Also, both the base
cluster and the paths must be connected to an LSR buffer
pool.

e Each path to be accessed on-line must be defined in the JCL
and be SELECTed with the corresponding ddname. When created,
the path must be defined with the UPDATE option.

e The FAR READONLY option must be specified for all paths and
the base cluster (if defined) except for the path used for
updating, when Shareoption 2 is in effect for the base
cluster. If updating is only via the base cluster, then
READONLY must be specified for all associated paths. VSAM
will not allow any accesses to a base cluster under
Shareoption 1 when one path has opened it for update. A base
cluster under Shareoption 3 may be accessed for reads or
updates by more than one path at any time, however no
exclusive control (read/write file integrity) is provided by
either VSAM or Intercomm. For Intercomm-provided exclusive

control for Shareoption 4, see the Operating Reference
Manual.

° If multiple paths are accessed, and/or retrieval/update is
done via the path(s) and the base cluster, retrieval of
updated versions of the records can be ensured via the FAR
DSN and LSR parameters.

e Since duplicate keys may occur in an Alternate Index, the
application program is responsible for checking for duplicate
keys. Sequential processing (GETV type 1) can be used after
the first GEIV with key (and an S in byte 2 of the FHCW) in
order to retrieve subsequent records. The program can test
to see if the last record under a duplicate key was retrieved
by checking the VSAM reason code which will be placed in byte
4 of the FHCW. See the IBM VSAM Administration Guide for
reason code values.

o The alternate index data set must be defined with the UPGRADE
attribute and be built prior to Intercomm startup. An
attempt to retrieve a record from an empty file will cause a
program check.

e Alternate index data sets should not be defined in the JCL
unless access to a data record containing the prime keys is
desired, or path processing is not wused. Only readonly
processing should be done for an AIX and for any related
paths and for the base cluster, otherwise, retrieval of the

(-' current version of a record is unpredictable.

71

Chapter 6

Using the File Handler

Service | Access or FHCW Byte 3 KEY/RRN
Type | Routine Action Update |No Update or RBA Comments

1 GETV | Sequential U default --- In KEY or RRN
sequence

2 GETV Sequential A R --- In RBA sequence
(default for
ESDS)

3 GETV Direct U default Full Search =

Key or
RRN
4 GETV Direct L F Full Search greater
Key or = (not valid
J for RRDS)
_________________________________ e
5 GETV Direct - E Generic | Search =
Key (not valid for
RRDS)
_____ Y I
6 GETV Direct > G Generic | Search greater
Key or = (not valid
for RRDS)
.................................. e L
7 GETV Direct A R RBA Addressed Access
.. 1
8 PUTV | Sequential default --- No prior GETV for
Add or update (insert
Insert not allowed for
Addressed Access)

9 PUTV Update default --- Prior GETV for
update
(addressed update
may not change
length)

10 PUTV Erase E --- Prior GETV for
update (not
permitted for

J addressed access)

11 PUTV Direct default Key or (no prior GETV)

Add or RRN
Insert
12 PUTV Add A RBA Insert not valid

Figure 32.

File Handler VSAM Call Summary

72

Chapter 6

Using the File Handler

FHCW
Byte 1 (char) Byte 4

Condition at Completion of Operation¥* VSAM |ISAM (hexadecimal)
Successful completion (A) 0 0 04,08,0C,10,1C
Physical I/0 error (A) 1 1 04,08,0C,10,14,18
End of data (1, 2) 2 2 04
No record found (3, 4, 5, 6, 7) 2 2 10
Key not within defined key ranges 2 1 24

(3, 4, 5,6, 7)
Duplicate key (8, 11) 9 2 1 08
Key out of ascending sequence (8) | 9 2 oc
Update attempt with new key (9) 9 1 9 60
Key exceeds maximum (5, 6) 9 *% 70
....................................... o
Addressed update changes length (9) 9 *% 64
....................................... o
Invalid RBA provided (7, 12) 9 *% 20
... o
Required positioning not performed 9 *% 58

(1, 2, 8)
Direct or update call while loading (8) 9 9 74
GETV for ESDS while loading (2,7)
Insufficient disk space (8, 9, 11, 12) 9 9 1C
Record on unmountable volume 9 9 18

(1-7, 11, 12)
Invalid Relative Record Number (3,11) 9 *% co
Invalid RBA access to a RRDS file (7,12) 9 *% C4

(Figure 32) which apply.

**Should not occur.

*Characters in parentheses reference the type(s) of VSAM Call
A = all cases.

The File Handler will force a program check
condition to terminate the message in progress.

Figure 33.

73

File Handler VSAM Return and Feedback Codes

Chapter 6 Using the File Handler

6.9 ISAM/VSAM COMPATIBILITY UNDER INTERCOMM

Subsystems accessing ISAM files can function with little or no
modification when their files are converted to VSAM. Intercomm’s
ISAM/VSAM interface does not use IBM’s VSAM/ISAM interface modules.
See the Operating Reference Manual for steps necessary to activate the
interface. When processing a VSAM data set, the File Handler uses
QISAM compatible access for a GET or PUT call and BISAM compatible
access for a READ or WRITE call.

An ISAM retrieval is converted to a VSAM GET for update. 1If a
key is provided, it is, of course, treated as a full key. For GET with
a key, positioning and a search for a greater or equal key is
performed. For READ, a search is made for an equal key. File Handler
logic will initialize the user FHCW prior to performing the VSAM
function as follows:

e Byte 2 is set to 'S’ to force sequential positioning.
e Byte 3 is set to 'U’ or 'L’ to force update mode.

ISAM delete code processing continues to function as usual via
the OPTCD subparameter of AMP on the DD statement. The new OPTCD
parameters (I, IL) which specify supplementary delete code processing
are supported also.

The following considerations apply to ISAM users converting to
VSAM and should be carefully observed:

e ISAM subsystems must be operational when accessing ISAM
files. Erroneous ISAM parameter 1lists will cause
unpredictable results.

) Between a SELECT and a RELEASE, neither READ and GET nor
WRITE and PUT may be intermixed.

e The caller may not provide his own DCB.

° The FHCW will be modified in order to convert the call to its
VSAM equivalent.

e There is no equivalent to a QISAM physical block once the
file has been converted to VSAM. All VSAM data records are
equivalent to ISAM logical records. This means that users
processing the file via READ in one subsubsystem and GET in
another will both retrieve what would have been an ISAM
logical record.

Figure 33 describes return codes when ISAM/VSAM compatibility is
used.

74

Chapter 7

USING THE OUTPUT UTILITY

7.1 CONCEPTS

The Output Utility is a subsystem that processes messages
destined for terminals operating under control of Intercomm. It is
responsible for completing any device-dependent formatting requirements
in a message before passing it to the teleprocessing interface (FESEND)
for eventual transmission to the terminal device. It also checks the
operational status of destination terminals. Should it find a
destination terminal not operational, it will redirect messages to an
alternate terminal, if one has been named for that particular
destination terminal. Otherwise, the Front End will intercept a
message to a nonoperational terminal and queue it in the output queue
assigned to that terminal to await its availability.

7.2 PROCESSING

An application subsystem may create four different types of
output message text, identified by a value in the message header VMI
field (MSGHVMI):

° Preformatted (VMI=X'57"')

Text consists of both data and device control characters.
All spacing and other formatting (titles, column headings,
etc.) 1is included in the message text. Output processing
consists merely of passing the message to the Front End via
FESEND. 1If the destination terminal (MSGHTID) is the name of
a broadcast group, rather than an individual terminal, a
separate message is created for each terminal of the group.
Except for broadcast terminal-ids, subsystems should use the
service routine FESEND, which is more efficient than queuing
via Output.

75

Chapter 7 Using the Output Utility

° Formatting Required, Variable Text (VMI=X'50)

Text consists of a string of character data items to be
inserted into a final message format defined by an Output
Format Table (OFT) entry. Each data field is prefixed with
an item code and length prefix, and an occurence factor (if a
repetitive field), to identify the field. The OFT defines
the position and content of titles, headings, etc., and
defines the position where data fields from the message text
are to be inserted. Output formats the final message, adding
device-dependent control characters, and performs broadcast
group processing, as described above.

° Formatting Required, Multiple Segments (VMI=n)

This form is used when multiple messages are to be created
for the same hardcopy terminal (such as a printer) and inter-
leaving of other messages for the same device 1is not
desired. The text is variable format as described above.
The VMI code for the first (or header) segment is X'51'; for
intermediate segments is X’'52' or X'5C’ depending on line
types desired; and for the final seqment is X’53'. The final
segment must be queued, even if no intermediate segments are
created, in order that Output may release the terminal for
other messages. See also the description of the DVASN
service routine in Chapter 9.

° Formatting Required, Fixed Text (VMI=X'72')

Text consists of fixed length text fields in character or
computational format. This type of message is routed to the
Change/Display Utility, where it is converted to a Variable
Text message and routed to the Output Utility. The fixed
text is described to Change/Display by a Format Description
Record (FDR). The first twelve bytes of the fixed format
text identify the particular FDR which details the fixed
fields of the message. Byte 9 within this header provides
the segment type (see Figure 34).

The application subsystem creates its output message (header and
text) and directs the message to either the Output Utility or the
Change/Display Utility by calling the service routine MSGCOL. The
receiving subsystem codes and VMI in the message header specify the
destination subsystem and message text formatting requirements. Figure
34 summarizes message header specifications. In addition, the MSGHQPR
field in the message header must be set to C’'2’' if the originating
subsystem might process segmented input.

For complete details regarding the Output Utility and
Change/Display Utility, refer to the Utilities Users Guide.

76

Chapter 7

Using the Output Utility

OUTPUT Message Type

MSGHRSCH

Message Header Fields

MSGHRSC

1
Change/
Display
Prefix

Preformatted (device-dependent)

X'00’

CIUI

N/A

Variable Text Formatting:
Single Segment Messages:

binary format for item
code, length, (and

occurrence number)

Multi-Segment Messages:

binary format
first segment

X'00’

X'00’

c'u’

c'v’

X'50'

X'51°'

detail segment
- _repetitive items

X'52'

detail segment
- non-repetitive items

X'5C’

final segment

X'53'

Fixed Field Formatting:
Single Segment Messages:

Multi-Segment Messages:

first seqment

X'00’

C'H’

X'72'

detail segment
- _repetitive items

detail segment
- _non-repetitive items

final segment

Figure 34.

Message Header Specifications

77

for the Output Utility

Chapter 8

CONVERSATIONAL SUBSYSTEMS

8.1 GENERAL CONCEPTS

Conversational subsystems are defined as one or more subsystems
designed to process more than one input message to complete a
transaction. They effectively carry on a dialogue with the terminal
operator, receiving an input message, retaining it and/or associated
results of processing, issuing a response (perhaps a prompt for
additional information), receiving another input message, retaining it,
etc., until the transaction 1is complete. At the end of the
conversation, appropriate files may be updated.

8.1.1 Conversational Applications

Typical applications which lend themselves to conversational
processing are:

e Operator prompting (multiscreen input)
e Batch Data collection

Prompting, or multiscreen input, applications typically consist
of dialogues in which the terminal operator enters an input message,
the information is analyzed by the application subsystem and the
results of processing are saved; the application subsystem then sends
an output message to the terminal, prompting the operator for the next
piece of information required. This dialogue continues until the
application subsystem has obtained all the necessary information to
complete processing for the given transaction.

Batch data collection may be conversational in that even though
the input data is saved for later retrieval, the collecting application
may need to return an error message requesting correction of invalid
input data before saving the input record, or the application may need
to request the input of a different type of record (for more detailed
subsidiary information, intermediate totals, etc.).

8.1.2 Conversational Transactions

Conversational transactions involve the sending and receiving of
more than one message in a terminal session. Each input message may be
processed by related subsystems or by the same subsystem. A two-part
conversational transaction is illustrated in Figure 35.

79

Chapter 8 Conversational Subsystems

customer name ' MESSAGE

status request

‘ account number RESPONSE

current status

sales order data ’ MESSAGE
L ‘ verification of order RESPONSE

Figure 35. Typical Conversational Transactions

8.1.3 Retention of Information

Assume a conversation in which three input messages and three
responses are necessary to complete the transaction. A terminal, a
subsystem and a storage medium on which to save the input messages
and/or corresponding intermediate results of the processing are
necessary components in the conversational environment. In the example
illustrated in Figure 36, the subsystem receives information and
prompts the terminal operator for additional information until it
obtains all the required data. This intermediate information is also
stored either in core or on a disk data set. After the final input
message 1is received and processed, appropriate files are updated,
intermediate data is deleted, and a final response is issued.

Terminal XYZ Subsystem ABC Storage

Input Message 1---> Receive, process and store----> Input Message 1
+ results

Output Message 1<---Prompt for additional information

Input Message 2---> Receive, access Input Message 1<--Input Message 1
Process + results
Also store Input Message 2----- > Input Message 2

+ results

Output Message 2<---Prompt for additional information

Input Message 3---> Receive, analyze with prior <---- Input Message
messages and results 1 & 2 + results

Update files, delete prior data

Output Message 3<---Final response

Figure 36. Input Message Data Retention During a Conversation

80

<9

Chapter 8 Conversational Subsystems

8.2 IMPLEMENTING CONVERSATIONAL SUBSYSTEMS

Conversational subsystems may be implemented in several ways,
each characterized by the retention of initial and subsequent input
and processing results. The method of retention differs, depending
upon the method of implementation chosen.

Control of the conversation, or the retention of the input
messages and/or corresponding results of processing may be

accomplished by using any one of the following methods of
implementation:

° The User SPA (User Extension to System Parameter List)
e The Store/Fetch Facility

e The Dynamic Data Queuing Facility

e The CONVERSE Service Routine

In addition to the retention of the input environment,
conversational subsystems have design considerations with respect to
file updates and control of input verbs. These design considerations
are discussed following a review of the four methods of retention of
input messages and corresponding results of processing.

Intercomm provides Front End conversational support to ensure
that duplicate input 1is not processed. This 1is accomplished by
defining applicable verbs and interactive terminals as conversational
in the Front End tables. See the Operating Reference Manual.

81

Chapter 8 Conversational Subsystems

8.3 SAVING INFORMATION IN USERSPA

The user extension to the SPA is called USERSPA and is accessible
to all Intercomm subsystems since the SPA is the second entry parameter
to all subsystems. The SPA (Csect) is a 500-byte core-resident table.
The user extention to the SPA begins at the 50lst byte and may include
application-oriented areas, such as tables, counters, and switches for
application subsystem use. Thus, the size of USERSPA is installation-
dependent. The user portion of the SPA is optionally checkpointable
and can be restored at system restart time.

A portion of USERSPA may be divided into sections associating
table space for each terminal, as illustrated by Figure 37. Each
terminal-oriented area might be used for control data during
conversational processing, until the conversation with that terminal
completes.

SPA SPALIST macro

y,

User A Area

User B Area

COPYed
> member
r‘
TERMINAL/ Table for TID1
TABLE
SPACE
2 Table for TID2 USERSPA

_ ')

Figure 37. TUser and Terminal Table Space in the USERSPA

The SPA 1is expanded by updating the Assembler Language member
USERSPA on the system release library SYMREL. The updated version
should be stored on SYMUSR. When assembling INTSPA, USERSPA is copied
as the last entry in the SPA Csect. Therefore, any user additions would
be referenced beginning with the 50lst byte. Any such additions should
ordinarily be coordinated through the System Manager, as most
application subsystems could be affected.

82

Chapter 8 Conversational Subsystems

In the Dsect definition of SPA, as shown in Figure 38, three
different applications have their own 50-byte areas defined: (USERA,
USERB, USERC) plus a table for their common use (COMTAB). The
Assembler Language member USERSPA for this example would contain a
definition of an area corresponding to SPAUSER. USERSPA could be
defined as a systemwide COPY member for all Assembler Language
routines. The Dsect is generated via the LINKAGE macro, or by coding
the SPALIST macro, with no parameters. In the latter case, the macro
must be preceded by a labeled DSECT statement which is the subject of a
USING statement to establish addressability.

SPALIST DSECT
SPA. .. DC

SPAUSER DS 0X
COMTAB DS XL200
USERA DS XL50
USERB DS OXL50
USERB1 DS F
USERB2 DS X
USERB3 DS X145
USERC DS XL50

Figure 38. Sample USERSPA Declaration Within a Subsystem

The following chart summarizes the advantages and disadvantages
of the USERSPA method of implementation of conversational processing.

Advantages Information saved in Core; no I/0 overhead.
Accessed easily.

Checkpointable and restorable at restart.

Disadvantages The entire USERSPA is accessible to all Intercomm
subsystems. Therefore a problem of control develops
with respect to the possiblity of destruction of data
by another subsystem, or security problems.

Updating and maintenance of USERSPA may require
reassembly of all subsytems which reference it.

A potentially large area of storage must be allocated.

Addressability, if area larger that 3595 bytes.

83

Chapter 8 Conversational Subsystems

8.4 SAVING INFORMATION WITH STORE/FETCH

Conversational information may be stored and later retrieved
(either in storage or on a disk data set) by the Store/Fetch Facility.
Information is retained via the STORE function, and retrieved via the
FETCH function. The storage space may be released via the UNSTORE
function. Saved information may also be updated.

An operator prompting type of conversation involving one terminal
and one or more application subsystem(s) could use Store/Fetch very
efficiently for retaining information. Store/Fetch performs its
function upon data strings. Data strings are logical entities of
information (input messages to be retained or whatever other data the
user intends to save), which are identified by wunique user-defined
keys. The information is accessible only to those subsystems which
call a Store/Fetch service routine naming the data string by its unique
key, which could include the current terminal-ID from the input message

header. Therefore, there is more control over the information than
there would be if it were to be saved in the USERSPA. The data strings
are classified as either transient, semipermanent or permanent. The

differences between these classifications are as follows:

Disposition Availability Storage Medium
Transient Not available across restart Core or disk
Semipermanent Available across restart Disk
Permanent Available across every system Disk

start until explicitly unstored

In conversational processing, permanent data strings should not
be used. As to whether to use transient or semipermanent strings, the
user must decide whether the information is critical enough to be
preserved across system restart. If so, the data strings would be
classified as semipermanent and would reside on disk. At restart time,
the operator could then resume a conversation at the point of failure
if subsystem logic can determine when the conversation was
interrupted. If stored data is specified as transient, data is
eligible to reside in core. Processing would thus be speeded up, as
I/0 overhead would be eliminated. At restart time, the operator would
then start the conversation from the beginning.

Detailed information on Store/Fetch, including the interface
between application subsystems and the Store/Fetch service routines,
may be found in Store/Fetch Facility. Application subsystem logic must
determine whether the input message in progress 1is initial,
intermediate or final. This determination is necessary to assure that
the proper calls to Store/Fetch are issued when data is to be saved or
retrieved. Once the determination is made, Store/Fetch may be used to
manage the conversational information as shown in Figure 39.

84

Chapter 8

Conversational Subsystems

Initial Input:

STORE--create a new data string

Intermediate Input:

FETCH- -retrieve existing data string
STORE- -update string: new information merged with existing data

Final Input:
FETCH- -retrieve existing data string
Process input and merge final information with existing data
Update necessary files and create final output message

UNSTORE- -free data string storage

Figure 39. Conversational Processing Using Store/Fetch

Subsystem processing logic can be simplified by using one or more
of the following techniques:

A 'string-not-found’ return code from a FETCH request
indicates intial input (no intermediate data stored).

A FETCH with the Delete option forces restart of the
conversation from the beginning if the system fails, or the
subsystem times out or program checks before the STORE of the
intermediate data can be done. This technique also saves
Store/Fetch and core storage resource overhead.

The STORE of the intermediate data should be done after the
output message is processed.

File record(s) should not be updated until all intermediate
data 1is collected. At this time the record(s) should be
retrieved for wupdate (exclusive control) and checked for
external updates by unrelated processing since the
conversation began.

Do not send the final confirmation output message until
successfully updating the file(s).

85

Chapter 8 Conversational Subsystems

8.5 SAVING INFORMATION ON A DYNAMIC DATA QUEUE

The Dynamic Data Queuing Facility (DDQ) is a Special Feature
available to Intercomm users. Detailed specifications on using DDQ may
be found in Dynamic Data Queuing Facility. A DDQ provides the
application subsystem with the ability to dynamically create, retrieve
and delete logical data sets (or queues) of records on a BDAM data
set. As illustrated in Figure 40, more calls are required to interface
with the DDQ routines than are required to interface with Store/Fetch
to obtain the same functions. However, a DDQ provides the ability to
save several related data strings as a type of sequential file. The
entire DDQ can then be processed by another subsystem or postponed for
batch processing. A DDQ is most effectively used, not as a means for
temporary storage of data during a conversation, but as a means for
accumulating conversational results for subsequent processing, that is,
for data collection. This facility can also be used for collecting
data from related conversations with more than one terminal.

The data queues may be either transient, single-retrieval

transient, semipermanent or permanent. Single-retrieval transient
queues cannot be read more than once. This type of DDQ, therefore,
would not be suitable for conversational processing. The other queue

types are distinguished by the following characteristics:

Queue Type Characteristics

Transient Must be passed to another subsystem or freed.
Cannot be retrieved later.
Not preserved across restart or normal startup.

Semipermanent | Retrieved at a later point in time via a
user-provided Queue Identifier (QID).

Extra I/0 overhead is involved in saving the queue.
Can be freed by user requests.

Queue must be completed (closed) in order to be
preserved across restart.

Existing semipermanent queues freed at normal startup.
Permanent Same characteristics as semipermanent except that
permanent queues are always preserved across any
Intercomm start, warm or cold, if closed at least
once.

86

Chapter 8 Conversational Subsystems

Figure 40 1illustrates typical use of DDQ facilities in
conversational processing. The application subsystem logic must
determine whether input is initial, intermediate, or final. Final
input, in this example, causes the queue to be closed and passed to
another subsystem for asynchronous or postponed file updating. Thus,
the terminal operator, upon receipt of the final output message, can
begin another conversation without waiting for file updates to occur.
This technique is particularly useful for files which do not require
up-to-date inquiry response such as order entry, personnel, etc.

Initial Input:

QBUILD -- Create a new queue
QWRITE -- Save input message and related data
QCLOSE -- Save the DDQ

Intermediate Input:

QOPEN -- Open the queue
QREADX -- Read the record or QWRITE to add
with intent to update to the queue

QWRITEX -- Update the record

QCLOSE -- Save the DDQ

Final Input:

QOPEN -- Open the queue

QREADX -- Retrieve the record or QWRITE to add
to the queue

QWRITEX -- Update the record

QCLOSE -- Pass the DDQ to another subsystem which will update
files and free the queue.

Issue final output message.

Figure 40. Conversational Processing Using Dynamic Data Queuing

87

Chapter 8 Conversational Subsystems

8.6 SAVING INFORMATION VIA THE CONVERSE SERVICE ROUTINE

The final method of retaining information for a conversation is
to use the Intercomm system service routine CONVERSE. The CONVERSE
routine is called by an application subsystem when input from a

terminal 1is required to continue processing a transaction. The
application subsystem stops processing until the next input message is
received. Control is returned to the next sequential instruction

following the call to CONVERSE.

Application subsystems are designed more easily with CONVERSE, as
it is simpler to control the sequential order of the messages.
However, the use of CONVERSE is not encouraged, as it ties up Intercomm
resources. Dynamic storage associated with the initial and subsequent
input messages is retained during the call to CONVERSE. Storage
requirements for subsystems would be greater than when other
conversational techniques are wused, because one subsystem contains
logic for all message types of a conversational transaction. It is far
more efficient to design conversational subsystems which retain control
only for the amount of time necessary to process one message than to
tie up system resources while each input message in the conversation is
in turn received, kept, analyzed and responded to in one execution of
one application subsystem. When CONVERSE is used, dynamically loaded
subsystems remain in storage until all "conversations in progress" have

terminated. Intercomm restart processing of such subsystems restarts
the conversation from the beginning. All intermediate messages are
discarded.

The saving of information in the USERSPA or in a Store/Fetch data
set or in a DDQ does not require an application subsystem to contain
logic for time-outs. The use of CONVERSE does. If the next input
message is not received in the time limit specified by the user, a
time-out occurs, which must be handled by subsystem logic.

The CONVERSE program keeps track of conversational requests by
terminal and subsystem, and separates messages accordingly. Hence, any
subsystem may be in conversation with any number of terminals
simultaneously.

An example of the use of CONVERSE in a two-part conversation is
illustrated in Figure 41.

88

Chapter 8

Conversational Subsystems

Part A Logic

Part B Logic

SUBSYSTEM
CALLED BY

MONITOR

PROCESS
INPUT
MESSAGE A

FORMAT
OUTPUT
MESSAGE A

CONVERSE

SAVE THE
INTERCOMM
ENVIRONMENT

PROCESS
REPLY
MESSAGE B

FORMAT
OUTPUT
MESSAGE B

v

RETURN TO
MONTTOR

Beginning of Conversation

Pass Message to Front End

CONVERSE saves terminal
identification, subsystem code,
storage pointers, etc.

When the next message with the
same terminal-id arrives, the
subsystem resumes from this point
referencing the original areas
and the new message.

Pass message to Front End

Figure 41.

Conversational Subsystem Logic Using Converse

89

Chapter 8 Conversational Subsystems

8.6.1 Subsystem Design Using CONVERSE

The Intercomm system service routine CONVERSE is called when
awaiting additional input in response to some prompting message. Since
any interval may elapse before the next message is received, CONVERSE
will save information in its own control table for each conversation
and return to the Subsystem Controller while waiting for the response.

The call to CONVERSE specifies a time limit within which a reply
message should be received. If it is not received during the specified
interval, then the subsystem is entered at the next instruction
following the call to CONVERSE and its message parameter is adjusted to
point to a time-out message supplied by CONVERSE. That message (header
Plus text) could then be switched to the Output Utility. The terminal
identification in the header is that of the non-responding terminal.

Coding format:

There are two coding formats available to reentrant Assembler
Language subsystems for calling the CONVERSE subroutine: as core
resident or in an overlay area.

The coding format, if CONVERSE is always resident, is as follows:
[symbol] CALL CONVERSE, (parm,time),VL,MF=(E,1list)
If CONVERSE may be in a transient overlay area:

[symbol] CALLOVLY CONVERSE, (parm,time),VL,MF=(E,list)

where:

e parm is the address of the parameter 1list passed to the
subsystem at its entry point. The contents of the parm
register is specified on the LINKAGE macro. If the input
message is not freed by the subsystem (or a call to MAPIN)
CONVERSE will free it. 1If freed by the subsystem, zero the
first word of the input parameter list. If the input message
is edited by a call to EDITCTRL, set the address of the
edited message into the first word of the input parameter
list.

e time is the label of a fullword binary value indicating an
interval limit (in seconds) within which a subsequent message
is expected. A zero value for the time limit will bypass the
automatic time-out feature.

When processing resumes following the call to CONVERSE, the
environment appears as it was before the call--except the input message
parameter (unless there was a time-out) now points to the most recent
message from the terminal. It is the subsystem’s responsibility to
verify that the message received following the call to CONVERSE is
actually the appropriate message expected in the logical sequence of
the conversation.

90

Chapter 8 Conversational Subsystems

In calling CONVERSE from an Assembler Language subsystem, the
address of the parameter list for the previous message being processed
by the subsystem must be passed. Upon return, the address of a new
parameter list (with the address of the new message) must be loaded to
the appropriate register. This coding sequence is illustrated below:

LINKAGE MSG=(R8),PARM=(R7),SPA=(R9)...

CALL MSGCOL,(.)

CALL CONVERSE, ((R7),TIME),VL,MF=(E,list)
L R7,list

L R8,PARMMSG

Q output message

If the new message from the terminal requires editing, CONVERSE
will call the Edit Utility before passing the new input message address
to the subsystem. If editing is unsuccessful, error messages are sent
back to the terminal (see Figure 42).

Figure 42 shows the CONVERSE return codes and the contents of
message text for a time-out condition. These return codes are fullword
binary values in register 15 indicating the condition for return.

Return Codes Meaning

0 (X'00") Normal return: the entry parameter input-message
reflects the address of the new input message. The
message will have been edited successfully if the
Front End Verb Table shows editing required. (If
editing is unsuccessful, error messages will be sent
to the terminal, and the subsystem is not reactivated
until either a subsequent input message is edited
successfully or an automatic time-out occurs.)

CAUTION: The CONVERSE automatic time-out is not
extended if a message is found in error by
the Edit Utility.

17 (X'11l") No core available for CONVERSE control blocks;
conversational mode not initiated.

18 (X'12') Time-out expired. The entry parameter input-message
reflects the address of an error message generated by
CONVERSE. The message header contains the appropriate
terminal identification. The message text is:

*PMI*CONVERSE*ANTICIPATED MESSAGE NOT RECEIVED
WITHIN USER SPECIFIED TIME INTERVAL

Figure 42. CONVERSE Return Codes
91

Chapter 8 Conversational Subsystems

Control of the conversational program environment is accomplished
by Intercomm in different ways, depending on the subsystem'’s residency:

® Resident

The dynamic work space for one message is retained pending
arrival of the next message from the terminal; the subsystem
will continue to process messages from other terminals.

° Overlay loaded

Same as above, except the loaded overlay region may contain

other subsystems to process other messages during (and after)
"CONVERSE time."

°® Dynamically Loaded

Same as above, except the subsystem remains in core until all
"conversations in progress" have terminated.

Conversational subsystem logic must be designed with care
regarding file access. Selected files should be released prior to the
call to CONVERSE. If not, other subsystems accessing the same files or
other messages in process in the same subsystem may "time out." This
may occur because an operating system control block is associated with
the access to the file and is not "freed" until the file is released.
If a file is accessed prior to the call to CONVERSE and released after
the call to CONVERSE a "lock out" situation may occur.

Assembler Language subroutines may not call CONVERSE.

92

Chapter 8 Conversational Subsystems

8.7 DESIGN CONSIDERATIONS IN CONVERSATIONAL PROCESSING

In order to ensure file integrity, conversational subsystems
performing file and/or data base updates should be designed to perform
the updates for the last message in the conversation. Alternatively,
control may be passed (via message queuing) to a non-conversational
subsystem to perform the updates.

8.7.1 Control of the Input to Conversations

Conversational subsystems expect ordered input. They must be
designed to analyze input messages and to determine which message in
the sequence has been received. Control of the input may be exercised
by the terminal operator or by the application subsystem(s).

The terminal operator may be given a specific sequential list of
messages to input at the terminal for a given verb or verbs. This
method would probably be used for data collection applications, in
which more messages are sent to the application subsystem than are
received at the terminal. It could also be used for any conversational
application in which the order of input is fixed.

The application subsystem may control the input sequence by
analyzing an input message, processing it, and issuing a response
informing the operator about the content or format of the next input
message. The response may direct the operator to input another verb
(that of a related subsystem). Subsystem-controlled input is good for
conversations in which the "next" desired piece of information may vary
depending upon the contents of a file record, or a table, or the
setting of a switch in an area saved between subsystem activations.

8.7.2 ssigning a Verb to a Terminal

To eliminate the requirement for an operator to key in a verb
with each input message, the operator may enter a system control
command message to LOCK a specific terminal to a particular verb. The
Front End then prefixes that verb to each input message from that
terminal. The operator may enter another control message, UNLK, to
unlock the terminal from the verb. See System Control Commands.

The LOCK/UNLK commands processed by the Front End can also be
issued by a subsystem. When a LOCK is in effect, all subsequent
messages from the specified terminal will be automatically prefixed by
the verb specified in the LOCK command. This LOCK remains in effect
until UNLK is issued. With LOCK in effect, some advantages are:

e The terminal operator does not have to keep reentering the
same verb.

e A new verb cannot be entered during the conversation.

93

Chapter 8 Conversational Subsystems

Either the subsystem or the operator may control the input
sequence by locking and unlocking the terminal to different verbs at
different points in, or at the end of, the conversation.

Optionally, the Intercomm AUTOLOK feature may be defined for the
verb in the Front End Verb Table, which dictates that when that verb is
input from the terminal, the terminal is to be automatically locked to
that verb. Subsequently, the terminal is to remain locked until
specifically UNLKed by the operator or processing subsystem.

The format for the LOCK/UNLK commands (message text) is as
follows:

LOCKSTPUxxxxx$vvvv@
UNLKSTPUxxxxx@
where:
XXXXX
is the five-character terminal identification
vvvv
is the four-character verb
@
is the end-of-transmission character (X'26')
$

is the system separator character as defined for the
installation.

The preformatted message constructed by a subsystem must be
prefixed with the standard message header for FESEND
(MSGHRSCH=X'00' ,MSGHRSC=X'00' ,VMI=X'57"). This message is passed to
the Front End via FESEND (see Chapter 9) and the LOCK or UNLK takes
place. No response message is sent to the terminal when such
processing is requested by a subsystem.

94

Chapter 9

USING INTERCOMM SERVICE ROUTINES AND FACILITIES

9.1 SERVICE ROUTINES AND FACILITIES

This chapter further describes use of Intercomm service routines

and facilities available to Assembler Language subsystems. These are
as follows:

Pass message to another subsystem (MSGCOL)

Message Logging (LOGPUT)

Pass Message to Front End (FESEND)

Front End Control Messages (FECMs)

Perform Binary Table Search (BINSRCH, BINSRCH2, BINSRCH3)
Data Field Search Routines (PMIFINDB, PMIDLTDB)

Segmented Message Routines (GETSEG, DVASN)

Dispatcher Related Routines (IJKPRINT, IJKTRACE, IJKDELAY)
In-core Table Sort (INTSORT)

Other Intercomm Service Facilities

Loading Service Routine Entry Points from the SPA

95

Chapter 9 Using Intercomm Service
Routines and Facilities

9.2 MESSAGE SWITCHING (MSGCOL)

Message Collection is a system service routine. It 1is
responsible for queuing messages destined for processing by another
subsystem, that is, message switching. MSGCOL controls the queuing of
messages via the message header fields MSGHRSCH and MSGHRSC, the
receiving subsystem code.

The logic of an application subsystem might be such that the
input message is modified within its dynamic area to become an output
message to switch to another subsystem. To do this, the length of the
input message must not be altered (data may not be added). Queuing the
message for the next subsystem is then done by calling Message
Collection (MSGCOL); Message Collection then owns and is responsible
for the management of the message area. 1In this case, the subsystem is
not responsible for freeing the input message area.

Coding format:
[symbol] CALL MSGCOL, (message,SPA),VL,MF=(E,list)
where:
message is the address of the (input) message to be queued
SPA is the address of the System Parameter Area.

MSGCOL return codes indicate the result of the queuing. The
return code is a fullword binary value in Register 15. (See Figure

43.) Regardless of the result, the calling program no longer has any
control over the area of dynamic storage occupied by the message.

Return Code Meaning
0 Message queued successfully
4 No room on queue (entry made on system log)

or message rejected for delayed subsystem

8 No core for disk queue I/0 area

12 I/0 error on disk queue

16 Invalid subsystem code (entry made on system log)
Figure 43. Message Collection Return Codes

Recovery action for unsuccessful queuing might be to return to the
System Monitor with a return code of 8 or 12. A message would then be
sent to the terminal that originated the input message being processed,
if USRCANC (PMICANC) is included in the Intercomm linkedit.

’

96

Chapter 9 Using Intercomm Service
Routines and Facilities

‘ 9.3 USER 1LOG ENTRIES (LOGPUT

An application subsystem may require entries on the system log
for many different situations:

e Application-dependent security violation or other
application-dependent error recording.

e Log entries rather than snaps used to trace the progress of a
message while testing.

e Any application-oriented requirement for a record on the
system log.

e Before- and/or after-image records of file updates (if not
using the Intercomm File Recovery special feature).

User log entries are identified by unique codes in the message
header log code field (MSGHLOG) and hence can be recognized by any
batch program processing the log off-line. Messages to be logged
consist of a standard 42-byte header and message text. The log code
field in the message header may have any value from X’'41' to X'6F'.
Logging is performed by calling the Intercomm system service routine
LOGPUT. The date and time stamp in the message header (MSGHDAT and
MSGHTIM) will be updated by LOGPUT prior to writing to the log. Log
entries may subsequently be suppressed for later Intercomm executions
by modifying the LOGTROUT translate table in the LOGPUT routine. Any

message having a log code in the header which translates to X'FF’ will
\v not be logged.

The length of the record on the log is controlled by the value of
MSGHLEN in the message header and must be at least 42. LOGPUT will not
write out messages longer than the logical record size of the log (see
INTERLOG JCL description in the QOperating Reference Manual).

Coding format:
[symbol] CALL LOGPUT, (message),VL,MF=(E,1list)

where:

message is the label (address) of the message (header plus text)
to be logged.

There is no return code from LOGPUT.

97

Chapter 9 Using Intercomm Service
Routines and Facilities

9.4 PASS MESSAGE TO FRONT END (FESEND, FESENDC)

FESEND (or FESENDC) is called to pass a message to the Intercomm
Front End for transmission to a terminal. The entry point FESENDC of
FESEND copies the message to a new area of storage, and then proceeds
with FESEND logic. The message header field MSGHTID specifies the
destination terminal or broadcast group name. FESEND then requests
queuing of the message on the associated terminal queue. If a
broadcast group is specified, FESEND creates an individual message for
each terminal of the group and requests queuing for each of those
messages. All terminals in the broadcast group must be of the same
type, as defined in the Back End Station and Device tables (see Chapter
2).

FESEND accepts two types of messages: preformatted (VMI=X'57')
message text, which contains the control characters and data for
transmission to the terminal except for start-of-text sequence(s) to be
added by the Front End; and fully-formatted (VMI=X'67') message text,
which contains all control characters and data ready for transmission
to the terminal. (MMU produces fully-formatted messages.) 1f
segmented input messages may be processed, set MSGHQPR to C’2' before
calling FESEND. If passing the message to the Front End is for any
reason unsuccessful, the subsystem is notified by a return code in
Register 15, and recovery action may be taken.

FESEND tests whether messages sent to the Front End might be
system commands or for control purposes. Such messages control Front
End operation and generally cause no output to a terminal. Front End
Control Messages (FECMs) are described later in this chapter. All
system control commands and message text contents are documented in
System Control Commands.

FESEND becomes the owner of the area of storage occupied by the
message. Do not attempt to free this area or reference it once FESEND
is called. FESENDC copies the message to a new area, the original area
still belongs to the caller (and may be in the dynamic save/work area
and ultimately freed via RTNLINK, rather than an acquired area which
requires freeing by STORFREE before the RTNLINK).

Coding format:

[symbol] CALL (FESEND },(msg-addr[,ret-code[,option-codes]]),
{ FESENDC)}
VL,MF=(E, list)

where:
msg-addr points to the first byte of the message (header and
text) to be passed (copied) to the terminal queue.

return-code optionally points to a two-byte character field

where FESEND will place a return code indicating whether or
not processing was successfully completed (see Figure 44).

98

Chapter 9

Using Intercomm Service
Routines and Facilities

option-codes optionally points to a four-byte character field
containing Front End processing codes as follows:

Byte 1: CRT Release option code:

blank or X'00’--do not release (prevent screen

overlay) next message (default)

C'R’'--release (allow overlay) next message to CRT

C'C'--release next message, but do not cancel
Front End conversational time-out

Byte 2: VTAM Response option code (overrides Front End
Network Table definition for terminal):

blank or X'00’--no override (default)
C’'0’--D1 response
C'E’'--E1 response
C'F'--D2 response
C'G'--E2 response

Bytes 3 and 4: Not used (set to blanks or binary zeros)

FESEND also returns

codes in hex in register 15; the codes and possible

recovery actions are listed in Figure 44. A nonzero return code means
the message was not queued for the Front End. Return codes 16-24
should only occur during subsystem testing. Regardless of the result,

the calling program

no longer has any control over the area of dynamic

storage occupied by the message if FESEND was called.

Return Code

Meaning

290 X007 ___J
04 X' 04
08 X' 08"
12 X'0C’
16 X'10’
20 X'14"
24 X'18’

Low-core condition encountered; attempt a retry
by invoking FESEND again or return to Intercomm.
(See Figure 14.)

I/0 error (see Figure 1l4) encountered on disk
queue; return to Intercomm.

Invalid terminal-ID; no recovery action required.
Check with System Manager to verify terminal/

Invalid message header; return to Intercomm.
See also error message MG602I and Snap 51.

Figure 44. FESEND Return Codes

99

Chapter 9 Using Intercomm Service
Routines and Facilities

9.5 FRONT END CONTROL MESSAGES)

The Front End Control Message (FECM) facility provides three types of
Front End control messages which may be used by application subsystems
for:

° Front End data queuing (FECMDDQ)
e Front End feedback messages (FECMFDBK)
° Front End queue release (FECMRLSE)

A FECM is generated by an application program call to a service
routine. The generated feedback message text is complete. The header
field MSGHLEN has been set; bytes 3-42 are not modified. If the user
has copied a valid header to the FECM message area prior to the call,
only the sending subsystem codes (SSCH,SSC) and the VMI must be set
(X'57'). The generated FECM must then be passed to the Front End by a
call to FESEND in the application program.

After a call to any Front End Control Message facility, a return
code is placed in the first byte of the status word and the binary
value of the return code is returned in register 15:

Return Code Value Meaning
c'o’ FECM successfully created J
c'sg’ No storage available to build FECM

Figure 45. FECM Return Codes

9.5.1 Front End Data Queuing

Front End data queuing (FECMDDQ) works in conjunction with the
Dynamic Data Queuing Facility. It provides the user with a more
efficient way of handling groups of related output messages. An
application may pass a Dynamic Data Queue (DDQ) to the Front End via a
FECM. The DDQ contains messages to be sent to a terminal. This is a
more efficient design approach than sending one message at a time to
the Front End via FESEND, and prevents interleaving of unsolicited
messages with those on the DDQ. This feature is particularly useful
for printed reports. The messages on the DDQ must be preformatted
(VMI=X'57') or fully formatted (VMI=X'67’'). The Dynamic Data Queuing
Facility manual contains detailed information on DDQ concepts,
facilities and implementation, and specific design considerations for
Front End Data Queuing. MMU wuses this facility (FECMDDQ), when
requested for multipage printer output.

100

&

Chapter 9 Using Intercomm Service

Routines and Facilities

Coding format:

[symbol] CALL FECMDDQ, (status-word,fecm-area,ddq-id[,ddq-disp]),
VL,MF=(E,list)

where:
status-word is a fullword (aligned) required by the facility.

fecm-area is a 112-byte area to contain the FECM (header and
text). The user should initialize the header prior to the call,
probably by copying the input message header to this area. If
this parameter is zero, the facility will acquire the area of
storage for the caller. (Register 15 has a wvalue of 8 on the
return from the call if storage was not acquired.) The caller

must then complete the message header area of the FECM. Only
MSGHLEN is set by the facility.

ddg-id is the sixteen (16) byte DDQ identifier.

ddg-disp is a one-byte code indicating DDQ disposition after all
messages are transmitted:

C'S' means SAVE the DDQ (required if MSGHTID is a broadcast
group name)

C'F' means FREE the DDQ (default)

NOTE: The ddq-disp parameter may be omitted if the DDQ is to be freed
after all the messages are transmitted (default). All the above
parameters must be in dynamic storage if the calling program is
loaded above the l6émeg line under MVS/XA or ESA.

9.5.2 Front End Feedback Messages

This type of FECM (FECMFDBK) 1is used by an application to
determine that all prior messages queued for a terminal (before the
FECM) have been transmitted. 1In this way, an application subsystem can
be notified that certain critical messages have indeed been
successfully transmitted.

101

Chapter 9 Using Intercomm Service
Routines and Facilities

Subsystem logic creates all normal output messages and passes
them to the Front End (via FESEND, MMU, or by queuing messages for
Qutput). Generation of a feedback message is then requested by a call
to a FECM service routine. The feedback message is then processed in
the same way as the other messages for the terminal (queued via FESEND
or the Output Utility). When the Front End retrieves the feedback
message, it is routed to the subsystem specified when the feedback
message was generated rather than to the destination terminal.

Feedback messages may also be used in conjunction with Front End
Data Queuing. A feedback message could be an intermediate, or the
last, message on a DDQ passed to the Front End. If the DDQ was created
via MMU (a MAPEND call option), then the feedback FECM must be created
and queued by the subsystem on return from the MAPEND call.

Coding format:

[symbol] CALL FECMFDBK, (status-word,fecm-area,fecm-rsc,
fecm-text) ,VL,MF=(E, list)

where:
status-word is a fullword (aligned) required by the facility.

fecm-area is a 78-byte area to contain the FECM (header and
text). The user should initialize the header area prior to the
CALL, probably by copying the input message header to this area.
If this parameter is zero, the facility will acquire the area of
storage for the caller. (Register 15 has a value of 8 on the
return from the call if storage was not acquired.) The caller
must then complete the message header area of the FECM, only
MSGHLEN is set by the facility.

fecm-rsc is a two-byte receiving subsystem code (high/low) to
specify the feedback message destination subsystem.

fecm-text is a 16-byte area containing the desired feedback
message text.

The generated feedback message text 1is complete. The header
field MSGHLEN has been set; bytes 3-42 are not modified by FECMFDBK.
If the user has copied and set a valid header prior to the call, no
further modification to the header is required.

102

Chapter 9 Using Intercomm Service
Routines and Facilities

9.5.3 Front End Queue Release

This type of FECM (FECMRLSE) allows the subsystem to override the
normal Front End Logic for CRTs, which requires a one-for-one
correspondence between input and output messages. When the release
FECM is processed by the Front End, it causes a subsequent response
message queued for the terminal identified by MSGHTID in the FECMRLSE
message header to be transmitted immediately, rather than waiting for
input (RLSE command) from the terminal operator. Because of protocol
restrictions (HDFF) on VTAM Front End IBM SDLC 3270 CRT processing, the
CRT release option for the first call to FESEND should be used (see
Section 9.4) as a release; because if the terminal is already in send
mode, it is necessary to turn the 1line around before sending the
released message, which may confuse the terminal operator.

A release FECM might be used if a subsystem queues more than one
output message to the CRT terminal due to a considerable amount of
processing (file/data base I/0) being necessary between messages. The
first message might be an immediate response to the terminal operator
indicating the 1input request is being processed, while the second
message is the ultimate result of the requested processing. A release
FECM could also be used to force immediate transmission of a critical
message to another CRT (other than the input terminal). Such
processing should be used with caution because unsolicited messages can
cause confusion for the terminal operator and may clear an existing
screen format or displayed message.

Coding format:
[symbol] CALL FECMRLSE, (status-word, fecm-area),VL,MF=(E,list)
where:

status-word 1is a fullword (aligned) area required by the

facility.

fecm-area is the label of a 60-byte area to contain the generated
FECM (header and text). The user should initialize the header
area prior to the call, probably by copying the input message
header to this area. If this parameter is zero, the facility
will acquire the area of storage for the caller. (Register 15

has a value of 8 on the return from the call if storage was not
acquired.) The caller must then complete the message header area
of the FECM, only MSGHLEN is set by the facility.

103

Chapter 9 Using Intercomm Service
Routines and Facilities

9.6 PERFORM BINARY TABLE SEARCH (BINSRCH,BINSRCH2 BINSRCH3)

The module BINSRCH 1is automatically included as a resident
Monitor module. This module performs two functions: it will search a
sorted table for an entry equal to a passed argument, using a binary
search technique--the entry point to perform this function is BINSRCH2;
and it will search an index table whose first halfword or fullword of
each entry is an offset/2 from the base of the actual table to be
searched (points to an individual table entry). The sequence of index
table entries reflects the ascending sequence of values (keys) in the
actual table (which is not sorted). The entry points to perform this
function are BINSRCH (if the first halfword of the index entry contains
an offset to the corresponding entry in the actual table) or BINSRCH3
(if the first fullword of the index contains the offset).

Coding format:
[symbol] CALL {BINSRCH), (arg,ffentries,entry-len,table,offset,arg-1len,
{BINSRCH2)

{BINSRCH3)
index[,shift]),VL,MF=(E,list)

where:
arg is the address of the search argument.

ffentries is a fullword containing the total number of entries in
the table (BINSRCH2) or index (BINSRCH and BINSRCH3).

entry-len is a fullword containing the length of a table entry
(BINSRCH2) or of an index entry (BINSRCH and BINSRCH3).

table is the base address of the table to be searched.

offset is a fullword containing the offset within an actual table
entry at which a comparison is to be done.

arg-len is a fullword containing the 1length of the search
argument.

index is the address of the first index entry (BINSRCH or
BINSRCH3) or zeroes (BINSRCH2).

shift is a fullword containing the shift amount to shift the
offset in an index entry to displace to the beginning of the
associated table entry. This parameter is optional, and if
absent, a shift wvalue of 1 1is assumed. The displacement

calculated will be equal to Index-Offset*2*Shift. (BINSRCH and
BINSRCH3 only.)

104

Chapter 9 Using Intercomm Service
Routines and Facilities

‘ BINSRCH, BINSRCH2 or BINSRCH3 will return the following to the
calling program:

e Register 15: the address of the matching table entry
(BINSRCH2), or the address of the matching index entry
(BINSRCH or BINSRCH3), or, if not found, the first table (or
index) entry whose key exceeds the search key.

® Register 1: the address of the actual matching table entry,
or zeros if none found.

9.7 DATA FIELD SEARCH ROUTINES (PMIFINDB,PMIDLTDB)

When wusing the Edit, Output or Change/Display Utilities, the
search routines allow the user to add, delete, or locate a variable
format data field in an area (message text). These routines are entry
points in the system module PMISERC3. The variable format data field
must always be formatted as follows:

Byte 1: Item Code (in binary), identifying the data.

Byte 2: Length (in binary), containing the number of bytes
which follow. This length does not include the item
code or the length byte itself.

L Byte 3: Beginning of the data text, or if an occurrence
number (line number) for the item code exists, it is
contained in the 3rd byte (in binary) and the data

will follow starting in the 4th byte.

The area containing the variable format data fields will be referred to
as the text area in the following discussion.

Specifically, the search routines are used to find the address of
an item code, (or an item code and occurrence number), or to update a
text area by adding or deleting a data field. The search routines are:

PMIFINDB - Finds the address of a data field with a given item
code (by line number or by occurence number) in a
text area.

PMIDLTIDB - Adds or deletes a data field with a given item code

(by line number or occurence number) within a text
area.

105

Chapter 9 Using Intercomm Service
Routines and Facilities

9.7.1 PMIFINDB - Find a Data Field
The purpose of this routine is to find a data field with a given
item code (optionally by occurrence or line number) within a text
area. Search by occurrence number will locate a data field with a

specific occurrence number, or with a specific line number if the data
fields in a message area occur vertically rather than horizontally.

Coding Format:

[symbol] CALL PMIFINDB, (start-address,SPA,end-address,codes,0),
VL,MF=(E,list)

where:
start-address is the beginning location address for the search
SPA is the address of the System Parameter Area

end-address is the ending location address for the search (end of
text area)

codes is the address of a 3-byte field containing

byte 1: item code (binary)

byte 2: occurrence/line number (binary) - X'00'if no
occurrence/line search is required

byte 3: character action code--
1: search by occurrence/line number
2: search by sequence (obsolete)
3: next occurrence following specified
occurrence number (obsolete)

0 saves space in the parameter list for the address of the found
variable length data field (starting with the requested item
code).

If the search is successful, the address of the found data field
will be returned in the 5th parameter. If the search is unsuccessful,
one of the following conditions occurs:

° If the item code could not be found, binary zeros will be
returned in the 5th parameter field, return code in register
15 is 0.

° If the location addresses are invalid (end lower than begin)
or the action code is invalid (other than 1), a return code
of 1 (in register 15) will be returned to the calling module,
and the 5th parameter field will be zeroed.

106

Chapter 9 Using Intercomm Service
Routines and Facilities

9.7.2 PMIDLTDB - Delete or Add a Data Field

The purpose of this routine is to delete or add a variable length
data field with a given Item Code (optionally by occurrence number)
within a particular text area. An added field is moved to the end of
the used (non-zero) text area and the next byte is set to X'00’'. For a
deleted field, the remaining text area is shifted left over the deleted
field, and the trailing unused portion is set to binary zeroes.

Coding format:

[symbol] CALL PMIDLTDB, (start-address,SPA,end-address,field,action),
VL,MF=(E, list)

where:
start-address is the beginning location address for the search
SPA is the address of the System Parameter Area

end-address is the ending location address for the search (end of
text area)

field is the address of a field as follows:

For Delete Action - Two-byte field containing:
a) 1Item Code (in binary)
b) Occurrence Number (in binary)
(if no occurrence number is necessary, this byte
must contain X'00')

For Add Action - Variable length data field containing:

a) Item Code 1 byte
b) Length of c below 1 byte
c) Occurrence Number (optional) 1 byte

and Data x bytes

action is the address of 1l-byte action code field containing:
C'l’ for add action, or
C'2' for delete action.

If an add or delete action took place, a return code of 0 will be
passed to the subsystem in register 15. If the operation was not
successful, one of the following return codes will be passed in
register 15:

1--invalid action code or location addresses

2--no match on Item Code for delete action

3--no room to add variable length data field.

107

Chapter 9 Using Intercomm Service
Routines and Facilities

9.8 SEGMENTED MESSAGE INPUT (GETSEG)

In designing the message processing logic for an application
subsystem, the possibility of receiving a multisegmented message for
processing must be considered. This type of input message requires a
special Intercomm service routine module GETSEG. When an application
subsystem receives the first segment of a multisegmented message,
identified by a value of 0 (X'FO0’') in the message header MSGHQPR field,
it must call the GETSEG subroutine in order to receive the remaining
segments of the message. GETSEG must be called for each message segment
(intermediate segment MSGHQPR=1), until the final segment is obtained
(MSGHQPR=3) .

Coding format:
[symbol] CALL GETSEG, (msgarea,ret-code,sctaddr),VL,MF=(E,1list)

where:

msgarea is the name (address) of an area, defined within an area
acquired by a STORAGE macro or in the dynamic save/work area, in
which to place the next message segment

ret-code is the address of a one-byte area into which GETSEG
passes a return code

sctaddr 1is the address of the area passed upon entry to the
subsystem which defines the Subsystem Control Table (SCT) entry for the
application program.

As a result of this call, GETSEG will obtain the next message
segment and will call the Edit Utility (if the message requires
editing) before passing it to the subsystem for processing. 1If the
incoming message goes through the Edit Utility, care should be used in
selecting parameters used by the Edit Utility; they must appear in
identical form in every segment of the message. The return code passed
to the application subsystem by GETSEG in the specified area, is in
character format. The possible return codes are listed below:

Return Code Meaning
c'o’ Message is present.
_________________ B T T T T T T T T T S ——
c'4’ There is no message present.
""" C'8' | There is a message present, but core is mot

available. The subsystem should return to the
Subsystem Controller with an identical return code.

c'9’ Message is present, but Edit Utility could not
process it.

Figure 46. GETSEG Return Codes

108

Chapter 9 Using Intercomm Service
Routines and Facilities

9.8.1 Segmented Message Output Terminal Assignment (DVASN)

The DVASN message processing service routine is used in
conjunction with the Output Utility. DVASN is called by a subsystem to
obtain exclusive use of a terminal for the purpose of transmitting a
multisegment message without interruption, that is, without interleaving
of messages (such as printer report pages queued by other subsystems).
The DVASN subroutine (module name PMIDVASN) must be called before
queuing (via MSGCOL) the first segment of a multisegment message for
formatting by Output.

Coding format:
[symbol] CALL DVASN, (cmp,SPA,term,oft,ret),VL ,MF=(E,1list)

where:

cmp is the address of a halfword field containing the number of
the company or division being serviced (obsolete - use binary
zeros for the number).

SPA is the address of the System Parameter Area.

term is the address of a field containing the destination terminal
(broadcast group) name, or of the field MSGHTID in the message
header.

oft is the address of a halfword field containing the OFT number
of the format about to be started.

ret is the address of a five-byte field in which will be returned
the assigned terminal-ID (alternate tid-name if original down in
Back End Station Table), or binary zeros if not found.

As a result of this call, DVASN will assign the terminal to the
subsystem and designate it in a "multi-segmented-message-
transmission-in-progress” condition in its respective entry in the Back
End Station Table (see Chapter 2). This action thus prevents other
messages from being transmitted to the designated terminal until its
busy status is subsequently freed by the Output Utility (only in Control
Region in a Multiregion environment).

109

Chapter 9 Using Intercomm Service
Routines and Facilities

9.9 DISPATCHER REIATED ROUTINES

Three Intercomm service routines are available to an application
subsystem during execution. They are Dispatcher-related in that they
were developed for internal use, but are also applicable within message
processing logic.

e IJKPRINT formats a print line for SYSPRINT and includes page
overflow logic.

e IJKTRACE provides a 1list of Dispatcher task queues for
purposes of debugging. IJKTRACE utilizes IJKPRINT.

° IJKDELAY provides a simple means of coding a time delay (for
multi-threading) of approximately 100 milliseconds within an
application subsystem.

9.9.1 IJKPRINT - Direct Output Line to SYSPRINT

This subroutine calls the PUT entry point in the File Handler to
output a print line image of IBM standard format V (variable-length)
records, with an ASA printer spacing control character as the first
text byte. (Maximum logical record 1length is 137.) A count is
maintained of the number of lines printed on the text page; when the
count exceeds a pre-assembled value, the next line output will specify
a skip to head of form (ASA control character 'l’), and the line count
will be reset.

Output is directed to the file with ddname SYSPRINT. If the file
is undefined or incorrectly defined, no output is produced, but no
diagnostic indication 1is given. The DD statement for SYSPRINT is
described in the Operating Reference Manual. The call made to the File
Handler refers to the output file by name without the use of a File
Handler work area, thus causing the File Handler to bypass the use of
the Dispatcher to accomplish multi-tasking; control is retained in the
calling program path.

Coding format:
[symbol] CALL IJKPRINT, (print-line),VL,MF=(E,list)
where:
print-line is the address of the format V record (line-image) to

be directed to SYSPRINT. (Variable-length record formats are
described in Chapter 6.)

110

Chapter 9 Using Intercomm Service
Routines and Facilities

9.9.2 IJKTRACE - Print Dispatcher Queues

This subroutine constructs print line images producing a
formatted display of all Dispatcher task queues. It is called
automatically whenever the program check handler (SPIESNAP) is entered,
or a subsystem time-out occurs, and may also be called for diagnostic
purposes by any other program.

Control is retained in the current program path for the duration
of processing by this module; the dispatcher is not entered and no
other system work is performed.

Coding format:
[symbol] CALL IJKTRACE
Each print line image is passed to the module IJKPRINT for output

to the SYSOUT data set called SYSPRINT. The Operating Reference Manual
details the exact format of IJKTRACE output.

9.9.3 IJKDEILAY - Request Time Delay

This module may be called to introduce a timed delay averaging
100 milliseconds into a program path. The Dispatcher is given control
to perform other processing and returns at the expiration of the delay
interval.

This facility may be wutilized to give a time-slicing effect
within a routine which would otherwise monopolize the use of CPU time.
It can also force the buildup of parallel program paths for reentrancy
testing purposes in an environment which otherwise might not result in
actual parallel execution, or it may be invoked to await the passing of
a temporary condition which will be resolved by another scheduled
program.

Coding format:
[symbol] CALL IJKDELAY

110.1

Chapter 9 Using Intercomm Service
Routines and Facilities

9.10 IN-CORE TABLE SORT FACILITY (INTSORT)

To sort an in-core table, the INTSORT Facility is provided. Such
a table might be data stored in a Store/Fetch string or file data
record via online transactions or offline processing. The table can
have any number of fixed-length entries up to 32767, and each entry can
have a total size of 1 to 255 bytes. The key to be sorted on can be
anywhere within the entry, but must be in the same place, and of the
same length, in each entry. Coding format:

[symbol] CALL INTSORT, (entries,entry-length,table,key-offset,
key-length) ,VL ,MF=(E,list)

where:

entries is a fullword (aligned) containing the number of table
entries (up to 32767).

entry-length is a fullword (aligned) containing the size of each
entry (up to 255).

table is the address of the area containing the table to be
sorted.

key-offset is a fullword (aligned) containing the offset (-1) of
the key within each entry (value must be zero if at the beginning
of the table entry).

key-length is a fullword containing the length of the key (to be
sorted on) of each entry (can be the same as entry-length).

The return code is a fullword binary value returned in register 15, as

listed in Figure 47. For all non-zero return codes, the sort is not
executed.
Return Meaning

Code
X'00’ INTSORT completed successfully
X'04' Number of entries less than 1 or more than 32767.
X'08' Length of an entry is less than 1 or greater than 255
X'12’ No table address supplied.

X'16’ Key-offset greater than 254,
X'20’ The key-length plus key-offset exceeds maximum (255)

entry-length.

Figure 47. INTSORT Return Codes

110.2

Chapter 9 Using Intercomm Service
Routines and Facilities

‘- 9.11 OTHER INTERCOMM SERVICE FACILITIES

The following service routines for application programs are
accessed via the following subroutine entry names:

e MMU (MAPIN, MAPOUT, MAPEND, MAPCLR, MAPURGE, MAPFREE)
e Store/Fetch (INTSTORE, INTFETCH, INTUNSTO)
e DDQ (QBUILD, QOPEN, QREAD, QREADX, QWRITE, QWRITEX, QCLOSE)
e Page Facility (PAGE)
e DBMS (DBINT) - data base interfacing
° Dynamic File Allocation (ALLOCATE, ACCESS)
° ESS operator-id checking (SECUSER)
Detailed documentation for use of the above facilities is provided in

separate manuals (see Chapter 2). Special coding and call conventions

for specific data base support are described in Data Base Management
System Users Guide and vendor manuals.

Macros to access other system routines and services are described

in Chapter 10. In addition, the following facilities may be of
interest:
A4 e Assigning a verb to a terminal (see Chapter 8)

e Locating a Csect (and Entry) name from a hexadecimal address
(IJKWHOIT - see Operating Reference Manual).

° Generating a system command message (see System Control
Commands)

e Generating a display or printout of dynamic storage
(save/work area) during program execution via the SCTL system
control command (Release 10 only). Acquire and initialize
storage for the command message and queue it for the SYSCNTL
subsystem (as released, SUBH=000, SUBC=C). Use the form:

SCTL$DSPCHS$address(len) [$address(len)...]$TID=name@

See the Release 10 System Control Commands for syntax details
and length restrictions. Use the HEXCON or LAYOUT macro to
convert a binary address to a printable hex format in the
message text. Omit the TID parameter if the storage is to be
displayed at the subsystem’s input message terminal.

110.3

Chapter 9 Using Intercomm Service
Routines and Facilities

9.12 LOADING SERVICE ROUTINE ENTRY POINTS FROM THE SPA

Several Intercomm service routines may optionally be assigned to
the Link Pack Area. (Refer to the QOperating Reference Manual.) In
such cases, the service routine entry point should not be coded in the
CALL macro; rather, the address of the service routine is loaded from
the SPA or SPAEXT into register 15, and the CALL macro is coded with
register notation, as follows:

L R15,SPA... load service routine address from SPA
or

L R15, SPAEXTAD point to SPA Extension

USING SPAEXT,R15 set addressability

L R15,SEX... load service routine address from SPAEXT
then

CALL (15),(parameters),VL ,MF=(E,list)
DROP R15 cancel SPAEXT addressability

Appendix D lists the SPA and SPAEXT field names for service routine
entry points referenced in this manual. For dynamically 1loaded
subsystems, this sequence of instructions saves dynamic linkedit time
at Intercomm startup, unless the subsystem has been linked with the
INTLOAD system program which performs a similar function.

The above coding sequence may not be used if the subsystem is
eligible for loading above the lémeg line under MVS/XA or ESA; service
routine entry names must be used. Mode switching is accomplished by
linking the subsystem with INTLOAD (also contains XA interface code).
Also, do not code the SPA or SPAEXT parameters on any Intercomm macros
except the LINKAGE and SUBLINK macros.

110.4

Chapter 10

INTERCOMM MACROS FOR ASSEMBLER LANGUAGE PROGRAMS

10.1 INTRODUCTION

Intercomm provides many macro instructions to facilitate coding
of user Assembler Language programs (subsystems, subroutines, user

exits).

Coding specifications for each macro are detailed in Basic

System Macros, which should be referenced in conjunction with this

chapter.

Several different categories of macros are provided:

Basic macros for subsystem structure (LINKAGE, RTNLINK,
STORAGE, STORFREE), discussed in Chapter 3.

Macros to simplify program coding, virtually self-
explanatory in their use:

-- CALLIF Conditional call, transfers control if
subroutine 1is 1linkedited in the
Intercomm load module

-- CALLOVLY Call a subroutine which may be
linkedited within the transient
subroutine overlay region

-- DDNFIND Test presence of a ddname in execution
JCL

-- EXMVE Extended MVC to move n characters, where
n may be greater than 256

-- EXSS Execute a storage-to-storage instruction

-- EXTRT Extended translate and test

-- GETDATE Get current date from CPU (yyddd)

-- GETSpPA Find Intercomm SPA address (Link Pack
Area module)

-- HEXCON Convert data from binary to printable
hexadecimal

-- INTTIME Optimized TIME macro to request CPU
time, date

-- LAYOUT Transfer data fields to a contiguous
area of core, effecting conversion of
format

-- MSGHDR Establish symbolic names for the fields

in Intercomm's message header

111

Chapter 10

Macros for debugging

REGA, REGS
ROUND

SECTEST

SSCONV

SSSTART

SSSTOP

SSTEST

SUBLINK

XASWITCH

PMISNAP
PMIWTO, PMIWTOR

USRTRACK

Intercomm Macros For
Assembler Programs
Generate register name equates
Round a register value to a power of 2

Test user function authority wunder ESS
(Extended Security System)

Convert subsystem codes to printable
form

Start a STRT/STOP function under program
control

Stop a STRT/STOP function under program
control

Test for bit settings controlled by the
General Purpose Subsystem

Provide subroutine linkage (similar to
LINKAGE macro). Note: can be paired
with the RTNLINK macro

Switch MVS/XA address modes (24/31)

functions:
Issue a snap
Issue a WTO (WTOR)

Track user data for SAM (System
Accounting Facility)

112

Chapter 10

Intercomm Macros For
Assembler Programs

e Macros which request system control functions to be

performed:
-- DISPATCH

-- INTWAIT

-- INTPOST

-- PASS, CATCH

-- INTENQ, INTDEQ

-- SUBTASK

-- MODCNTRL

Create or cancel a Dispatcher task

Wait on event completion, or request a
timed processing delay

Post internal event
Transfer control of a system resource
for a message processing thread to or

from the Intercomm system (thread 0)

Enqueue/dequeue request for exclusive or
shared control of a resource

Create an application program subtask

Request LOAD/LINK/DELETE of a user
subroutine defined in REENTSBS table

The macros used for debugging and to request system control
functions are described in alphabetical order. Illustrations of the
use of several of these macros for system control functions conclude

this section.

113

Chapter 10 Intercomm Macros For
Assembler Programs

10.2 MACRO DESCRIPTIONS

10.2.1 CATCH -- Transfer Ownership of a Storage Area from
Intercomm to an Application

The CATCH macro is issued by an application, in a system with the
Resource Management Auditing and Purging facility in use, to take
control of an area of storage belonging to Intercomm. CATCHing an area
ensures that it will be freed by the Resource Management purge routine
if the subsystem program checks or times out.

10.2.2 DISPATCH -- Request Multithread Dispatcher Queuing Service

The DISPATCH macro provides the facility for requesting one of
several queuing services from Intercomm’s Multithreading Dispatcher.
The following types of service requests are available:

e A request for a unit of work to be placed on a specific
priority execution queue and executed as soon as priority
permits

e A request for a unit of work to be placed on a timer queue
and executed upon the elapse of a specified duration of time

® A request for a unit of work to be placed on an event queue
and executed upon the completion of a specified event

e A request to delete (cancel) a previously queued request

e A request to terminate control and initiate processing by the
highest priority unit of work awaiting execution

Three kinds of queues exist: event, timer and execution queues.
There are two event queues, one timer queue, and four execution queues,
corresponding to the highest-lowest Intercomm priority codes of 0, 1,
2, 3. All units of work placed on an event or timer queue remain
queued until the event transpires or the duration expires. They are
then, depending upon assigned priority, transferred to one of the
execution queues.

The INTWAIT macro may be used in lieu of the DISPATCH macro for
timer or event waiting.

NOTE: The IBM STIMER and TTIMER macros are not allowed to be
issued by any user program.

114

Chapter 10 Intercomm Macros For
Assembler Programs

10.2.3 INTDEQ -- Dequeue

The INTDEQ macro is used in conjunction with the INTENQ macro in
order to signal to the enqueuing-dequeuing module that a requestor,
having already been INTENQed and subsequently granted access to a
resource, has no further need of that resource. For every INTENQ macro
issued for a resource, there must be an INTDEQ macro subsequently
issued for the same resource. If, after the issuance of an INTDEQ
macro, the enqueuing-dequeuing module identifies a requestor as having
been previously INTENQed, and not having timed out, register 15 will
contain a return code of O. If, however, a previous INTENQ was not
issued, or if the previous INTENQ request timed out, register 15 will
contain a return code of 4.

10.2.4 INTENQ -- Engqueue

The INTENQ macro is used in conjunction with the INTDEQ macro to
serialize the use of a particular resource and, if necessary, delimit
the number of concurrent users of that resource. The INTENQ macro is
essentially a request to be placed upon a resource queue. Control is
not returned to the issuer of INTENQ until all previous requestors on
that queue have been given resource access. However, if the SHARE
parameter is coded, all previous requestors may or may mnot have
dequeued themselves by the time control is received. When a requestor
is placed upon a queue, all registers are saved, therefore register 13
must point to a save area. The INTENQ macro expansion uses registers
0, 1, 14 and 15. No return code is employed, except if the TEST option
is used.

10.2.5 INTPOST -- Post Internal ECB

The INTPOST macro is wused to post an ECB awaited via the
INTRNL=IPOST option of the DISPATCH or INTWAIT macros. This provides
the most efficient synchronization technique for two threads within the
same Intercomm task. INTPOST may also be used when INTRNL=YES was
specified on the DISPATCH or INTWAIT macros. If the object ECB is
already posted, then no over-posting will take place.

10.2.6 INTWAIT -- Temporarily Relinquish Control

The INTWAIT macro causes the issuing module to temporarily
relinquish control until either an ECB is posted or a time interval
expires. It assumes only that the caller's register 13 is pointing to
a save area.

115

Chapter 10 Intercomm Macros For
Assembler Programs

This macro is a convenient way to replace the following
frequently occuring coding sequence:

STM 14,12,12(13)
DISPATCH 'S’ ,label, (13),EXIT,{ECB=)
{ INTVL=)
label IR 13,1
M 14,12,12(13)

10.2.7 MODCNTRL- -Control Dynamically lLoaded Subroutines

The MODCNTRL macro requests loading or 1linking, and then
deleting, of separately linkedited user-written load modules. The
referenced subroutines or tables must be defined using the SUBMODS
macro within the REENTSBS table. Register 15 1is set to X'FFFFFFFF'
when the SUBMODS entry cannot be found, or if the requested module is
not available. No other return code is set in register 15. If the
module may be loaded above the 1lémeg line under XA, a requesting
program executing in 24-Amode is responsible for address mode switching
using the XASWITCH macro when the LOAD option is used.

10.2.8 PASS--Transfer Ownership of a Storage Area from an
Application to Intercomm

The PASS macro is used, in a system with Resource Auditing and
Purging, to protect an area of core acquired by an application thread
from being freed by the purge routine when the thread completes. That
is, the ownership is passed to the Intercomm system thread (thread 0).
(See also STORAGE macro, SYS parameter).

10.2.9 PMISNAP--Issue a Snap

The PMISNAP macro should be used by subsystems in place of the
IBM SNAP macro. It deducts the time taken by the snap operation from
total elapsed time, thereby avoiding a subsystem time-out which could
occur when taking a snap.

10.2.10 PMIWTO--Write to Operator

The PMIWTO macro generates a parameter 1list and call to the
Intercomm module WTOMOD, which centralizes all WTOs to the CPU console,
and/or the control terminal, and/or SYSPRINT, based on macro coding
options. Do not use the PMIWTO macro if issuing a multiline WTO; use
the IBM WTO macro.

116

<

Chapter 10 Intercomm Macros For
Assembler Programs

10.2.11 PMIWTOR--Write to Operator with Reply

The PMIWTOR macro generates a parameter list and calls the
Intercomm module WTOMOD. The program issuing the macro may regain
control after the reply takes place by issuing a DISPATCH or INTWAIT
macro to wait on the ECB specified in the macro parameters. If issuing
a multiline WIOR, do not use this macro; use the IBM WTOR macro.

10.2.12 SUBTASK- -Dynamic Subtasking

The SUBTASK macro allows part of a thread’s logic to execute as a
MVS subtask. The program linkage between the main Intercomm task and
the subtasked logic may be viewed as being equivalent to a call to a
subroutine. Registers 1 and 13 can be used as if a call was issued.
SUBTASK generates the instruction BALR 14,15 with Register 15
containing the ENTRY parameter value.

All registers are passed from the main task portion of the
application subsystem to the subtask. Intercomm suspends execution of
the SUBTASKing thread (via DISPATCH WAIT) until the subtasked code
completes, but other threads, perhaps of the same subsystem, may be
processed by the main task during this time. When the subtasked code
completes, register contents when the SUBTASKing thread is redispatched
depends upon what action the subtasked code took to save and restore
them.

The subtasked code can be a piece of code in the application
subsystem itself or an external subroutine. The main use of the
SUBTASK macro is to allow code which may impede Intercomm performance
to be executed in a subtask, instead of slowing the main task.
Usually, the code would include SVCs with implied WAITS in them. For
example, if an application subsystem wanted to issue a LOAD macro,
SUBTASK could be used to allow the main task to continue while the
subtask would be held up by MVS until the LOAD completed. The
Intercomm File Handler subtasks the issuance of QSAM GETS in this
manner.

A SUBTASK macro may not be issued by any program eligible for
loading above the l6meg line under XA.

10.2.13 USRTRACK-- Track User Data Using SAM

If the System Accounting and Measurement Facility (see QOperating
Reference Manual) is installed and activated for the subsystem (SYCTTBL
macro, SAM parameter), this macro can be wused to increment a
user-defined accumulator (for Data Base calls, for example) or to
invoke a user SAM exit routine.

117

Chapter 10 Intercomm Macros For
Assembler Programs

10.3 MACRO CODING EXAMPLES

See Chapter 3 regarding usage of macros by programs loaded above
the l6meg line.

10.3.1 DISPATCH Macro Usage

The following coding examples show several uses of the DISPATCH
macro.

In the first example, the programmer wishes to allow other tasks
to continue execution while this routine waits for the completion of an
event (an input/output operation, for example). Assume that the ECB
address has been previously loaded into general register 8:

*USING DISPATCH TO WAIT FOR AN EVENT

WAIT STM 2,12,28(13) SAVE REGISTERS
DISPATCH 'S’ DONE, (13) ,EXIT,ECB=(8)

DONE LR 13,1 RESTORE REGISTER 13
M 2,12,28(13) RESTORE REGISTERS

The routine in progress uses its own save area to store all necessary
registers before exiting, and restores the registers after regaining
control. The address of the program’s save area is the parameter
passed through the Dispatcher. This example is reentrant. Note that
this code could be replaced by an INTIWAIT macro.

In the second example, the programmer wishes to allow other tasks
awaiting CPU time to be dispatched, returning to this routine after the
execution of higher or equal priority tasks which were awaiting events
that may by now have been completed, or after the execution of equal or
higher priority tasks which this routine may have just previously
placed on the Dispatcher execution queue. The programmer wishes to
give this task the same priority it had received when it gained control
('S’ parameter):

*USING DISPATCH FOR TASK ROTATION

ROTATE STM 2,12,28(13) SAVE REGISTERS
DISPATCH 'S’ RESUME, (13),EXIT

RESUME LR 13,1 RESTORE REGISTER 13
IM 2,12,28(13) RESTORE REGISTERS

118

Chapter 10 Intercomm Macros For
Assembler Programs

In the third example, the programmer wishes to schedule the
execution of a subprogram which will be executed concurrently with the
program or after the program terminates, depending upon Dispatcher
scheduling. Assume that the address of a calling program parameter
list has been preloaded into general register 1:

*USING DISPATCH TO SCHEDULE SUBPROGRAM

L 0,=V(SUBPROG)
SCHED DISPATCH 'S’,(0),(1),SYS=YES
The execution of this program continues. The subprogram gains control

after this program returns to the Monitor, or if this program gives up
control in any way (I/O operation through the File Handler, task
rotation, etc.). The SYS parameter ensures that the dispatched routine
will not be purged from its execute queue if the issuing program
completes before the subprogram is given control. Note also that the
passed parameter list, and the parameter values, may not be in dynamic
storage owned by the issuing program (see also STORAGE and STORFREE
macros, SYS parameter). The dispatched subprogram will receive control
in thread zero (0), and execute as a system program.

In the fourth example, the programmer does not wish to continue
processing until three events (ECBl, ECB2, and ECB3) have all
completed. Control returns to the issuing program when all three ECBs
have been posted:

*USING DISPATCH FOR A MULTIPLE WAIT
MULTWAIT DISPATCH 'S’ ,COUNT, (13),ECB=ECB1
DISPATCH 'S’ COUNT, (13) ,ECB=ECB2
DISPATCH 'S’ COUNT, (13) ,ECB=ECB3
LA 12,3 SET COUNTER TO 3
WAIT STM 2,12,28(13) SAVE REGISTERS
DISPATCH EXIT EXIT
COUNT LR 13,1 RESTORE REGISTER 13
IM 2,12,28(13) RESTORE REGISTERS
BCT 12,WAIT DECREMENT COUNTER &
BRANCH NOT ZERO

119

Chapter 10 Intercomm Macros For
Assembler Programs

10.3.2 PASS /CATCH Macro Usage

One subsystem acquires (and initializes) an area of core (by
issuing a STORAGE macro) and passes the address of that core via
message switching to another subsystem.

Subsystem A Subsystem B

*

GET STORAGE ADDRESS FROM

. * INPUT MESSAGE
STORAGE LEN=256,ADDR=(R1), L R7,area-address
LIST=PARMSAVE CATCH LEN=256 ,ADDR=(R7)

LR R11,R1

*

* INITIALIZE STORAGE AREA PROCESS AS IF THE AREA HAD

* BEEN ACQUIRED BY THIS SUB-
* SYSTEM

* CREATE MESSAGE FOR SUBSYSTEM
* B WITH ADDRESS OF ACQUIRED
* CORE IN THE MESSAGE TEXT

PASS LEN=256 , ADDR=(R11)
* QUEUE THE MESSAGE

CALL MSGCOL, STORFREE LEN=256,ADDR=(R7)

NOTE: the PASS macro would be redundant if the storage was acquired
using the SYS=YES parameter. However, if the subsystem program
checked or timed out, the acquired storage would not be freed
and would be permanently allocated. Use the PASS and the call
to MSGCOL at the end of the program (just before the RTNLINK).

120

Chapter 10 Intercomm Macros For
Assembler Programs

10.3.3 INTENQ/INTDEQ Macro Usage

One subsystem updates a table entry in USERSPA. During the time
of this update, other subsystems should not be allowed access to the
table. All subsystems must use the same resource identification. The
update subsystem has exclusive control during the time of the update;
the access subsystem merely tests to ensure that exclusive control is
not in effect before accessing the updated table area, as follows:

Update Subsystem Access Subsystem

* ENQUEUE RESOURCE .
LA R6,TABLENQ * TEST IF RESOURCE ENQUEUED
INTENQ (R6) LA R4, TABLENQ
. INTENQ (R4)

. INTDEQ (R&4)

* PERFORM TABLE UPDATE * ACCESS TABLE DATA

* DEQUEUE RESOURCE
INTDEQ (R6)

TABLENQ DC CL16'USERTABLE’ TABLENQ DC CL16'USERTABLE’

10.3.4 MODCNTRL Macro Usage

A user routine for error processing (ERRORRTN) is infrequently
used. Therefore, it might be defined in REENTSBS as a routine eligible
for dynamic load. A subsystem calling this routine might be coded as
follows:

*LOAD or LINK must be paired with DELETE

MODCNTRL MODNAME=ERRRTN, ACTION=LOAD
LTR R15,R15
BNZ NOLOAD
IR R15,R1 address of routine
CALL (15), (parameters-for-ERRORRTN) ,VL ,MF=(E, list)
MODCNTRL MODNAME=ERRRTN, ACTION=DELETE

NOLOAD DS OH

ERRRTN DC CL8'ERRORRTN'

121

Chapter 11

SAMPLE PROCESSING PROGRAMS

The sample program SQASMA, shown in Figure 48, demonstrates
coding of a BAL subsystem which is either resident or dynamically
loadable below the 1l6meg line (if MVS/XA or ESA). The program
processes an inquiry transaction (MURA) containing a part number and a
warehouse number for a stock status display. MMU is used to transform
the incoming message into a fixed field format. The part number is
transformed into a RBN for accessing a BDAM part description file
(PARTFILE). The RBN and a part description record area are passed as
parameters to a called BAL subroutine SQASMB, illustrated in Figure 49,
which also resides below the 1lémeg line. The subroutine retrieves the
requested record from PARTFILE and passes back the File Handler return
code to the calling subsystem via register 15.

Together, the part number and warehouse number provide a VSAM key
for accessing a stock status file (STOKFILE). The File Handler is used
for accessing both files. MMU is wused for formatting an output
display. Error messages, for conditions such as non-existent or
erroneous warehouse or part numbers, or file I/0 errors, are built
within the program and formatted by MMU using an error map area.

The MSGHDRC source text member defining the Intercomm message
header fields is COPY'd from the Intercomm source library (SYMREL) by
the Assembler. The ASMLOGCH source text member used for terminal
attribute and command override for MMU processing, and the symbolic map
areas, are also copied into the program.

All required table entries, JCL, sample input messages and
testing procedures, plus sample execution output, are illustrated in
Chapter 12, "Subsystem Testing." The subsystem code used in the
SYCTTBL macro to identify the sample subsystem is RA. Intercomm’s BTAM
simulator is used for testing. Test messages are included to test as
many error combinations as possible. Chapter 13 illustrates a similar
subsystem (without the subroutine) coded for the same purpose but using

the Edit and Output Utilities, a MSGCOL call, and Test Mode for
testing.

123

Chapter 11

Sample Processing Programs

2 *¢ SAMPLE REENTRANT ASSEMBLER SUBSYSTEM USING THE FILE HANDLER **
3 #+ Y0 ACCESS A VSAM FILE AND SUBROUTINE SQASMB TD ACCESS A BDAM **
4 *+ FILE. MMU 1S USED FOR INPUT AND OUTPUT MAPPING AND MAPPING **
5 *#* QOF ERRCR MESSAGES. **
6 ** - REGISTER USAGE - .
7 ** R2 I/0 MAP **
B ** R3 WORK **
9 #* R4 RETURN CODE **
10 ** R5 ERROR MAP **
11 ** R6 BAL INSTRUCTIONS ks
12 **+ R7 BAL INSTRUCTIONS **
13 # R8 PARMS, s
14 ** R9 INPUT MESSAGE .
15 #* RA SPA %
16 ** RB SPAEXT **
17 ¥x RC BASE REGISTER **
18 ** RD SAVE AREA (WORKAREA DSECT) **
19 *» .
21 PRINT NOGEN

22 SQASMA CSECT

23 LINKAGE BASE=(RC)ySPA=(RA)JLEN=DYNLENyGPREQ=REGA)

MSG=(RS) yPARM= (RS}

25+ PRINT NOGEN

62+ PRINT NOGEN

67+ PRINT GEN

68+ PUSH PRINT TURN OFF PRINT GENERATICN

69+ PRINT NOGEN

765+ pPOP PRINT RESUME PRINT GENERATION
Figure 48, Sample Reentrant Subsystem (Assembler) (Page 1 of 15)

124

Chapter 11 Sample Processing Programs
812+ PRINT NOGEN
913 USING INMSGyR9
914 USING WORKAREA,RD
515 USING STKSTATyR2
916 USING SPAEXTysRB
917 XR R4yR4 INITIALIZE RETURN CODE
918 LA RSyWORKLEN+MAPL1L(yRD) ADDRESS ERROR MAP
919 L RBySPAEXTAD
520 BAL R6yMOVEHDR MCVE INP HDR TO OUTP HDR
921 BAL R6yMAPIN MAP AND THEN FREE THE INPUT MSG
922 LA REyPRERTN WHERE TO RETURN
923 CcLI MCW,C*3" IF A FIELD IS IN ERROR
G524 BE INVINPUT SEND ERRCR MSG
925 CLI MCHWsC'O" IF MAPPING NOT OK
926 BNE MAPER SEND ERROR MSG
927 BAL R6yCLEARMAP CLEAR THE MAP
G28 BAL R6yRDPARTFL PREPARE TO READ PARTFILE
929 BAL R6ésBDAMREAC READ A RECORD
930 ™ FHFLAGyBDRDOK READ OK?
931 B2 PRERTN NO
932 BAL R6yRDSTKFIL PREPARE TO READ STOCK FILE
933 BAL R69VSAMREAD READ A RECORD
934 ™ FHFLAG, VSRDOK READ 0OK?
935 B2 PRERTN NO
36 BAL R6yMAPOUT PREPARE OUTPUT MAP
937 CLI MCwWsC'O" 0K?
938 BE PRERTN YUP
§39 BAL R6yMAPER NO..SEND ERROR MSG
940 PRERTN DS OH
941 ™ MAPFLG o NOMAP UNABLE TO SEND MAP?
942 BC RETURN YES = JUST FREE MAP AND GO
943 LA R69yRETURN WHERE TO RETURN
944 T™ MAPFLGyMAPERR ARE WE SENDING AN ERROR MAP?
G545 BC ERMAPEND YES - GO DO IT
946 BAL R&y GDMAPEND SEND GOOD MAP
947 RETURN DS OH
G48 *»+ FREE INPUT MAP AREA AND RETURN
G949 xC MCWsMCW CLEAR MAP CONTROL WORD
950 CALL MAPFREE s (MCWyIOGRP, IOMAP ADDRMSG9CMSGHTID),
YLyMF=(EyCALLIST)
965 RTNL INK ADDR=(RD)yLEN=DYNLEN,RC=(R4)
975+ PRINT NOGEN i

1C11+*9GETSPA = V7.0 = 11/76 =~ SM

Figure 48.

Sample Reentrant Subsystem (Assembler) (Page 2 of 15)

124.1

Chapter 11

Sample Processing Programs

1035
1036
1037
1038
1039
1040

1042
1043
1044
1045

1060
1061

1C63
1C64
1C65
1066

1081

1083
1084
1C85
1C86
1c87
1C88

1090

MOVEHDR DS
MvV(C
Mvc
MVC
MVC
BR

MAPIN DS
ST
XxC
CALL

BR

CLEARMAP DS
xC
MVI
CALL

BR

ROPARTFL DS
PACK
cvs
ST
MvVC
BR

BDAMREAD DS

OH

OMSGHTIDyMSGHTID

I0GRPy IOGRPNM
I0MAP, IOMAPNM
ERMAP 9 ERMAPNM
R6

OH
R9,ADDRMSG
MCW(4)yMCW

SAVE TID

MOVE MAP GROUP NAME TO W
MOVE MAP NAME

MOVE ERR MAP NAME

STORE INPUT MSG ADDRESS
CLEAR MAP CONTROL WORD

MAPINy (MCB»I0GRP 9 IOCMAP 2 ADDRMSGyMCW) » VL

MF={EsCALLIST)
R2yADDRMSG
R&

OH
MCK(4) yMCH
MCWOPT4,C'A?

MAP INPUT MESSAGE
MAPPED MSG DATA ADDRESS

CLEAR MAP CONTROL WORD
ONLY CLEAR ATTRIBUTE BYT

MAPCLRy (MCWyIOGRP o9 IOMAP yMAPL14OMSGHTID) yVLy

MF=(EyCALLIST)
R6

OH
DWORDyRBNBYTE
R3,DWORD
R3yRBNWORD
CURRFILEsDDPART
R6

OH

PACK RBN #

AND CONYERT TO BINARY
STORE RBN

DDNAME OF BDAM FILE

ORK AREA '
" [[]

ES

124.2

1091 ** LUSE MODCNTRL MACRC TO LINK TO SCASMB SUBRTN WHICH READS A BDAM FILE
1C92 MVC SUBNAME s SQASHB MCVE SUBRTN NAME INTGO WORK AREA
1¢63 MODCNTRL (PARTREC,RBNWORD)sVLyMF={E,CALLIST), -
ACTION=L INKyMOONAME=SUBNAME
1108 LTR RF o RF DID SQASMB GET CONTROL?
1109 BM NOSUBRTN NO
1110 8 *+4 (RF) BRANCH ON RETURN CODE
1111 B SUBOK 0 RC
1112 B TOERROR 4 RC
1113 B NOTFOUND 8 RC
1114 B NODD 12 RC
1115 SUBGK DS OH
1116 CLC RECPIN,PARTND CORRECT RECORD?
1117 BNE NOQTFOUND NO
1118 MVC PRTDATA,RECDES MOVE CATA TO OQUTP MS
1119 AvC ORDUNT4RECUNT » " now "
1120 MVC PRTPRLC,RETPRC " " "o »
1121 (13 FHFLAGBDREOK SHOW EVERYTHINGS OK
1122 BR Ré
Figure 48. Sample Reentrant Subsystem (Assembler) (Page 3 of 15)

v

Chapter 11

Sample Processing Programs

1124
1125
1126
1127
1128
1129

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

1155
1156
1157

1171

1173
1174
1175
1187

1189
1190
1161
1202

ROSTKFIL DS
Mve
MVC
MvC
MvC
BR

VSAMREAD 0S

DORLSE DS

VSREAD2 DS
CALL

BR

SELECT DS
CALL
BR

RELEASE DS

caLL
BR

OH
CURRFILE,DDSTOCK
RECWHS » WHSNO
RECPNOPARTNO
KEYFIELDSKEYFLD
R6

OH

EXTDSCT(48)4EXTDSCT

R79SELECT
FHSTAT1,.C'S'
NODD
R74VSREAD2
FHSTAT1,C'1"
IDERROR
FHSTAT1.C'2'
VSRECNF
FHFLAG,VSRCOK
WHSLOCsRECKLC
STKLEV,RECLEV
DATEDIT,RECLDT
R7yEDITDATE
LEVDATE,DATEMGVE
STKORD yRECORD
DATEDIT,RECODT
R7,EDITDATE
ORDDATE+DATEMOVE
OH

R7sRELEASE

R6

OH
FHSTAT FHSTAT

GET DDONAME GF FILE
FIND KEY OF RECORD WE WANT

AND MOVE IT INTO KEY AREA

CLEAR IT
GD SELECT THE FILE
NO DD?

READ A RECGRD

I1/0 ERROR?

YES

RECORD NOT FOUND?

NOT FOUND - GO BUILD ERROR MSG
INDICATE READ WORKED

BUILD OUTPUT MESSAGE

MAKE DATE PRINTABLE

MAKE DATE PRINTABLE

GO RELEASE THE FILE

CLEAR FH CONTROL WORD

GETVy (EXTDSCToFHSTATySTOCKRECSKEYFIELD)

VLoMF=(E,CALLIST)

R7

OH
FHSTATsFHSTAT

RETURN TO SUBRTN

CLEAR FILE HANDLER CONTROL WORD

SELECTy (EXTDSCTsFHSTATyCURRFILE) yVLyMF=(ECALLIST)

R7?

OH
FHSTATyFHSTAT

RETURN TO SUBRTN

CLEAR FILE FANDLER CONTROL WORD

RELEASEy (EXTDSCToFHSTAT) yVLyMF=(EyCALLIST)

R7

RETURN TO SUBRTN

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 4 of 15)

124.3

Chapter 11 Sample Processing Programs

1204 EDITDATE DS OH EDIT DATE TO MM/DD/YY FORM
1205 nvc DMYEARsDEYEAR

1206 MVC SLASH1,SLASH

1207 MVC DMDAY,DEDAY

1208 MVC SLASHZ9SLASH

1209 MvC DMMC,LDEMO

1210 BR R? RETURN TGO SUBRTN

1212 GDMAPEND DS OH

1213 xC MCAWyMCW CLEAR MAP CONTROL WORD
1214 MVI MCWOPT2,C'C! TRANSMIT ENTIRE MSG
1215 BAL R7yMAPEND GO CALL MAPEND

1216 CLI MCWsC'8" MAPEND SUCCESSFUL?
1217 BER R6 YES

1218 BAL R7 yMAPURGE NO..PURGE THE MAP

1219 ST R6ySAVE SAVE THE LINK REGISTER
1220 BAL R6yMAPER PREPARE AN ERROR MSG
1221 BAL R6yERMAPEND SEND THE ERROR MSG
1222 L R63SAVE RESTORE LINK REGISTER
1223 BR R6 RETURN TG MAINLINE

1225 ERMAPEND DS OH

1226 XC MCWyMCHW CLEAR MAP CONTROL WORD
1227 MVI MCWOPT2,C*C! TRANSMIT MS6

1228 MVI MCWOPT3,WRITEL OVERWRITE EXISTING SCREEN
1229 BAL R74yMAPEND GO CALL MAPEND

1230 CLI MCWsC'8" SUCCESSFUL?

1231 BER R& YES

1232 BAL R79yMAPURGE NO..PURGE THE MAP

1233 LA R4,8 RETURN CODE = 8

1234 BR RE RETURN TO MAINLINE

1236 MAPEND DS OH
1237 CALL MAPEND, (MCEByOoMCW) 9 YL 4 MF=(E4CALLIST)
1249 BR R7 RETURN TO SUBRTN

1251 MAPURGE DS OoH
1252 CALL MAPURGEs(MCB) yVLyMF=(E,CALLIST)
1262 BR R7 RETURN TO SUBRTN

1264 MaAPOUT DS OH

1265 xC MCWyMCW CLEAR MAP CONTROL #ORD

1266 CALL MAPOUTy(MCByIOGRPy ICMAPIMAPLIMCUHONSGHTIN)
VLsMF=(ELCALLIST)

1282 BR R6 RETURN TO MAINLINE

Figufe 48. Sample Reentrant Subsystem (Assembler) (Page 5 of 15)

124.4

Chapter 11 Sample Processing Programs

1284 ****+ ERROR ROUTINES %%+

1285 *

1286 *

1287 *

1288 DROP R2

1289 USING ERRMAP4R5

1290 INVINPUT DS OH

1291 cLC PARTNOT-MAP1(19R2)yWHSNOT-MAPL1(R2) BOTH NON-NUMERIC?
1292 BNE ONLY1 NO = CNLY 1 IS

1293 MVC MSG74MSGI MOVE IN APPROPRIATE MSG
1294 B GOSNDMSG MAP THE ERROR MSG

1295 ONLY1 0s OH

1296 MvC MSG74MSGG MOVE IN APPROPRIATE MSG
1297 BH GOSNDMSG PARTNO NOT NUMERIC

1298 MVC MSG7 yMSGH WHSNO NOT ANUMERIC

1299 GOSNDMSG DS OH

1300 LA ERRMSGy INVINMSG MOVE MSG INTO MAP

1301 BAL R79ySENDERR GO CALL MAPOUT

1302 BR R6 RETURN TO MAINLINE

1304 NOSUBRTN DS OH

1305 Mv_C MSGByMSGJ BUILD ERRGCR MSG

1306 MVC NOFILE,CURRFILE

1307 MVvC MSG9 s MSGK

1308 MVv_C ERRMSG(L*NCSUBMSG) yNOSUBMSG MOVE INTO MAP
1309 BAL R74SENDERR DO MAPOUT

1310 BR R6 RETURN TO MAINLINE

1212 VSRECNF DS OH

1313 MVC MSG3ysMSGC NOT FOUND = BUILD ERROR MSG
1314 MVC MSG4yMSGD

1315 MYC NOWARENOsPARTANC-MAPL1(R2)

1316 MYC NOWARWHS y WHSNO-MAPL1(R2)

1317 MVC ERRMSG(37) yNOWARMSG MOVE MSG INTO ERROR MAP
1318 BAL R75SENDERR GO MAP ERROR MESSAGE

1319 B DORLSE

1321 NOTFOUND DS OH

1322 MVC MSGlyMSGA BUILD ERROR MSG

1323 MVC MSG2,MS5GB

1324 MVC NOPART4PARTNO-MAP1(R2) MCVE IN MISSING PART #
1325 MVC ERRMSG(L*NOPRTMSG) yNOPRTMSG MOVE INTO MAP

1326 BAL R79ySENDERR DO MAPOUT

1327 BR RE RETURN TD MAINLINE

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 6 of 15)

124.5

Chapter 11 Sample Processing Programs
1329 NODD DS OH
1330 MVC CANCGDE»=CL15'NO DD FOR FILE'
1331 B CONTIN
1332 IOERROR DS OH
1333 (134 FHFLAGy IOERR INDICATE AN IO-ERROR
1334 MVC CANCODE,=CL15'I0 ERROR ON'
1335 CONTIN DS OH
1336 MVvC MSG5yMSGE MOVE IN APPROPRIATE MSG
1337 MVvC CANFLNMyCURRFILE MOVE IN FILE NAME
1338 MVvC ERRMSG(L 'CANMSG) yCANMSG MOVE INTO MAP
1339 BAL R79SENDERR DO MAPOUT
1340 ™ FHFLAGyBDRDOK+IOERR IF IOERROR CN VSAM FILE
1341 B8O DORLSE THEN GO RELEASE IT
1342 BR R6 RETURN TO MAINLINE
1344 MAPER DS OH
1345 MVC MSG6yMSGF MOVE IN APPROPRIATE MSG
1346 MVC ERRTAGyMCHW MCVE BYTES 1 € 2 INTO MSG
1347 MVC ERRMSG(L'MAPERMSG) yMAPERMSG MOVE INTO MAP
1348 BAL R79SENDERR DO MAPOUT
1349 BR R6 RETURN TO MAINLINE
1351 SENCERR DS OH
1352 XC MCWyMCHW CLEAR MAP CONTROL WORD
1353 01 MAPFLGyMAPERR INDICATE MAPOUT FOR ERROR MAP
1354 CALL MAPOUT,y(MCByIOGRPyERMAP,JERRMAPyMCWyOMSGHTID),
VLyMF=(EsCALLIST)
1370 CLI MCksC'O"* MAPOUT CK?
1371 BER R7 YES
1372 LA R4,8 NO - RETURN CODE = 8
1373 01 MAPFLGyNOMAP SHOW NO MAP SENT
1374 BR R? RETURN TO SUBRTN

Figure 48.

Sample Reentrant Subsystem (Assembler) (Page 7 of 15)

124.6

Chapter 11

Sample Processing Programs

.

1376 PRINT GEN

1377 *» CONSTANTS

1378 SLASH DC c'/'

1379 DDSTOCK ©DC C'STOKFILE'

1380 DDPART DC C*PARTFILE®

1381 IOGRPNM DC CLB'STKSTAT!

1382 IOMAPNM DC CL8'MAPL!

1383 ERMAPNM DC CL8'ERRMAP'

1384 SQASMB DC CL8*SQASMB!*

1385 MSCTBL DS 0CL206

1386 MSGA ocC C'PART NUMBER !

1387 MSGB DC C' NOT FOUND.'

1288 MSGC nc C'PART '

1389 MSGC DC C' NOT FOUND IN WAREHOUSE '

1390 MSGE DC C's MESSAGE CANCELLED.'

1391 MSCF DC C'MAP ERROR MCW IS '

1392 MSGG DC CL50"INVALID DATA: PARTNO MUST BE NUMERIC!
1393 MSGH DC CL50'INVALID DATA: WHSNO MUST BE MNUMERIC'
1394 MSCI bC CL50'INVALID DATA: PARTNO AND WHSNC MUST BE NUMERIC!
1295 MSGJ DC C'SUBROUTINE TO READ !

1396 MSGK DC C' NOT AVAILASBLE'

1397 CCPY ASMLOGCH SYMBOLIC CONTROL CHARS AND ATTRIBS.
1399 * LOGICAL ATTRIBUTE BYTE DEFINITIONS FOR IBM3270
1400 *

1401 UAN EQU 1 UNPROT/ALPFA/NORMAL

1402 UANMDT EQU 2 UNPROT/ALPHA/MDTON

1403 UANMNSEL EQU 3 UNPROT/ALPHA/SELPEN

\ 1404 UANMDSEL EQU 4

1405 UAHSEL EQU 5

14C6 UAHMDSEL EQU 6

1407 UAX ECU 7

1408 UAXMDT EQU 8

1409 UNN EQU 9

1410 UNNMDT EQU 10

1411 UNNSEL EQU 11

1412 UNNMDSEL EQU 12

1413 UNFSEL EQU 13

1414 UNFMDSEL EQU 14

1415 UNX EQU 15

1416 UNXMDT EQU le

1417 PAN ECU 17

1418 PANMDT EQU 18

1419 PANSEL EQU 19

1420 PANMDSEL EQU 20

1421 PAHSEL EQU 21

1422 PAHMDSEL EQU 22

1423 PAX ECU 23

1424 PAXMDT EQU 24
- 1425 PSN EQU 25

1426 PSAMDT EQu 26

1427 PSKNSEL EQU 27

1428 PSNPDSEL EQU 28

1429 PSHSEL ECU 29

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 8 of 15)

124.7

Chapter 11 Sample Processing Programs

1430 PSHMDSEL EQU 30

1431 PSX EQU 31
1432 P5XPDT EQU 32
1433 SUPR ECU 33

1435 + LOGICAL COMMAND CHARACTER DEFINITIONS FOR IBM3270
1436 *

1437 WRITE1 EQu 1

1438 ERASWRIT ECU 2

1439 ERASWRAL EQU 3

1441 * LOGICAL CONTROL CHARACTER DEFINITIONS FOR 1B8M3270
1442 *

1443 RMDT ECU
1444 RKEYBD EQU
1445 RMDTKEYB EGU
1446 ALARM EQU
1447 ALRFMRMDT EQU
1448 ALRNMRKEY ECU
1449 ALRMRMKY ECU
1450 PRNTNL EQU
1451 PRAT40 EQU
1452 PRNT64 EOU 10
1453 PRNT80 EQU 11
1454 PRNLRMDT EQU 12
1455 PR4ORMDT EQU 13
1456 PR64RMDT EQU 14
1457 PRBCRMDT EQU 15
1458 PRNLRKEY EQU 16
1459 PR4ORKEY ECU 17
1460 PR64RKEY ECU 18
1461 PRBORKEY EQU 19
1462 PRNLRMKY EQU 20
1463 PR4CRMKY EQU 21
1464 PRE4RMKY ECU 22
1465 PRBORMKY EQU 23
1466 PRALALRM EQU 24
1467 PR4CALRM EQU 25
1468 PRE4ALRM EQU 26
1469 PRBOALRM EQU 27
147C PRNLARFMD EQU 28
1471 PR4CARMD EQU 29
1472 PRE4ARMD EQU 30
1473 PRBCARMD EQU 31
1474 PRNLARKY EQU 32
1475 PR4OARKY ECU 33
1476 PRG64ARKY EQU 34
1477 PRBCARKY EQU 35
1478 PRNLAMKY EQU 36
1479 PR4CAMKY EQU 37
1480 PRO64AMKY ECU 38
1481 PRBOAMKY EQU 39
1482 NULL EQU 40

OO~y N> WN-

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 9 of 15)

124.8

Chapter 11 Sample Processing Programs

1484 * LOGICAL ATTRIBUTE BYTE DEFINITIONS FOR DS40
1485 * -

1486 * UAN FCR DS40=UNPROT/ALPHA/NORMAL

1487 * UANMDT FOR DS40=UNPROT/ALPHA/MDTON

1488 * UANSEL FOR DS40=UNPROT/ALPHA/SELPEN

1490 * LOGICAL COMMAND CHARACTER DEFINITIONS FOR DS40
1491 *

1492 * WRITEl FGR DS40=HOME CURSOR ONLY (ESCsH)

1493 * ERASWRIT FOR DS40=ESCyR=HOME CURSORsCLEAR SCREEN
1495 » LOGICAL CONTROL CHARACTER DEFINITIONS FOR DS40
1496 *

1498 =* LOGICAL ATTRIBUTE BYTE DEFINITIONS FOR IBM3270P
1499 *

1501 » LOGICAL COMMAND CHARACTER DEFINITIONS FOR IBM3270FP
1502 =*

1504 * LOGICAL COANTROL CHARACTER DEFINITIONS FOR IBM3270P
1505 »*

1506 NL EQU 51
1507 FF EQU 52
1508 CR EQU 53
1509 SI EQU 54
1510 DC C'END OF WORKING STORAGE®

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 10 of 15)

124.9

Chapter 11

Sample Processing Programs

1512 LTORG

"1513 sY{PMIRTLR)

1514 =V(DYNLLOAC)

1515 =CL15'N0O CC FCR FILE'

1516 =CL15'10 ERROR CN'

1517 INMSG DSECT

1518 COPY WSGHDRC MESSAGE HEADER DSECT

1519 *

1520 * MESSACE HEADER LAYCOUT

1521 * RERRRBRFRES RN RRR RS

1522 # LAST REVISION 10/20/82-RELEASE 9.C

1523 » LAST REVISION 07/30/85=LU 6.2 SUPPORT

1524 *

1525 MSCFLEN DS BL2 LENGTH OF MESSAGE

1£26 MSGFQPR DS BL1 CTAM/BTAM 1/0 PREFIX BLANK IF SS MSG

1527 MSGEFRSCH DS XLl HI-ORDER BYTE OF RECEIVING SUBSYSTEM CODE

1528 MSE&FRSC DS cL1 RECEIVING SUBSYSTEM CODE

1529 MSGHSSC DS CL1 SENDING SUBSYSTEM CODE

1530 MSGHMMN DS 0BL3 MFONITOR SEQUENCE NUMBER X1078

1531 MSGHTXTL DS BL2 RECORD LENGTH (FILE RECOVERY) X1078

1532 MSGHKEYL DS CL1 KEY LENGTH (FILE RECOVERY) X1078

1533 MSGHDAT DS oCcLé CATE (YY.CDD) X1078

1234 MSCGERYR DS CL2 YEAR X1078

1535 MSCGFTHRD DS BL1 THREAD NUMBER X1078

1536 MSGHDAY DS CL3 DAY X1078

1537 MSGHTIM DS CcLs TIME (HH.MM.SS)

1538 ORG MSGHTIM FIELDS USED IN SCANVERB DURING JA

1539 + CONSTRUCTION CF MESSACE IN LINE HANDLERS JA

1540 MSGFVFLG DS 8 FLAGS JA

1541 MSGHVYFND EQU x'80" VERB WAS ANALYZED BEFORE CALLING BTSEARCH JA

1542 MSGhVBA DS AL3 A(BTVERB ENTRY) IF MSGHVFND FLAG ON JA

1543 ORG MSGHTIM+L'MSGHTIM JA

1544 MSGFTID DS CLS TERMINAL ID (AAANN) AAA=CITY,NN=DEVICE ID

1545 MSGHMRDX DS ox INDEX TO MULTIREGION MCT ENTRY

1546 MSGHCON DS BL2 COMPANY NUMBER

1547 * SPECIAL VALUES CF MSGKCON JA

1548 MSGRCFLA EQU X'BBO1" FLUSF=ALL CHASER MSG Ja

1549 MSCFCP12 EQU X*'BBO3" 3270 COPY FORM 1 (REM.=SAME CU)s2 (3275-WR) JA

1550 * FSGHCPl2: COPY TYPE 1 OR 2y ISSUING TERPM REQUEST RESPONSE SM1124

1851 MSGFCN1l2 EQU X'BB13? COPY TYPE 1 OR 2y NC RESPONSE TO ISSUER SM1124

1552 MSCHCP3 EQU x'apo2’ 3270 COPY FORM3 (READ FULL BUF REQUEST) JA

1553 MSGHR12G ECU X'8804" I8M129 CARD READER RESET I/P INHIBITED MSG JA

1554 MSGHFEVR ECU X'BB' SET IN MSGHCCN+1 OF RESPCNSES TO F.E.VERBS JA

1555) ORG MSGHCON+1

1556 MSGHRETN DS BL1 RETURN CODE.

1557 MSGRCONV EQU cece 30 LDGGED FROM CONVERSE.

1558 MSGHFLGS DS OFL2 MESSACE INDICATOR FLAGS SM1le6

1559 MSCFFLG1l DS FL1 MESSACGE INDICATOR FLAG-BYTE-1 SM11¢€6

1560 MSGHFSDR ECU xtao' ASK FOR DEFIANITE RESPONSE VTAM

1561 MSGHFSER EQU X'40" ASK FOR EXCEPTION RESPONSE VTAM

1562 * IF MSGHFSDR+MSGHFSER=0 THEN NC RESPONSE VTAM

1563 * SPECIFICATIONy USE OTHER SOURCES TO DETERMINE. YTAM

1564 MSGHFRSP ECU MSGHFSDR+MSGHFSER MASK TO CHECK 'SRESP? VTAM

1565 MSGHFSR1 ECU x'zo0' 1l => RESPONSE TYPE 1 (FME) VTAM

1566 MSGFFSR2 EQU x'10' 1 => RESPONSE TYPE 2 (RRN) VTAM
Figure 48. Sample Reentrant Subsystem (Assembler) (Page 11 of 15)

124.10

Chapter 11

Sample Processing Programs

1567 MSGHFSEB EQU x'os! SEND EB WITH THIS MESSAGE VTAM
1568 MSGKENCON ECU X'04" DO NOT CANCEL CONVERSATION TIMEOUT XM0215
1569 MSGHFNF3 ECU x'cz2' 1 ~> DONT WRITE X'F3' LCG RECORD FOR MSG
1570 MSGHFRLS ECU X'o1' RELEASE NEXT CUTPUT MESSAGE SM1166
1571 » SM1166
1572 MSCGFFLG2 DS FL1 MESSAGE INCICATGR FLAG=-BYTE-2 SM11¢€6
1573 MSGHFTRM EQU x'80" MSGHADDR PCINTS TO SOURCE BTERM/LUC SM1166
1574 MSGHSRST ECU X'40°" SERIALLY RESTARTED MESSAGE INDICATOR (9.0) CH
1575 MSGRSYSC EQU X'z2o0! CUEUE THIS MSC TD A 6.2 SESSION EVEN 51MD
1576 * IF NO CONVERSATION CURRENTLY ACTIVE 51MD
1577 MSGHFMHI EQU x'10' THIS MESSAGE CONTAINS 6.2 FMHOR S1MD
1578 * Js
1579 MSCHBMN DS BL3 BTAF SEQUENCE NUMBER Js
1580 * Js
1581 MSGFPMN EQU *
1582 MSGHSSCH DS XLl HI/ORDER BYTE OF SENDING SUBSYSTEM
1583 MSGHUSR DS XLl AVAILABLE TO USER
1584 ORG MSGHUSR Js
185 MSCHADDR DS AL3 ADDRESS OF AN AUXILIARY AREA (FE ONLY) Js
1586 ORG MSGHTID FOR FILE RECOVERY X1078
1567 MSGHBKID DS cLs BDAM BLOCK ID (FILE RECCYERY) X107e
1568 MSGRDD DS cLs FILE DDNAME (FILE RECOVERY) X1078
1589 MSCKLOG DC cro! LOG TYPE CODE —-SEE MONITOR WRITEUP
1590 RVZICNE EQU x'go0! FILE REVERSAL ENTRY,
1561 RCZONE EQU X'90" FILE RECREATION ENTRY
1592 MSGHXFIL EQU RVZONE+15 CHECKPOINT RECORD.
1593 RCSTUP EQU RCZONE+15 STARTUP RECORD.
1594 MSGHRQST ECU Xtao0! LOGPRCC REQUEUEING STARTED.
1595 MSGHRAND EQU X'Al? LOGPROC REQUEUEING ENDED.
1596 MSGHRBUF DS OH BUFFER LENGTH (BDAM FILE RECOVERY) X1078
1597 MSGHMACR DS 0BL1 FILE FANDLER MACRO # JT7
1598 MSGHBLK DS CL1 BLANK (BINARY ZERQ)
1£99 WMSGFVMI DS BL1 VERB/MSG IC
1600 MSGFFFVM EQU Xte7' SPECIAL ¥YMI FCR FULLY FORMATTED MSGS JA
1601 DDQVMI EQU X'EE! SPECIAL VMI FCR DYN. DATA QUEING MM
1602 *
1€03 MSGHEND ECQU *
1¢04 MSGFLNTH EQU MSGHEND=-MSGHLEN LENGTH OF MESSAGE HEADER
1£05 +#

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 12 of 15)

124.11

Chapter 11 Sample Processing Programs
1607 WORKAREA DSECT
1608 SAVE DS 18F
1609 CALLIST OS 6F
1610 DWCRD 0s D
1611 *
1612 ECB DS F ‘
1l€13 *
1€14 ADDRMSG DS A
1615 OMSGHTID DS CLS
1616 RECAREA DS oCL100
1€17 PARTREC DS 0CL100
1€18 PARTDATA DS 0CL64
1€19 RECPIN DS CLS
1620 RECDES DS CL54
1621 RECLNT DS CLS
1622 RECPRC DS PL4
1623 RECMFR# DS CL15
1624 DS cL17
1625 STCCKREC DS oCcL80
1¢26 DELECHR DS X
1627 KEYFLD DS ocLS8
1628 RECKWHS DS XxL3
1€29 RECPND DS XL5
1630 DS xL28
1€¢31 RECSTKDT DS 0CL43
1632 RECWLC DS XxLz23
1633 RECLEV DS PL4
1634 RECLDT DS XLé6
1635 RECCRD DS PL4
1636 RECCOT DS XL6
1637 STATWC DS OF
1638 FFSTAT DS OF
1€39 FHSTAT1 DS X
1640 FHSTAT2 DS X
1641 DS H
1642 EXTDSCT DS 12F
1643 RBNWORD DS OF
l644 DS XL3
1€45 RBNWRC DS X
1646 CURRFILE DS CLs8
1E47 MCh DS OF
1648 MCWRETCD DS X
1649 MCWGPT2 DS X
1650 MCWOPT3 DS X
1651 MCKOPT4 DS X
1€52 ORG MCw
1653 MCwCDl1l2 DS XL2
1654 ORG
1€55 MCB DS 12F
1€56 KEYFIELD DS cLs

Figure 48.

124.12

Sample Reentrant Subsystem (Assembler) (Page 13 of 15)

Chapter 11

Sample Processing Programs

1658 DATEDIT
1659 DEMC
1660 DEDAY
1€61 DEYEAR
1€62 DATEMOVE
1¢63 DMMO
1664 SLASHZ
1665 DMDAY
1666 SLASH1
1667 DMYEAR
1668 INVINMSG
1666 MSG7
1670

1671 NOPRTMSG
1672 MSG1
1673 MOPART
1674 MSG2
1675

1€76 NOWARMSG
1€77 MSG3
1678 MNOWAREND
1679 MSC4
1680 NOWARWHS
1¢€81

1682 CANFSG
1€83 CANCODE
1684 CANFLNNM
1685 MSG5
1686

1687 MAPERMSC
1€88 MS5Gé
1€89 ERRTAG
1690

1€91 NCSUBMSG
1€92 MSG8
1693 NGFILE
1694 MSG9
1€95

1€96 IOQCGRP
1697 ERMAP
1698 IOMAP
1699 SUBNAME
1700 MAPFLG
1701 MAPERR
1702 NQMaP
1703 FHFLAG
1704 BDRCOK
1705 VSRCOK
1706 ICERR
1707 OQUTMAP
1708 WORKLEN

EQu

oCLé6

cL2

CL2

CcL2

ocLs

CcL2

X

cL2

X

cL2
oCL50
cL50
INVINMSG
ocL28
CL12

CL5

CL11
INVINMSG
0CL37
CL5

CLS

CL24

cL3
INVINMSG
0CL43
CL15

cLs

CL20
INVINMSG
oCL19
CL17?

CcL2
INVINMSG

OCL(L'MSGB+L'NOFILE+L'MSG9)

CL(L'MSGJ)
cLs
CL(L'MSGK)

CLs
cLs8
CLs
cL8
X

X140°"
x'o1*

X
x'so!
x'os'
xto02*
oD
$=SAVE

MAP GROUP NAME
ERROR MAP NAME
MAP NAME

SUBROUTINE NAME

ERROR MAP BEING SENT
UNABLE TO SEND MAP

BDAM READ SUCCESSFUL
VSAM READ SUCCESSFUL
I1/0 ERROR OCCURRED

Figure 48.

Sample Reentrant Subsystem (Assembler) (Page 14 of 15)

124.13

Chapter 11 Sample Processing Programs
1710 COPY STKSTATA SYMBOLIC I/0 MAP DSECT
1711 STKSTAT DSECT
1712 MaP1l EQU * START OF MAP
1713 VERBL DS XL2 FIELD LENGTH
1714 VERBT DS X FIELD TAG
1715 VERSB DS CL4
1716 PARTNGF DS CXL3 STRUCTURED SEGMENT START
1717 PARTNOL DS XL2 STRUCTURED SEGMENT LENGTH
1718 PARTNGOT DS X STRUCTURED SEGMENT TAG
1719 PARTNO EQL *

1720 FILLER DS IL4
1721 RBNBYTE DS z
1722 USEG1 ECU * SEGMENT DELIMITER
1723 wESNOL DS XL2 FIELD LENGTH
1724 WESNOT DS X FIELD TAG
1725 WESND DS L3
1726 PRTDATAL DS XxLe2 FIELD LENGTH
1727 PRTDATAT DS X FIELD TAG
1728 PRTCATA DS CL54
1729 ORDUNTL DS XL2 FIELD LENGTH
1730 CRDUNTT DS X FIELD TAG
1731 ORDUNT DR CLS5
1732 PRTPRCL DS XxL2 FIELD LENGTH
1733 PRTPRCT DS X FIELD TAG
1734 PRTPRC DS PL4
1735 WHSLOCL ©OS XL2 FIELD LENGTH
1736 WHSLOCT DS X FIELD TAG
1737 WHSLOC DS cL23
1738 STKLEVL DS XLe FIELD LENGTH
1739 STKLEVT DS X FIELD TAG
1740 STKLEV DS PL4
1741 LEVDATEL DS xLe2 FIELD LENGTH
1742 LEVCATET DS X FIELD TAG
1743 LEVCATE DS cLe
1744 STKORDL DS xL2 FIELD LENGTH
1745 STKORDT DS X FIELD TAG
1746 STKORC DS PL4
1747 CRDCATEL DS xL2 FIELD LENGTH
1748 CRDDATET DS X FIELD TAG
1749 ORDDATE DS cLs
1750 MAP1L ECU *-MAP1 SINGLE MAP LENGTH
1751 GRG
1752 ERRMAP EQU * START OF NaAP
1753 ERRMSGL DS XL2 FIELD LENGTH
1754 ERRMSGT DS X FIELD TAG
1755 ERRMSG DS CL50
1756 ERRMAPL EQU *-ERRMAP SINGLE MAP LENGTH
1757 ORG
1758 STKSTATL EQU *~STKSTAT MAP GROUP LENGTH
1759 DYNLEN ECU WORKLEN+STKSTATL
1760 END

Figure 48. Sample Reentrant Subsystem (Assembler) (Page 15 of 15)

124.14

Chapter 11 Sample Processing Programs

2 %% REGISTER USAGE 2%

3 %3 R3 WORK REGISTER =%
4 %% R4 WORK REGISTER #%
5 %% R6 BAL REGISTER ==
6 =% R11 PARM POINTER %=
7 %% R12 BASE REGISTER %=
8

%% R13 SAVE AREA L

9 %

10 PRINT NOGEN

11 sSQasmB CSECT

12 REGA REGISTER EQUATES

35 SUBLINK LEN=WORKLEN,BASE=(RC),PARM=(RB)
36+%4SUBLINK = V9,0 - 08/82

52+ PRINT NOGEN

564%yGETSPA = V7,0 - 11/76 - SM
174 USING WORKAREA4RD
175 =3 SELECT BDAM FILE
176 MVC DDNAME yDDPART MOVE DD NAME INTO WORK AREA
177 CALL SELECT,(EXTDSCToFHSTATsODNAME) yVLyMF=(E+CALLIST)
189 CLI FHSTAT1,C'9! SELECT OK?
190 BNE SELECTOK YES
191 MV] RETCD+1412 NO..RETURN CODE = 12
192 B RETURN
193 SELECTOK DS OH
194 xC FHSTAT,FHSTAT CLEAR FH CONTROL WORD
195 BAL R64yREAD GO READ A RECORD
196 CLI FHSTAT1.C*1°* TOERROR?
167 BNE NOT1 NO
198 MVI RETCD+1ls4 YES<+.RETURN CODE = 4
199 B DORLSE GO RELEASE THE FILE
200 NOT1 DS OH
201 CLI FHSTAT1.C'2" RECORD NOT FOUND?
202 BNE DORLSE FOUNDy RETURN CODE = 0
203 MV] RETCDO+1,8 NOT FOUND,s RETURN CODE = 8
204 DORLSE DS OH
205 XC FHSTAT sFHSTAT CLEAR FH CONTROL WORD
206 CALL RELEASE (EXTDSCToFHSTAT) VL yMF=(EZCALLIST)
217 RETURN DS OH
218 LH RFSRETCD LOAD RETURN CODE
219) RTNLINK ADDR=(RD)yLEN=WORKLENyRC=(RF)
229+ PRINT NOGEN

2484+%yGETSPA = V7,0 = 11/76 - SM

Figure 49. Sample Assembler Subroutine (Page 1 of 2)

125

Chapter 11 Sample Processing Programs
270 READ DS OH
271 % REGISTER 11 CONTAINS PARM LIST FROM SQASMA
272 L R3,0(RB) FIRST PARM = ADDRESS OF RECORD AREA
273 L R4y4(RB) SECOND PARM = ADDRESS OF RBN
274 CALL READy(EXTDSCToFHSTATs0(R3)41(R4)) ¢yVLyMF=(E4CALLIST)
288 BR R6 RETURN
290 DDPART DC CLB*PARTFILE"
292 LTORG
293 =V(PMISUBLZ2)
294 =V(PMIRTLR)
296 WORKAREA DSECT
297 SA DS 18F
298 FHSTAT DS OF
299 FHSTAT1 DS X
300 DS X
301 EXTDSCT DS 12F
302 DDNAME DS cL8
303 CALLIST DS 4F
304 RETCD DS H
305 WORKLEN EQU #=SA
306 END

Figure 49. Sample Assembler Subroutine (Page 2 of 2)

126

Chapter 11 Sample Processing Programs

PAGES 127-128 INTENTIONALLY MISSING

127

Chapter 12

SUBSYSTEM TESTING

12.1 INTRODUCTION

After a new subsystem has been thoroughly desk-checked and
assembles cleanly, it becomes necessary to test the subsystem’s
execution under the control of Intercomm. Three methods of testing are
available:

e Simulated--batch execution of Intercomm with a simulated BTAM
Front End. Message input streams are created via the
CREATSIM utility program. Additionally, 3270 terminal input
and output screen, or output printer, images are formatted if
the SIM3270 utility is implemented for the simulation mode
execution. TIllustration of this mode of testing is provided
in this Chapter, and 1is particularly wuseful for testing
messages processed via the Message Mapping Utilities.

e Test Mode--batch execution of a Back End Intercomm with
message Iinput from a card-image data set, as described in
Chapter 13.

e On-line Testing--an on-line system is necessary for final
testing of all error conditions, multithread processing, etc.
and can be either a single region system, or a satellite
region used primarily for testing within a Multiregion
production system.

12.2 EBUGGING APPLICATION PROG PROBLEMS

Text and descriptions of error messages issued by Intercomm as a
result of invalid program logic paths, along with descriptions of
general debugging techniques for accompanying snaps and abends are
available 'in Message and Codes. Additional debugging facilities such
as dispatcher trace reports, thread dumps and indicative dumps are
described in the QOperating Reference Manual.

129

Chapter 12 Subsystem Testing

12.3 TESTING A SUBSYS WITH THE FRONT END STMULATOR

As described in the Operating Reference Manual, a test execution

with a simulated Front End is very useful to determine Front End
message interface problems that may be harder to debug when using an
on-line test system. Although the simulation 1is of certain BTAM
devices, including a local 3270, the access method interfaces required
for a remote 3270 or a TCAM or VTAM Front End are essentially
transparent to the application programmer as the interface -dependent
code is handled by Intercomm.

This chapter illustrates testing of the subsystem and subroutine
described in Chapter 11 using the BTAM simulator for 3270 CRT messages
processed via maps defined for the Message Mapping Utilities.

To test an application system in a simulated Intercomm
environment, do the following:

NOTE: Steps preceded by an asterisk (*) may often be performed
for the application programmer by an installation’s
Intercomm System Manager. Appendix C summarizes the
Intercomm Table entries.

1. Compile and linkedit the user subsystem(s) and subroutine(s),

if any. Appendix A describes Intercomm-supplied Assembler
JCL procedures.

*2, Create or add to a USRSCTS member on a user test library to
contain a Subsystem Control Table Entry (SYCTTBL macro) which
describes the subsystem. Reassemble and link INTSCT which
copies the USRSCTS member from the test library (see Figure
50).

*3. Define input message verbs in the copy member USRBTVRB via
BTVERB macros and reassemble and link the Front End Verb
Table BTVRBTB (see Figure 50).

*4. Code a SUBMODS macro addition to the COPY member USRSUBS to
define the Assembler subroutine and reassemble and linkedit
REENTSBS which copies USRSUBS (see Figure 50).

5. Assemble and linkedit MMU maps (Map Group STKSTAT--see Figure

51) to the MMU 1load module 1library. Load maps to the
appropriate Store/Fetch data set. See Message Mapping
Utilities,

6. Prepare input test message data set(s) using the CREATSIM
utility as illustrated in Figure 52. Note that the first
message generates, via the MMU command MMUC, the screen
template to be used for entering an inquiry transaction. All
"subsequent input messages are for testing the Assembler
subsystem and subroutine, including input error conditions
handled by the application program.

130

Chapter 12 Subsystem Testing

*7.

*8.

*9,

10.

11.

*12.

13.

Add control cards to the linkedit deck for the user programs,
unless the routines are dynamically loadable (see Figure 53).

Add INCLUDE statements for the simulator (BTAMSIM) and 3270
display formatter (SIM3270) to an Intercomm linkedit deck
vhich was created for the BTAM Front End (see Figure 53).

Linkedit to create a new Intercomm load module (see Figure
53).

Add DD statements to the Intercomm execution JCL for the
printed SIM3270 output and the input message data set(s) (see
Figure 53).

Create test data sets and add DD statements for them to the
execution JCL (see Figure 53). Note that if a VSAM data set
is used with a user catalogue, place the STEPCAT DD statement
after the //PMISTOP DD statement (see Figure 53); do not use

a JOBCAT DD statement. Omit the STEPCAT statement if &n ICF
catalogue is used.

Execute in simulation mode:

a. Single-thread test all subsystems; to test a reentrant

subsystem, specify MNCL=1 in the subsystem’s SYCTTBL
macro.

b. Multithread test reentrant subsystems (change MNCL) using
several test message input data sets or use a single data
set as input from more than one terminal.

The parameter ‘STARTUP’ must be coded on the Intercomm EXEC
statement. Figure 53 illustrates a sample execution deck
with test message input (DD statement TEST1) for the sample
inquiry program and JCL to print the system log.

The resulting SIM3270 printouts for the simulated execution
of the sample inquiry subsystem are illustrated in Figure
54. Note that the underlined positions on each screen
display indicate attribute byte positions; codes are
described under the display. On an actual terminal, the
attribute byte position appears as a blank to the terminal
operator. See Message Mapping Utjilities and IBM
documentation on programming for the 3270 CRT for further
information on attribute codes.

The Intercomm Log printed after the simulated execution of
the sample inquiry subsystem is shown in Figure 55.

Test the subsystem concurrently with other application

‘subsystems.

131

Chapter 12 Subsystem Testing

//TABLES JOB

//*

//* DEFINE SYCTTBL FOR SUBSYTEM

//*

//STEP1 EXEC LIBELINK,Q-TEST,NAME=INTSCT, LMOD=INTSCT

//LIB.SYSIN DD =
./ ADD NAME=USRSCTS

./ NUMBER NEW1=100, INCR=~100

USRSCTS DS OH

RA SYCTTBL SUBH=R,SUBC=A,SBSP=SQASMA, LANG=RBAL,OVLY=0,
NUMCL~10 ,MNCL~2 , TCTV=60

/*

//ASM.SYSIN DD DSN=INT.SYMREL(INTSCT) ,DISP=SHR

//* '

//* DEFINE BTVERB FOR SUBSYSTEM

//*

//STEP2 EXEC LIBELINK,Q=TEST,NAME=BTVRBTB,LMOD=BTVRBTB

//LIB.SYSIN DD *
./ ADD NAME=USRBTVRB

./ NUMBER NEW1=100, INCR~100
USRBTVRB DS OH
BTVERB VERB=-MURA,SSCH=-R,SSC=A, CONV=18000
/*
//ASM.SYSIN DD DSN=INT.SYMREL(BTVRBTB) ,DISP=SHR
//*
//* DEFINE SUBMODS FOR SUBROUTINE
//*
//STEP3 EXEC LIBELINK,Q=TEST,NAME=REENTSBS, LMOD=REENTSBS

//LIB.SYSIN DD *
./ ADD NAME=USRSUBS

./ NUMBER NEW1=100, INCR~100
USRSUBS DS OH

SUBMODS LNAME=SQASMB, TYPE=BAL,DELTIME=30
/*
//ASM.SYSIN DD DSN=INT.SYMREL(REENTSBS) ,DISP=SHR
//

Figure 50. Table Updates to Implement Simulation Mode Testing

132

Chapter 12

Subsystem Testing

STKSTAT
MAP1
YERB

PARTNG
FILLER
RBNBYTE

WHSNO

PRTDATA

ORDUNT

PRTPRC

WHSLOC

STKLEV

LEVDATE

STKORD

ORDDATE

ERRMAP

ERRMSG

MAPGROUP MODE=1/0,DEVICE=18M3270

MAP
FIELD

FIELD RELPOS=(147)sINITIAL="ENTER TRANSACTION CODE‘'4ATTRIB=PSN

FIELD
FIELD

SIZE=(20+80)sSTART=(1,1)
RELPOS=VERB

RELPOS=(3+23)4INITIAL='ENTER DATA:"yATTRIB=PSN
RELPOS=(597) 9 INITIAL=*PART NO:*,ATTRIB=PAHSEL

SEGMENT

FIELD
FIELD

RELPOS=(5416)yFORMAT=(44,42D)yATTRIB=UNN
RELPOS=(5+20) 4FORMAT=(14,20)

SEGMENT

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FI1ELD
FIELD
MAP

FIELD

F1ELD
FIELD
FIELD

RELPOS=(5+22)yFORMAT=14ATTRIB=PSN

RELPOS=(6+7)9 INITIAL="WHS NO:'9yATTRIB=PAHSEL
RELPOS=(6915) yFORMAT=(3442Z0)yATTRIB=UNN
RELPOS=(6419) yFORMAT=1,ATTRIB=PSN
RELPOS=(8+23)y INITIAL='STOCK STATUS3*sATTRIB=PSN
RELPDS={10+7) s INITIAL="DESCRIPTION:*yATTRIB=PSN
RELPOS=(10,20)yFORMAT=54,ATTR IB=UAN
RELPOS=(10976)yFORMAT=14,ATTRIB=PSN
RELPOS=(1197)4INITIAL="ORDER UNITS:*yATTRIB=PSN
RELPOS=(11420)yFORMAT=5,ATTRIB=UAN
RELPOS=(11+26)yFORMAT=1,ATTRIB=PSN
RELPOS=(11+40)9INITIAL="PRICE:*yATTRIB=PSN
RELPOS=(11+47)9FORMAT=(99443PDS4)sATTRIB=UAN
RELPOS=(11957) yFORMAT=14,ATTRIB=PSN
RELPOS=(13923)yINITIAL="STOCK STATUS AT WAREHOUSE:',
ATTRIB=PSN

RELPOS=(15+7)y INITIAL="LOCATION:'¢yATTRIB=PSN
RELPOS=(15+17) yFORMAT=23,ATTRIB=UAN
RELPOS=(15+41)4yFORMAT=1,ATTRIB=PSN
RELPOS=(1697)y INITIAL=*0ON HAND: 'y ATTRIB=PSN
RELPOS=(16+16)yFORMAT=(7944PD)ATTRIB=UAN
RELPOS=(16+24)sFORMAT=14ATTRIB=PSN
RELPOS=(16440) s INITIAL="AS OF:*,ATTRIB=PSN
RELPOS=(16947) yFORMAT=84ATTRIB=UAN
RELPOS=(16956)sFORMAT=14ATTRIB=PSN
RELPOS=(1797) 4 INITIAL='0ON ORDER:*sATTRIB=PSN
RELPOS=(17417)yFORMAT=(7549PD)yATTRIB=UAN
RELPOS=(17+25)yFORMAT=1,4ATTRIB=PSN
RELPOS=(17940)INITIAL="AS OF:*yATTRIB=PSN
RELPOS=(17+47)yFORMAT=8,ATTRIB=UAN
RELPOS={17+56)sFORMAT=]14ATTRIB=PSN

SIZE=(15480) ySTART=(1041)
RELPOS=(141)yATTRIB=SUPRyINITIAL=X"125B5F"

#3%% ABOVE CLEARS STOCK STATUS INFO. WHEN ERROR MESSAGE APPEARS 3%%

RELPOS={14933)yINITIAL="ERROR MESSAGE:' ATTRIB=PAHSEL
RELPOS=(15+10) yFORMAT=50,ATTRIB=UAHSEL
RELPOS=(15461) yFORMAT=14ATTRIB=PSN

ENDGROUP

END

00000010
00000020
000000130
00000040
00000050
00000060
00000065
00000070
00000075
00000077
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
X00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000400
00000410
00000420
00000430
00000440
00000450
00000460

Figure 51. MMU Maps Used by Sample Subsystem

133

Chapter 12

Subsystem Testing

//CREATSIM JOB 00000100
//CRS PROC T= 00000200
/1/% SCRATCH OLD TEST INPUT DATA SET (IF AMNY) 00000300
/75 EXEC PGM=IEFBR14 0€C00400
//SCR DD DOSN=INT,TET,DISP=(O0LD,DELETE) 00000500
//CRS EXEC PGM=CREATSIM 0000C600
//* CREATE NEW TEST INPUT DATA STREAM FOR 3270 DEVICE 00000700
//STEPLIB DO ODSN=INT.MCOLIB,DISP=SHFR 00000800
/1 DO DSN=INT.MCDREL,DISP=SHR 0000500
//SYSPRINT DD SYSOUT=a 00001000
//5YSUT2 DD DSN=INT.TET,DISP=(4CATLGsCATLG) UNIT=ONLINE, 00001100
// VCL=SER=INTOO01ySPACE=(TRKy(1y1)) 0C001200
//0UMP EXEC PGM=IEBPTPCH 00001300
/7% PRINT MESSAGES GENERATED ON TEST INPUT DAT SET 00001400
//SYSPRINT DD SYSOUT=A 00001500
//5YSUT1 CO DSN=#*,CRS.SYSUT2,DISP=0OLD 00001600
//SYSLT2 CC SYSOUT=A 00C01700
1/ PEND 00001800
//* FCR THIS EXECUTION OF CREATSIMy THE ENC-OF-CARD CHARACTER IS A 00C€01900
//* SEMI-CCLON, (USE ALSO AFTER THE VERB-FRONT END SEES THE SBA), 00002€00
/% THE MESSAGE END CHARACTER IS AN EXCLAMATION POINT (EOB). 00002100
//EXECCRS EXEC CRSyT=TEST1 00002200
//CRS.SYSIN DD # 00002300
GRAPHIC,ADD,y;FF CONTINUATION CODE 0€002400
GRAPHIC,ADD,<7C ENTER KEY 000025C0
SBAyM2 USING MODEL 2 SCREEN SIZE 00002600
€< MMUCySHCWs(STKSTATyMAPL) 00002700
< 3 00C02800
SBA,C1C2; 0002500
MURA; 000030C0
SBA,C516; 00003100
123453 00003200
SBA,C615; 00003300
200 0CC03400
< 00003500
SBA,0102; 00003600
MLRA; 000037¢0
SBA,C5163 0C003800
555553 00003900
SBA,C&15; 00004000
200 00004100
< 000042€C0
SBA,C102; 00004300
MURA; €C004400
SBA,C516; C0CC4500
12348; 00C04600
SBA,C615; 00004700
3co 00004800
< €0004900
SBA,C102;) - 00005000
MURA; 00005100
SBA,0516; 00005200
12341; 00005300
SBA,C615; 6C005400
600 00005500
< 0005600
SBA,C102; 0005700

Figure 52. Input Test Messages Generated via CREATSIM (Page 1 of 2)

134

J

Chapter 12 Subsystem Testing

MCURA 00005800
SBA,C516; 00005900
A2345; 00€06000
SBA,TE15; 000C6100
200 00006200
< 3 00006300
SBA,C1023 06006400
MURA; 0C006500
SBA,C516; 00006600
123453 00006700
SBA,C615; 00006800
BCO 00006900
< 00007000
SBA,C102; 00G607100
MURA S 00007200
SBA,05163 00007300
1234X%; 0000740C
SBA,C615; 00007500
20Y 0CC07600
< 3 00co7700
SBA,0102; 00007800
MURA; 00007900
SBA,C5163 00008000
123493 c0008100
SBA,C615; 00008200
100 00008300
< 00008400
SBA,0102; 00008500
MURA} 00008600
SBA,C516; 00008700
123423 00008800
SBA»Q615; 000089C0
1c0 00009000
//DUMP.SYSIN DD * 00009100

PRINT TYPORG=PS yTOTCONV=XE,»CNTRL=2 00009200
/7 00€09300

Figure 52. Input Test Messages Generated via CREATSIM (Page 2 of 2)

135

Chapter 12 Subsystem Testing

//EXECTEST JOB (ICCMTEST99»920)9°SQASMA TEST'yCLASS=A,
// RESTART={GENLINK.ASP)

//PRCCLIB OD DSN=INT.PROCLIByDISP=SHR (AS NEEDED) ,
J/#8 2300008020000 00004 R RRRR R AR AR AR RN IR RSN RER RN SRt Rt nb bRt

//%* THE RESTART PARM IN THE JOB STATEMENT RESTARTS THE TEST AT THE =*
//* BEGINNING., 1IF YCU WISH TO RESTART AT A DIFFERENT STEP, CODE *
//* RESTART=STEPNAME OR RESTART=STEPNAME.PROCSTEPNAME *
/1/% *
//* NCTE: WHEN USING A VSAM FILE, IT IS NECESSARY TO EXECUTE IDCAMS *
//* TO VERIFY THE FILE IF A PREVIOUS EXECLUTION ABENDED. *
IZAR SRR R R R R 2R 2 2 2 R R AR R R R R R R R R R R R R A R a2 R 2
//*

VAR R R A R 2 22 A 2 22 R R R 2 R 2 R R S R R R R R R SRS R R RS2]])]

//% STEP GENLINK GENERATES A STANCARD B8TAM FRONT END LINKEDIT ODECK =+
//7% VIA ASSEMBLY OF THE ICOMLINK MACRC. IF ONLY A VTAM FRONT END IS =
//* USEDy A SETGLOBE WITH THE BTAM CLOBAL SET ON MUST BE IN THE *
//*% LIBRARY SPECIFIED BY THE Q= PARM., ADD OR CHANGE PARMS FOR THE *
//% 1COMLINK MACRO BASED ON INTERCOMM FACILITIES USED. *
//* THE GENERATED DECK (SIMLINK) IS PLACED ON INT.SYMTEST. *
//%* NOTE: THE SPECIFIED FRONT END NETWORK TABLE (FEMETWRK) CONTAINS A
//% DEFINITION FOR THE TEST TERMINAL TESTY AS A LOCAL BTAM 3270.

J/84 432204 4a0 S 4R R 4RI RRARAR B ER RS R A ARR P RRRRNRIRER IR E AR BR I NS4S
//GENLINK EXEC ASMPC,Q=TEST,DECK=DECK
//ASMJSYSIN DD »

ICCML INK MMU=YES,FETABLE=FEMNETWRK

END
/*
//SYSPUNCH DD DSN=INT.SYMTEST(SIMLINK)sDISP=SHR
//%
/;tt‘ttttttt##t‘tttttttt#tttt‘tttt‘#tOtttttttttt#ttttt#tttttt#t#t!ttt‘
//% STEPS SCRSCR AND ALLOCSCR DELETE AND RE-ALLOCATE THE LOAD *
//#* MODULE LIBRARY USEC IN THE TEST (ALSQO USED FGOR DYNLLIB) .

V7RI I R A R R R i R R R R I R R R R R R R R R R R R R RS RS R R RS S R R LY
//SCRSCR EXEC PGM=IEFBR14

//FILEL oo DSN=INT.MODSCRsDISP=(GLDsDELETE)

//ALLOCSCR EXEC PCM=IEFBR14

//A DD DSN=INT.MODSCRsDISP=(4CATLG) UNIT=S5YSDA,

// OCB=INT.MODLIByVOL=SER=INTQOLySPACE=(CYLs(3997)

Figure 53. Linkedit and Execution JCL for Simulation Mode (Page 1 of 3)

136

Chapter 12 Subsystem Testing

1ZA4Ad 2 A A2 12 2 L IR R Y P P R PR R PP SR R Y

//% STEP GENINCL CREATES INCLUDE CECK USED BY TKE LINK EDIT STEP: *
//* THE ADDED INCLUDE STATEMENTS ARE FOR THE SAMPLE SUBSYSTEM ANC *
//* THE REQUIRED SIMULATION MCDE MODULES., *
//% IF THE TEST1 TERMINAL IS NOT IN THE SYSTEM PMISTATB TABLEy ACD: *
/7% INCLUDE MODREL(PMISTATB) *
//% INCLUDE MQOODREL(PMIDEVTB) »
/7% INCLUCE MODREL(PMIBRCAD) *
//%* THE ABOVE ASSUMES THE CONTRCL TERMINAL IS NAMED CNTO1. *
J/FE2 220230 R AR R RSB RSAERRREINEA AR RARBRP RS AR SR RN SRRRRASERRR RN RES

//GENINCL EXEC PGM=IESUPCTE

//SYSPRINT DD SYSOUT=A

//SYSUT1 co DSN=INT.SYMTEST,DISP=SHR

//SYSUT2 DD DSN=EEINCLyDISP=(,PASS)yLNIT=SYSDAySPACE=(CYLy(1y1y1)]),
’/ DCB=(BLKSIZE=BOLRECL=E0Q)

//SYSIN 0D *

o/ CHFANGE NAME=sSIMLINK,LIST=ALL

INCLUDE SYSLIB(SQASMA) gccoool0
INCLUCE SYSLIB(BTAMSIM) 00000C20
INCLUDE SYSLIB(SIM3270) 00000030

/*
VZAZ AR R R R RS RS SRR 222 R R 2 2)

//*% LINK EDIT THE TESY INTERCCMM SYSTEM »
//%* NOTE THAT THE INTERCOMM LKEDT PROC PLACES THE OUTPUT ON THE »
//* MODSCR LOAD LIBRARY CREATED ABOVE. *
//* 1T 1S NOT NECESSARY TO RE-DO THE WHOLE LINK TO REPLACE 1 MODLLE *
//* IN THIS CASE, ALL YCU SHOULD DO IS: *
//#* 1) REASSEMBLE OR RECOMPILE THE CHANGED/NEW MODULE INTO A *
/7% SEPARATE LOAD LIBRARY *
/7% 2) OVERRIDE THE SYSLIN DD STMT TO //LKED.SYSLIN DD * *
//* FOLLCW IT WITH INCLUDE CARDS .
/7% FOR THE MODULES YQU WISH TC REPLACE *
//% 3) FOLLOW THOSE INCLUDES WITH THE FCLLOWING 3 CARDS: *
//* INCLUDE SYSLMOD(SIMICCM) *
/7% ENTRY PMISTUP *
/7% NAME SIMICCM(R) *
//* 4) INSERT A DD STMT FCR THE LOAD LIBRARY ON WHICH THE *
/7% REPLACEMENT MODULES RESIDE *
//* 5) CHANGE THE RESTART PARM ON THE JOB STATEMENT *
//* TO POIMNT TO THE LKED STEP. »
V72223 2R 2 R R R R R R R R 2 R R R R R R R R R R R R S R R R R R R R SR R RS R
//LKED EXEC LKEDTyQ=TEST4LMOD=SIMICOM,

/7 PARM LKED='LISToLETyXREFyNCALySIZE=(250Ky100K)"*

//LKEDSYSLIN DD DSN=EEINCLUSIMLINK),DISP=(OLDsPASS)
//MOCREL VD) DSN=INT.MODREL,DISPaSHR
[/ 6430400 E AR ERRESRF RSB PRR R TE R E R AR AR RN R R ER RN AR SRR NRRA SRR IS
/7% LINKEDIT THE DYNAMICALLY LOADED SUBROUTINE .
AR I R L R R A T R L I PR L el Y
//LINKSQB EXEC LKEDT,0=TEST,LMOD=SQASMB
//SYSLIN 0D *

INCLUDE SYSLIB(SCASMB)
/*

Figure 53. Linkedit and Execution JCL for Simulation Mode (Page 2 of 3)

137

Chapter 12 Subsystem Testing

J/33 3888023005855 8 0488838000080 88 0848083882008 800%0R8RR00RRRRERS

//* EXECLTE INTERCOMM IN SIMULATION MODE .
J/3 4355482080000 00 020400800000ttt ttttt sttt ntssstiodoniess
//6G0 EXEC PGM=SIMICOMyPARM='STARTUP 'y TIME=(,30)

//STEPLIS ©DC DSM=INT.“ODSCRsDISP=SHR

// DSN=INT.MODUSRsDISP=SHR

// DSN=INT.MODLIBsDISP=SHR

l/ DSN=INT.MODRELyDISP=SHR

//INTERLOG CD DSN=EEINTLOGsDISP=(NEWsPASS)y

// CCB={(DSORG=PS,RECFM=VByBLKSIZE=4C96LRECL=40G2yNCP=8,0PTCD=Cly
// SPACE=(TRKs(10+45)),VOL=SER=INTOO1,UNIT=5SYSDA

//SMLCG DD SYSOLT=A,DCB=(DSORG=PSyBLKSIZE=120,yRECFM=FA)

//57T5L06 CDO SYSOUT=A,DCB=(DSORG=PSyBLKSIZE=12Q0RECFM=FA)
//SYSPRINT DD SYSOUT=A,CCB=(DSORG=PSyBLKSIZE=141,)LRECL=1374RECFMaVA)
//RCT000 DD OSN=INT.RCTOOC,DCB=(DSORG=DA,OPTCO=RF)4+DISP=SHR
//PMICUE DD DSN=INT.PMIQUE,DCB=(DSORG=DA,OPTCD=R)4+DI5P=0LD
7/BTAMQ DD DSN=INT.BTAMQ,DCB=(DSCRG=DACPTCD=R}yDISP=SHR
//INTSTORO DD DSN=INTSTCRQ,DCB=(DSORG=DA,OPTCD=EF,LIMCT=3),0ISP=CLD
//INTSTCR2 DD DSN=INTSTCR24yDCB=(DSCRG=DAOPTCD=EF yLIMCT=3),DISP=SHR
//INTSTOR3 DD DSN=INTSTOR34DCB=(DSORG=DA,OPTCD=EFLIMCT=3),DISP=SHR

//* TEST DATA SETS FOR SAMPLE SUBSYSTEM
//STCKFILE OD DSN=VSAMSD1l.STCKFILELCLUSTER,DISP=0OLD,
// AMP=(AMORGy 'RECFM=F')

//PARTFILE DD DSN=INT.TEST.PARTFILE,DISP=COLDy

// DCB=(DSCRG=CA,CPTCC=R)

/7% DATA SETS FOR SIMULATED TERMINAL == TEST1
//TEST1 DD ODSN=INT.TEST1,0CB=DSORG=PS,DISP=0LD
//SCRTEST1 DD SYSCUT=A,CCB=(DSORG=PSsRECFM=FA,BLKSIZE=121)
//SIMCARDS DD +*

TEST1,001
//PMISTOP DD DUMMY
//* FAR PARAMETERS

//ICCMIN Do =

INTSTORO,ICCMBCAMXCTRL

/*

//SNAPDD DD SYSOUT=A

//SYSUDUMP CD SYSQUT=A

//STEPCAT DD DSN=YSAMSClyDISP=SHR

/7% DYNAMIC LINKECLIT DATA SETS

//DYNLLIB DD DSN=INT.MODSCRyDISP=SHR

//DYNLPRNT DD SYSQOUT=A

//DYNLKORK DD UNIT=SYSDA,SPACE=(CYL9s(191))sDISP=(4PASS)

1ZA2 32 2 2R R 2 R R R R R 2R R R R R R R R R R R R R R R R R R AR RS R SRR E R R R 2)
//%* PRINT THE INTERCOMM LOG GENERATED BY THE TEST *
VZAAL R R SR R RS E 22 R R R 2 A R R R 2 R 22 R 2 A R R R R R 2222 R 2R SR R RS2 2 A A A R R)
//INTERLOG EXEC PGM=LOGPRINT+COND=EVEN

//STEPLIB OC OSN=INT.MODRELsDISP=SHR

//SYSPRINT DD SYSOUT=A,DCB=(DSORG=PSyBLKSIZE=121)

//INTERLOG DD DSN=EEINTLOG,DISP=0LD,DCB=BLKSIZE=5000

//5YSIN DO DUMMY

//

Figure 53. Linkedit and Execution JCL for Simulation Mode (Page 3 of 3)

138

Subsystem Testing

Chapter 12

L

(10410) 0O%0¥=30S¥ND AL=Q1V

(TdYNCLVLISHLIS) ¢MOHS* INWW

PO g0 /0000000000000, 0000000 00,0000,0000,0000(0000 0000700000000 00000000

® 6 ® 0 ¢ 0 0 0 0 0 0 % 0o s e 0 0 0 0 0 0 s e

GO s 0000) 0000 ,,0000Qg0000,0000(C0000,00000000,0000(00000,00008 0000 00000000 0000

L 24
(24
22
12
0z
61
et
L1
91
[
»1
[
21
11
ot
60
80
L0
90
0
0
€0
20

® ¢ ® 0 0 0 0 0 0 % 0 0 2 s 00 00 0 0 0 0o

(TAVHELVLISHLS)CMOHS*INWU® 10

1% 00051420 1J%0@89€3 12€32320 €3230%89 93908223 €9¢d2%3%Q »0Q0»0»3¢ €©T00 0000

6561880 16°96°61 1NdNI

11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 1 of 20)

-

139

Subsystem Testing

Chapter 12

LON/SIQ*HNN*O 24 = (04) 0O
130/5Q1*dv¢0ud = (83) A
L1AN/S1Q*WNN* dNN = (06) 3
1ON/S1Q4dVe dNN « (0v)

$ONI Q0330 ¥VH) 3ILNEIxLLv

eecegeeco 0000 ey, peces eceepenco 000000

L] []
. 0 [} “:33030 NOD .
. 5 [+} :ONVH NOD .
. “:tNO14vI0D .
. $ISNOHIYYM LY SNLVLS %001ST 4
.] 2371440] “:S1INN ¥3QW0D .
.] T:NO1141325300 .
. :snLvLS WI0LSD .
* 8 TJ:0N SHMK .
. B J:0N Luvdl .
. :vivQ ¥3IN3D .
* 3002 NOILDVSNVdL ¥31N3D T
cl lﬁ.‘..@..l.“....ﬁ I.'O OGDCDDﬂOGOOQOQ.lN.. ..ﬁ....Q....
(20°T0) 120%=30Sy¥n) OL=QlV
@ v 0 9W :d0 SVO=a 0000ETTI 05110401 934»Q110% ATVL9I9a 09231204 2100

o MW 0 dW :¥30¥0 NODO 3W 0 M %
%330 SV0 071 0 I $ONVYH NOO SX 02
s 9 INOILVION0 Al :3SNOH3BVAM ¢
4V SALVLS MNIDISO N O d) $301udz
%0 4) 0 8> SSLINN ¥30¥00 A> 0 ¢
&> SNOILdINIS3QO0 N* :SNLVLIS XIODx%
9180 31 0 /4 3 :ON SHMA NJ 0 W3 3%
% 3ON Ll¥VdA 33 :VIVO ¥3IN30 68 30
©0) NOIL1DVSNVY¥L ¥3INIO v Js

01935011 040120%0 T1T10%0TVL 605J%J60 9009509C 04Q162%0 11040193 €ATTI05AT 2€00
vL£93900% 23120401 90€0TT10d4 OQT9IEQTT 0»QTIVLY®D $QTIEI0» SG90040T 64201104 2500
01222071 0%0TveS0 9@6J€3TI €J90EQ0d QTISITATT vi6I23%3 908362640 12930%€3 2200
1J0%23%3 €31J€323 0%20€290 €323040T $0J%TTO04 O0TL0QQ%TT1 0%0TVLSD €26260L0 2600
0301920% 11040183 Jv110%01 VvL23€36) $0%30%60 S$I%J6090 0401632% 110401vs 2800
J%9T110%01 V250906 €3206360 £2236)%) 04071608% TIve23%3 €312€323 0920€290 2000
€323040T S$J6JT1104 QTT99I1TT 0601vL90 S00¥238) 93630160 9I11040T »0SITT106 2400
QIvZ90s0 0%€360TD 20830TSI SITTVLID €312%00% 6062€350 $J2040T6d 2I1152%) 2110
90€J0%50 906J€£3€) TIZ3SOTI 60€30%60 SI€3SASI 04QT0%0% 0505TIAT O%0»TTED 2ETO

£61880 00°26°61 §d=-1ndin0 1

[24
€2
22
12
0z
61
eT
Ll
91
st
vt
[
21
11
o1
60
80
L0
90
<0
%0
€0
20
10

0210
0010
0300
0J00
ovoo
0800
0900
0%00
0200
0000

1531

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 2 of 20)

140

Subsystem Testing

Chapter 12

. LON/SI0*WNN*DYd = (04) 0

130/SQ1¢dIve0ud = (83) A

LGN LON/STA*WNN® dNN = {(10) r

LQW* LON/SIQ*dAVedNN = (1)) v
LON/S1Q*dTVedNN = (0%)

$ON100J30 dVHI 31nN@IALLVY

geeo oo eecs 0000 geeee 000t e 00000000 0000000000000 0000 0000 %000 0000

[“:40 SvO] 33040 NOJ
[} 140 Svl 1] “:anvH NOO
] “:NOILVIDD

e ® 0o 0 0 0 0 o o

$3ISNOHIYVM L1V SNLvLS XI0LSD

e o o o o
@ e e 00 0 00 0000 0o
~
-

] T:321340] “:S1INN ¥30¥0D
T:iNOILd1¥D$300

.
(=
.
o
-t

.
[
o

$SN1VLS %201sD

.
o
o

Boo2F:ON SHMX
Osv€21T:ON Lu¥vdX

o o o
b3
o

tviva ¥3LN3D * €0
* 20
3002 NOILJVSNVYL ¥3AIN3Dvanwi* 10

geee oo cce secer0eegeeceperenceree 0000 0000 0000 0000000000000 00000000 0000

e o o o o
.
b4
o

(10¢10) 0%0%=¥0S¥N) OL=ClV

002¢d4 S%¥EZT 3 VINWY o 040423436 9ITT6d9d €424T44% GITT1I60 35QT30% 11040%0L @100 0000

$61880 »0°L1§°61 1INdNT T1S3L

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 3 of 20)
141

Subsystem Testing

Chapter 12

1ON/S10*WNN* O Y¥d = (04) O
130/501%dv*0ud = (83) A
LAN/S10WNN* dNN = (09) 3
1AN/S1Q*dIVe dNN = (0%)

$INIQ0J30 ¥VHI 3I1NnBINLLY

Qooo0#.oooho.oo@oooo@oooo#oooomooooQoooo#oooo#ooooﬁnoo.ﬁcoooNOOOOGQOOOAOUOOGoooo

®© 06 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 o0

geeeopgeccc jccec00cegee

(20*10) 1J0%=w0S¥NI QL=A1V

L] v
%40 SVO MW O L190%0%
«3W 0 28/60/¢€0

0 28/11/01 32

3$330¥0 NOO =
240 Sv0 01 0 9061x
4919 :ONVH NOO SX 0 93 °VId *lusz
SVIW :INOILVIOT0 AF :3SNOHIYVM LV
¢ SALVLIS NIOLSO N O £050°606% 2
23013840 4) O S¥9 :SLINN 3303002
& A> 0O > ¥> ¥YIHSYM 1331S NI 2/1z
@ INOILJI¥IS3IAO N° 3SNLVLIS MI01S%
%0 31 0 0023 3ON SHMA NJ 0 S%€213%
¢ 3ON 13VdA 33 :VIVQ ¥3LIN3O 68 30
$0) NOILIDVSNVAL ¥IINIO ViNWY Pl

93900%23
6J%Q1104
9414940%
1262%00%
0»23%3¢€3
§2€J6J60
a1s3dy11
0%Q1IvLSa
0401526)
a1ve9dsa
90€J0%s0

13040193
Q1248419
atvevdsa
atvesa9a
1J€3230%
40040192
040TVGIY
9063€3L0
11040104
0¥€36010
906J€3€)

Beoso°

»@110401
640419¢4d
128J0%s0
6J€312¢€)
20€J940¢€3
a»110401
110%602%
6J60€223
04240601
£083019)
12236012

LY 4

* €2

¢ 22

° 12

* 02

* el

M) §

B828/11/01":40 SV B52.190%0%": 43030 NOD A

528/50/7€07:40 SVvB 890519197 : ONVH NOD 9

4] Y4 ¢IWVIWT:NOILVI01D M4 ¢

LY 1

$3SNOH3YVM Lv SN1vLlS XJ01sD i w"

606372321343 8 su¥9”:SLINN 330308 LI 4 §

¥WIHSVM 13315 NI 2/17:NOILd1¥Is30D LI) §

60

$SN1vLsS %201sB ° 80

° 20

8002%:0N SHMK * 90

Bsv€21T:0N LuvdX * %0

° %0

sviva ¥31N3D * €0

2

3002 NOILJVSNV3L ¥3IN3Bvunuw™ 10
.”.0..m.0..“....‘.0..“....m....“....N.. ...ﬂ....“..’.

000000€T TJ0»T110d4 Q1246419 T4T4190d4 140%QTv. 1100 0910

£4149404 %404%40% QTVL60$) %J260900% $A90040T TEO00 0410

040%0TVL 92900523 12040190 €ATT04QT 94046414 1400 0210

90040164 20110401 0%2I20I€ 8% 1I€09) 0%896I%0 1.00 0010

90€0040T S3ITATIVZ 6I23%390 8267601) 930%€31) 1600 0300

230407160 49110401 £4045404 85640464 860%0Tv. 1800 0200

0%0%2360 £J0%0ATVL Z3€£36260 %30%605) %)609004 1000 OVOO

J€60628) 2312930% €06I269€3 230%606) 05241914 1400 0800

6J%20401 $08%TIve 23%3€31) €3230%20 €290€323 1110 0900

v290500% 23879383 A1SA9ITT 040164%d4 €4241405 TETO0 0400

GITIVLZII €31I%20% 606I€350 62040164 2ITT6I¥D 1610 0200

60€£30%60 $I€350$) 04011260 ¥3»QTIAT 0»0%TTED 1L10 0000

61880 ET°L6°6T 63-1Nd1N0 T1S3L

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 4 of 20)

142

Subsystem Testing

Chapter 12

(10¢10) 0%¥0v«y¥0S¥NI GL=QlV

002:d 95665 3 VENNWY

L1AN/SIQ*WNN*D¥d
130/5014dv*0ud
10W* LAON/STQ*WNN® dNN
10W* LON/SIQ¢dIV* dND
1AN/SIQ*dIVEdNN

(0d)
(83)
(1Q)
(1)
(o%)

a>>»0

SONI00J3Q ¥VHI 31n9lyllv

BTy 00000000000 00,,0000(C0000,0000,0000,000000000, 00080 00000000 0000 0000

. Jz2e/11/01" 230 SVO
828/60/€07:40 SvD

$3SNOH3WYM LV SNLVLS %J015D

e o 0 0
(=]

1SNivis %2001s0

54190405 : 33030 NOD
09051919 :aNVH NOD
[} *vid ‘IWYIWT:NOILVIO0TD

52060°50687:321%40 B s¥97:S1INN 330300
¥IHSVYM 1331S NI 2/17:NOILdIuDS300

. BoozlfF:ON SHRI
. B56666T:ON 1¥vdX

. tviv0 ¥3IN3D

¥2
€2
22
12
124
61
[}
L1

s1
LA
€1
21
11
o1
60
s0
Lo
90
€0
M 1]
° €0
¢ 20

. 3009 NOILIVSNvyL d¥3iN3Tvanw¥* 1o

geeeogoeer sere 000 gereecreecoets s000 e 0000 0000000000000 00000 0000 0000 0000

X 0404233¢ 92116464 §36464d% 6IT1T1I60 ¥35QTI0% TTOY0¥OL

S61880 BT°L6°61

8100 0000

1NdNT T1S31

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 5 of 20)

143

Subsystem Testing

Chapter 12

1AN/STQ*WNN*OYd = (04) O
130/SQ1%dve 04d = (€3) A
LON/STIQ*WAN® dNN = (06) 3
130/S014dv*4NN = (8J) H
LON/SIQ*dIVAdNN = (0%)

$INIQ0JI30 AVHI 3L1Nelyllv

geeceo g o0t e 00000000000 0,0000 000030000 0000 0000

OOOQ...QQOQOOQ.IO
1} *ONNDd LON 66664 ¥IAWNN LuV4RA
$39vSSIW ¥OY¥3IxX

124
€2
22
12
02
61
et
A
91
[
A
€1
21
11
0T
60
(]
L0
90
0
L]
€0
0
3007 NOILIDVSNVYL ¥3IN3ITvinw™* 10

GO 00 00000000 Qgeeee, 0000 000, 00000000 000000000, 0000700000000 00000000

1] “:40 svl [+] “:33030 NOD
s} “:30 svb [+] :ONVH NOD
[} “:ND11VI01D

$3ISNOH3IYVM L1V SNLViS %I01$D

[\ “:3)714d0 [+] “:S1INN ¥30303
[} “:NOILdI¥DS30D

$SNLIVLS »I01sD3

5002%:0N SHMX
BscsssT:ON Luvdl

iviva ¥3IN3IT

® 0 06 0 ¢ 0 0 0 00 0 ® 0 0o e 0 o s o0
® & 0 o o 0 0 o 0 0 o0

(01¢%2) 6405=¥0S¥ND QL=QlV

L4 6% % €16436TT 4000 0%00
%0 ¢(°ONNDOd ION 6 (Y3IEGWNN L¥Vx 0340T0%89 0GIEBH%D) 60»3909) 0%€39060 0%53veA§ JE0%605D 22%0%360 0%EI6ATI »200 0200
odH 8% 3IDVSSIW MOUYIA &3 v$ 3° Je 20820704 IGTTIVLED 23122323 6I2500%60 90606050 830TILES 113458621 0SE¥1T€D &%00 0000

$61880 €2°L16°6¢1 5 T4-1ndiN0 TL1S31

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 6 of 20)

144

Subsystem Testing

Chapter 12

(10°10) 0%0%=u0SAN) AL=ClV

00€¢3d OH€21 3 viNWY

LAN/SLIA*WNN* Qud = (04) 0
130/5Q0144v¢0ud = (83) A
LAW* LON/S TAHNN® dNN = (10} 1
130/5CQ1¢dIvedNN = (8)) H
LAW* LAN/STQA*dIVE NN = (1) ¥
LAN/S1Q%dIvedNN = {(0%)

$ONIQ0J30 ¥VHI 31NnaIdLlY

geeoopeee eccs 0000 grere etrecertr o0 te 000 0000 p 00 e 0000 000 e 000000 0000

. o] *ONNDd4 LON 66655 ¥38WNN LIVdR

. $139vSS3W wouA3axk

. o Tt40 SvB [“133030 NOD

. 1} t40 SvO 4] “:aNVH NOD

. 0 “:NDILvI0D

. $3ISNOHIAVM LV SNLVLIS ¥J01ST

R (] “:3J014d0 4] “:SLINN 330303

. 5 T:NOILld1¥I530D

. $SNIvLS %201S3

. BooelF:ON SHMX

. 08Y€21T:0ON L¥vdX

. tyiva ¥31N3D

. 3002 NOILDVSNVYL ¥3IAINIDvanw?
Qt...ﬁ‘...ﬁ.l. C.O.l..“l..'ﬂ....@....#..l."l.l.ﬂ....QQOUONCCIOQCQll.ﬂ.l..”....
™ 03404€436 9J1TQd%d €323T44% §IIT1J60 »3»0120% 110%0%0L 8100

S61880 12°25°6T LNdN1

42
€2
22
12
02
61

M) §
* st

21
11
01
60
g0

¢ <0
* %0

¢ 10

0000

11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 7 of 20)

145

Subsystem Testing

Chapter 12

LON/SIQ*WNN*D¥d = (04) O
130750144V 0¥d = (83) A
LON/SIQ*WAN® dNN = (06} 3
1ON/S1Q*dIVt dNN * (0%)

$ONI1Q0J30 WvH) 3LNnelvllv

goecepceee j00se 0000g0cea0000C0000 0000, 0000000000000 0000 4800050000 00000000

® 06 ® 6 0 0 & 0 0 0 s 0 v s e s e

(20410) 1J0%=¥0S3NI Qz=ClV

] v 0 28/11/01 »
s 3130 SVO MW O 9060606 :¥30¥0 NO»
¢0 3w 0 28/50/€0 :40 SVO 01 0 (0%
560606 :ONVYH NOO 6% O 99X °*70)0 ‘=2
s¥3AN3IA :NOILVION0 Ar :3SNOH3YVMZ
¢ 1V SNLVLIS %IOLSO N O 9050°606%3%
& 3321840 3) 0 HIV3 :SLIINN ¥302
«¥00 A> 0 > ¥> 3ITVIS KNIV L4 €3
& INOIL14I¥IDS300 N°* :SNLIVIS %201S%
60 31 0 00€E3I :ON SHMA N3 O 8%E2132
& 20N 1¥VdA 33 :vivQ ¥ILIN3O 60 302
%0 NOILIVSNVYL ¥3ILIN3O VINWY e

. 2

L ¥]

LA ¥ 4

L ¢

* 02

LI ¢

L)

528/11/017:40 Sv3 09060605 ™: 430640 NOJ LA ¢

528/50/€0" 240 Svb 02050606 tanvH NOD * 91

] *903 *¥3IAN3ICT:NO11vI0D L

LY |

$3SNOH3IYVM LV SNIVLS %D01$D * €1

LI 4 ¢

39050°6058” 2321940 8 HIV3IT:SLINN ¥30%00 LI 4

] 37vIS WNIY 1d ET:NDIL4I¥IS30D LA) §

* &0

1SN1vlS %201sT * 80

LY

800€F:0N SHMI * 90

Beve215:0N 1yvdX L1}

* %0

tviva ¥31N3D L 1]

° 20

3009 NOILDVvSNvyl ¥3INADvanu™ 1o
Qll..”'...h....*....d....“....ﬂ....#....‘.00.“..0‘“....“....~...0Q..I.AOIO'Q.l..

00€ETT20% 11040124 84191414 1904140% 4000 0910

a1v29790 04231204 G193%01T 04019304 64046404 $40%QTve 6052%)60 90055090 3200 010

04016250 11040124 84196404 T9€£4040% 01v29I90 05231704 QI9QEQTT 04012404 4%00 0210

64046404 630%01v. %I60128D 09609004 Q1642011 0441092) 20I€8%€0 90€I0%89 4900 0010

60676350 §I%J0%0T v260906) €31JD€I90 €0040163 TQTIVLSD 2393908) §J601293 4800 0300

0%€3120% 23%3€31) €3230%20 €290€323 0401604% 11040194 0464048% 64045486 dJV00 0200

0%0TVLS6) €26260.0 0401920% 11040104 8IEITISI 0%01ve2I £3626053 0%60562%) 4200 OVO0O

60900401 3251104 QIVSI»TT 096025 SIEQTIED 230%50%3 €QE0TI0Y €39I0%E4 4320 0800

05Q1vL60 90636320 6I60£223 62920407 608»TTvZ 2353€3TI €3230%20 €I90€323 4010 0900

04016262 11040104 04€40601 V290500% 23839383 0160911 04018494 €4241406 34210 0500

0Tv29060 0%£360TD) 2083016 SITTIVLID €3TI¥I04% 6A0SIEISA 62040164 2IT15I%D 4%10 0200

90€20%50 906J€3E) 122360GTI 60€E30%60 $IE3ISASD 04011260 »3»ATIAT O%0¥TTED 4910 0000

G6TQ00 9E°LG°ST $4-1ndlnN0 11531

Figure 54, SIM3270 Printout from Simulation Mode Execution (Page 8 of 20)

146

Subsystem Testing

Chapter 12

(T0¢10) 0%0%=30SINI AL=A1V

009¢d T¥€21 3 vinuWy

1ON/S1Q0*WNN*0Yd = (04) O

130/S0144v* 034 = (83) A
10W* LON/STQ*WNN® dNN = (10) ¢
1GW* LON/S104dIVedND = (1J) Vv

1ON/S1Q*dIvedNN = (0%)

SONIQG0J30 ¥VHD 3AINnBIYlLY

Doooaﬂ.o-ohoto-#-o-nOuo-.ﬂo-;nﬂ.-un#.u.n'.;.-Q--om.-noﬁato-No-.Q-ootﬁ-oooﬁoa-o

Dze/11/017:40 SvB 09050506 : w3040 NOO
85z8/50/€0:30 SV 820505067 :ONVH NOD
] *70) *¥3IAN3QT:NOILVIOD

$3ISNOH3IYVM Lv SNIVLS %I01SD

09050°60$3™:3014d40 8 HOv3T:S1INN ¥30u00
0 37vI2S WNIIV L4 £T:NOI14I¥IS300

. 1Sn1vis %20183

. Boo9fF:ON SHMX
. Stec2il:oN 1uvdl

tvivg ¥31N3T

2
€2
22
12
224
61
o1
I3
91
(¢
*1
€1
t4
11
01
60
80
Lo
90
%0
0
€0
20

. 3000 NOTLIVSNVEL ¥3IIN3IDvanw¥e 10

epeoesces e 0000 000

geceogrece, recercnneg PR LRI PR LR R T RR PR

3] 04049436 9IT1TT4%4 €424T44% SIT11J60 %3»0TI0y T10¥0%0L 6100 0000

S6T1980 Tw*l6°61 1NdN]

1183,

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 9 of 20)

147

Subsystem Testing

Chapter 12

(01¢%2) 6426=¥0S¥NI OL=0lV

% 6 0 *(009 %

LON/SIQ*WNNtOYd = (0d4) O
130/Sa144v40ud = (83) A
LON/S1Q4WNNS dNN = (06) 3
13Q/SQa1¢dvedNn * (82) H
1ON/S1Q*dVedNN = (0%)

$ONIG0JI30 ¥VHD 31Nn8I¥LLY

P P Y- P - P P LA S KR PR AR P LR RL SRR (AR PN

. 0 009 3SNOH3IYVYM N1 ONNDS LON Tv€2T LuvdR R ¥ 3
. $39vSS3N woww3l R ¥ 4
. D £ 4
. L]
. LI 1
. LY |
. LI) ¢
. [} “140 SVl 0 “: 43030 NOD LA ¢
. [+] “:40 Svb 4} “:ONVH NOD * 91
. [} T:NDILYI0D LK 4 §
. LS ¢
. $3SNOHIYVM Lv SnLviS %I01sD A 4 ¢
L] L] Nﬂ
.] “:321940] “:S1INN ¥30w0d M & ¢
. [+} “:NO11d1¥25300 * o1
[] L] ’0
. sSNlvis %201sT ° 80
. * 10
. 8009F:0N SHMI * 90
. Biw€21J:0N LuvdX ¢ g0
- L] ¢°
. svivo ¥3IIN3D * €0
] L] ~°
. 3000 NOT1JVSNval ¥3INITvank™* 1o

Q.Q..“ll..h....“..0.0....0....@...0”....'0.OOQQ...M.Q..“QUOCNIQOOQIOQ'dCCQOQCI .

0000€163 J6TT0401 0¥890%I€ 04049304 3000 0%00

«3ISNOHIANVM NI GNNDJ LON THEZT lyvs 62235390 8I6I60ATI 930%506) 0%»I60%3 909)0%€3 90500514 »4€3424T4 0%€3601D 3200 0200

odH 8¢ 13IOVSSIW JOUBIA Wt VY 3°

J¢ 208J0T84 ISTTVLS) ¢ITIZ323 $I%00%60 906060$) 03014285 11468621 058»T1ED 3%00 0000

$61880 9%°26°61 14-1NndiN0 11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 10 of 20)

148

Subsystem Testing

Chapter 12

(10¢10) 0%0»=d0S¥ND QL=QIV

002¢d4 S¥E2V 3 VENWY

1ON/S1Q*WNN*DYd = (03)
13Q/S01¢dve0ud = (93)
LaW* LON/STQ*WNN* dNN = (1Q)
1307501 ¢dIvedNn = (82)
LQW* LON/SIQ*dIV¢ dNN = (1))
L1ON/S1Q%dv*dNN = {0%)
$ON100330 ¥VHI 3ILNBIYLLY

q9IXID»>oOo

geeeepoeee e y000egecoepeccegee [(AFLEREE SAA R RN

4] 009 3ISNOHIYVM NI ONNOd LON T9€ZT L13vdA
$39vSSIW W0wuwu3axk

P A L A P AT AR PR]

[} “:40 SvB 4] : 33030 NOD
5 “:30 svl] “:aNvH NOD
4] T:NO11VvI010

$3SNOH3AVM LV SNLvLS %J01ST

0 “:321u40] “:SLINN 330300
] T:iNDILld1¥2S300

® o 0 o 0o 0 0 0 0 0 0 o 0 e

:SNivls M201S3

0002F:ON SHMI
Jsve2vF:ON 1uvdX

svivgo ¥3iN3T

v2
€2
2z

02
61
LA
Lt
91
sl
vl

*
* ot
° 60

90
$0
%0
€0
20

. 3009 NOT1JVSNvY¥L u31IN3Dvunube 10

Geooopeee 0000 i 0000gesre 0000 0000 00000000 000000000 0000 0000 00000000 0000

' 04042436 9ITT6d%4 €424TID4% SITT1060 3501204 TTO%0%GL 6100 0000

S61880 06°L6°S1 1NdNT

11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 11 of 20)

149

Subsystem Testing

Chapter 12

1ON/STIQ*WNN* Q¥4 « {04) O
130/541%4V*0ud = (83) A
LAN/SIQ'WNAN*dNN = (06) 3
130/501%dv* dNN = (8J) H
LAN/S1Q*dTve dNN = (0%)

$ONIO0DJ3Q ¥VHD 3inelyliv

Qccooocccohcoucbol-oOo-'cQoooo“oooo@co.-'.ooa”coocMo-.»*-.onNcco.#.n-o.—ooooﬂooou

. [+] JI¥3WNN 38 L1SNW ONL¥Vd :viva QIIvANIRA
. :39vSS3W wod¥3IX
. 1] “:40 SV [+} “: 33040 NOD
. 1] “:40 svO] “:gNvH NOD
. 4] TiNOILvI01D
. $3SNOHIYVM LV SNIVLS %301$D
i [+} 1321440 [} T:SLINN ¥30%00
= . 3 T:NDIL1d1¥IS30D
. sSnNivis %301sT
. B002%:0N SHMX
° Osve2vT:ON LuvdX
. tvivo ¥31N3D
. 3002 NOILDVSNVAEl ¥3IN3IDvanw™
Q....“O...h.‘.l*....o.ttoaol..ﬂ.l..“.....\000.“..0.”0..OQOCOINOIOOOIOII.HI..09.0..
(01*%2) 6426=30S3ND OL=0ClV
s 60 0 *(Jlde 000000€T 63751104 QT0+8905 JEEI6I60 Q0DO

s3IWNAN 38 1SNW ONLYVd :vivd QITVANS 6D%0%360 0%$2220v €323%3%0 0%9060€3 6013£00% VZIJEITI »I0%%I6I EQTISISA Q20O
oIH 8¢ $39vSSIW JOWYIA ws ¥$ 3° Jo 62020104 ISTIVLSD 22122323 $I%00%60 9060606D 83013486 TT45862T 0685TIED Q%00

S61880 96°L6°S1 : 13-1nd1N0

vz
€2
[24
12
0z
61
[2}
Lt
91
st
'l
€1
2T
11
[1)¢
60
80
[XY
90
0
%0
€0
20
10

® ® 2 @ 0 8 % 0 0 0 0 008 e e 00 0 oo

0v¥00
0200
0000

11531

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 12 of 20)

150

Subsystem Testing

Chapter 12

(10°T10) 0%0%=30S¥N) Al=Q]V

008¢{d $%€2T 3 V¥NWV

L1AN/STQ*WNN*DYd = (04) O
130/S01¢4dIve0ud = (93) A
1QW* LON/STQ WANS dNN = (10)
1307501 ¢4V dNN = (8)) H
LQW* LAN/S1Q¢dIVEdNN = (1)) v
LON/SEQ¢dIVedNN = (0%)

$ON100J30 3VHI 31Nn8lyllv

B 000 0000,0000Q0000,0000(0000,00000000,0000(00000,000090000,0000T0000 0000

4 JI1¥3WNN 38 1SNW DNLY¥Vd :viva QIIvANIRA
$39vSS3IW J0Wu3ax

] “:30 svi 0 “:33030 NOD
L4} “:40 SVO 4 “:aNVH NOD
L4} “:NDILVvI01D

$3SNOHIYVM LV SNLvLS %J01sD

11} “:321440 0 “:S1INN ¥30300
] T:NOI11d1¥25300

$SNLVLS %J01SD

BooeT:ON SHMX
Jove21F:0ON LuvdX

tviva ¥3IN3ID

®© © o 0 0 0 0 0 o 0 0 0 0 ° 00 0 0 0 0 0 0

GO O 0000,/ 0000,000000000,0000(0000,0000,0000,,000000000,000090000 0000 0000 0000

(24
€2
22

02
61
81
L1
91
st
(21
€1
21
11
01
60
80
L0
90
$0
%0
€0
20

® e ¢ 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o0

3000 NOILDVSNv3L ¥3iIN3Dvanube 10

o 04042336 921T164%d €3424T144% 62111260 %3»3TI0% 1T10%0%0L €100 0000

661880 00°86°61 1NdN1

11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 13 of 20)

151

Subsystem Testing

Chapter 12

LON/STQ*WNN‘O ¥4 = (04) 0
130/501¢dv0¥d = (83) A
LAN/STQ*WNNS dNN = (06) 3
130/7SQT1¢davedNn = (8)) H
1GN/7S1Q%dIVedNN = (0%)

$ON100J30 ¥VH) 31Nn81dLLV

0 0000 0 000,0000Q0000,0000,0000,0000,0000,000000000,000070000 0000 00000000

. 1} JI¥3NNN 38 1SNW ONSHM :viva QITvaNIR LI ¥ J

. $139vSS3wW Wo¥w¥ak c €2

. L] -

. [] ﬁN

. L] °N

. LY ¢

. L 1§

. 0 “:40 svD 0 “:¥30%0 NOD LA

. 0 “:340 sv0 0 “:ONVH NOD LI) ¢

N . 0 “:NOILVI0TD LN ¢

L] (] 'ﬂ

. $3ISNOHIVVM LV SNIVLS X%J01SD * €1

L] . N~

. 4] 2321440 1] “:S1INN 330300 L § §

. i} “:NO1141%25303 L) ¢

. LY}

. tSNLVLS 20150 * 80

L] L] NO

. B00687:0N SHMI * 90

. Osv€219:0N 1uvdX ' S0

. . ’Q

. tvivo ¥31N3D * €0

. * 20

. 3002 NOILIVSNvYL ¥3IN3ITvanw™ 10

ﬂ....“....h....“....Ol...“....ﬂ....Q....‘....“...lmlioIGOOOONQQ.OQOIOOMQ.QQQQ...
(0T1¢%2) 6426=30S¥ND QL=QlV
s 6% 0 *(Jls €1642611 04010589 GSIEEILI I000 0900
«¥3WNN 38 1SNW DNSHM :vivQ@ QITvAN3 60S2%0%3 600%622) 0%€323%3 »0059060 2382930% VLIJEITI »Io¥%»I6d £4126350 2200 0200
oIH 88 139VSSIW BOUAIA «$ ¥$ 3° I 63820194 ISTIVLSD £IT1I23Z3 62500960 9060606 830TIL86 11468621 068%T1ED I%00 0000
661880 60°86°S1T 14-1nd1N0

11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 14 of 20)

152

Subsystem Testing

Chapter 12

(1010) 0%0%=30S¥N) al=qQlv

A02¢d X¥EZT 3 vyONuWy

LON/SIQ*WAN*O Y4 = {04) O
130750144V 0y4d = (83) A
LOW*LAN/STA*WNAN® dNN = (10) ¢
130/S01 44V dNN = (8)) H
L1OW*LAN/SIQ*dTIVEdNN = (1) v
LON/SIQ*dIvedNN = (0%)

SONIQ0J30 3¥VHD 3LINGIYLLY

D..oo&oooohoooo*ooofﬂo.o.#.oooﬂooaoQooooQo..oQ...QM..a.#ooooNo.o.QoooOﬁaoco#aooo

4] J1¥3WAN 38 L1SNW ONSHM :viva OIWANIA

. $39vS$S3IW woudalk

. 4] “:40 sv0 o] “:33030 NOD
. [} “:40 svb] “:aNVH NOD
. [} “:NOILVI0TD
. $3ISNOHIYVM LV SNLVLS %XJ01SD

. 4} T:301440 o} T:$1INN ¥30¥00
. 0 “:NOILd1¥DS300

tSNLIVLS NJ01sD

Jr02F:ON SHMI
Bxve21F:ON LYvdX

svivg ¥3IN3D

GO 00) 0000450000000 00,0000(C0000,00006,0000,0000(000006,000070000,0000 0000 0000

¥2
€2
[
1 %4
02
61
81
L1
91
st
L2
€1
21
11
o1
60
80
L0
90
$0
%0
€0
20

3007 NOILIVSNVYL 33LINITvanw¥* 10

% 93042436 9I2T1TL3%d €424T4dy 6I1T11J60 »3%0120% 110%0%0L €100 0000

$61880 O01°86°61 1ndNI

14831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 15 of 20)

153

Subsystem Testing

Chapter 12

L1ON/SI0¢WNNCDdd = (04) O
130/501¢dv0ud = (83) A
LON/STA*WANS NN = (05) 3
13Q75G1¢dVedND = (8J) H
LON/SIQ¢dIVEdNN = (0%)

$ONIG0I30 dvHI LNl yLlv

geeoegesee 0000 0000geece 000 0cetco 000, 0000000000000 0000700000000 0000 0000

0 JIN3IWAN 38 LSNW INSHM ONV ONL¥Vd :VLiVvO QITVANIA 114
:39vsS3wN 30¥¥3X * e
22

02
61
LA
L1
91
st

) “:33030 NOB
“:aNvH NDD
“:NO1LVvI01D

® e 0 0 0 0 o
(=]

23ISNOHIAYM 1y SNLviS »I01$D €1
21
11
o1
60
80
L0
90
1)
%0
€0
20
10

= s e o s % 0 0 0 o

. 5 “:321440 8 T:SLINN ¥30300
. [INDILdI¥IS300

. :$n1viS %J04sD

0A02%:0N SHMZ
Bxve21%:0N 1uvdX

sviva ¥3IN30

e o o o o
« e S s 2 0 s s w

. 3000 NOILDVSNVYL ¥ILIN3Dvanu”

geeooepsece, 000 0000gestr 000000 0000 00 0 000000000 0000 000000000000 0000

(0T*¥2) 6426=¥0S¥NI OL=a1V

L 63 0 JIYIWNN 38 1S% 00€16436 11040T10% 0%0%0%€D 62606I%C »3500%%) 2J0%€323 L100 0%00
eNW ONSHM QNV ONLl¥Vd :VLIVO QITVANE #3%00%90 60238293 0%%I60T1) 0%9060€3 64124004 VLTIIEITI %IO¥»I6I £0TI6360 LEOD 0Z00
slH 8¢ 339vSS3W ¥O¥YIA wt ¥$ 3° I 6I8I0QT8d4 JGTTveeD 23122323 $I%00%60 90606090 €3014286 TI448621 0585TTED LS00 0000

S61880 ST°8G°CT T4-1ndINCG T1S3L

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 16 of 20)

154

Subsystem Testing

Chapter 12

(10¢10) 0%0%=¥0S¥ND qAL=0lV

00T:3 6%€21T 3 V¥NWV

1AN/STG*WNN®D¥d
130/S0144Iv*0ud
1AW LON/STQ*WNNS dNN
130/S01¢dIvedNN
1OW*LON/S1Q4dIVE INN
LON/SIQ*dvedNN

(04}
(83)
(1a)
(82)
(1
(ov)

a4 >0

$9ONIQ0J30 ¥VHI 31NnQJulLV

mo.uoﬂoo-.No00.60ooaOuooo#o.oomnoo.Qoo..#.noaﬁ..-onooooéonooN.o.oOooo.ﬁo.-oQoooo

.] JI¥3IWNN 38 L1SNW ONSHM ONV ONLNVd :vivQ
. $39vSS3W wouu3xk

. $3SNOKH3avM 1V SNLvLS %J01SD

. [+] “:321440 o] “:S1INN ¥30300
. 4] T:NOILldI¥25300

. :Sn1vlsS 201s0

QIWANIR

“:330390 NOB

:aNvH NOD
:NDI1vI018

. 3001 :ON SHMX

. Oo%€2tF:0ON 1uvdX

. sviva ¥31N3ID

® s 0o o

. 3007 NOILDVSNVEL ¥3IN3Tvanuve

Qeeeogecee sees 0000gerse 00 eceses 0000, 0000 0000 0000 0000 0000 00000000 0000

(X 04047436 92T1o6d%d €424T44% 6ITTITI60 %350T1I0% T10%050L

G61880 61°986°6T

ANdNI

v
€2
a2
12
0z
61
81
L1
91
st
LA
€T
21
11
ot
60
80
L0
90
0
L{"]
€0
20
10

8100 0000

11834

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 17 of 20)

155

Subsystem Testing

Chapter 12

LAN/SIO*WNNCONd = (04) O
130/SAl*d Vv 0Yd = (83) A
LAN/STA*WNN¢ dNN = (06) 3
130/SQ1¢dIvedNN = (8)) H
L1AN/S1Q*dIVedNN = (0%)

$ONIGO0J30 uvHD 31n8JalLy

Locoopcesegecce egeecegsceeyesee 000

#2000 0000 o0 0000

5} *ANNOJ LON 6%E2T ¥3IAWNN LAVdA
:$39vSsS3Iw ¥0yyalk

LT
€2
22
12
02
(3¢
et
Ll
91
(¢
(¢
€1

240 svl 4} “:¥3q3¥0 NQD
0 “:30 SVO [“:aNvH NOD
[“:NDILVIOD

e e s o o
(=}

$3ISNOHIYVA LV SNLVLS ¥I0LST

2351440] “:$1INN 330300
IND11dI¥25300

1t
ot
60
:snivis %ao1s8 . 80
L0
* 90
* 0
L
. tviva ¥3INID * €0

LI]
[~]
o o o

J001%:0N SHMX
Bove217:0N LuvdX

e o »

¢ 3007 NOTLIVSNVYL ¥3IN3Dvanu

geeccgeeee o 00n0getey Spvese e 000 0f0est0ete g0t 0000 [000 0 0000

(01¢%2) 6d4I¢«4053¥ND OL=QlV p

ir

10

L b On 000000€T 64261103 4000 0%00
s *(°ONNDJ LON 6YE2T A39WNN L1dve (AT0%990% JEBYYISA »3909I0% €390500% 6d94€424 14096090 2I»0%36Q 04E3LATI 6200 0200
cdH 86 139vSSIW WOUYIA WS v3 3° I 20920184 ISTIVLIGD £2122323 $I%Q0%60 90606050 83013285 11459521 0648%11€D 6500 0000

$61880 62°86°67 134=1NdIND TLS3L

156

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 18 of 20)

Subsystem Testing

Chapter 12

(10°10) 0%0%=¥0SUNI AL=CIV

00T¢3 2%€21 3 VyNWY

LON/STIQO*WNN*O¥4d = (04) O

130750144V 0ud = (83) A

LOW* LAN/STA*WNN® dNN = (1@ r

- 1307501 ¢4V 4NN = (8)) H

1OW*1aN/S10*dIVE dNN = (1J) v
L1AN/S1Q*dIV*dNN = (0%)

$ONIQ0J230 ¥YH) 31N8I¥LLYV

QOOOU#OOOOFOO..”...00....9...lﬂ....“....’.0..*.l.lﬂ....*....N....#..Q.ﬁ....*.0.0
1} *ONNDY LDN 6%€21 d3QWNN LAVJA
$39vSSIN W0uu3x

] “¢40 sv8 (1] “:u330¥0 NOJ
4} “:40 S0 4] “3:aONYH NOD
[“:NDILVI0TD

$3SNOH3¥VM LV SNIVLS %J01ST

1] “:321340 4] “:SLINN ¥30%03
i} “:NOIL1d1325300

ssnivis %2018

Boo1T:DN SHMI
JzveziF:oN L1yvdX

sviva ¥3ILN3D

GO o 00 0000,000000000,0000(0000,0000,0000,0000F 00000000 0000000000 0s,0000

124
€2
22
12
02
61
[24
A
91
[
(24
€1
21
18
o1
60
€0
L0
90

.]
* €0
* 20

3009 NOILIVSNVYL ¥3IINIBvunk®e 10

(X 04047436 931T124%d €424T44% 6IT112360 »3%»QTI0% 110%0%0L 6100 0000

$61880 6Z2°86°61 INdNl

11831

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 19 of 20)

157

Subsystem Testing

Chapter 12

LON/SIQ*WNN¢DY¥d
130/501%4dv¢0ud
1ON/STQ*WNN* 4NN
1ON/SIQ¢dvedNN

$ONIQ0J30 ¥VH) 31ne8lyLlv

(05)
(0%)

(04) 0
(83) A
3

geecoa®ece)0 s0 s0000geeceye0eeclto 000t 0000 000000000 000000000 0000 00 0g000 0

.] CN

L) L] MN

L] . NN

* * 12

. - °~

[] L] OA

. L] o,—

. J2e/11/701" 230 SVD B»0%0%06": 43030 NOJ A §

. 528/60/€0":40 SV O»190619”:GNVH NOD * 91

. [*vI4 *TWVINT:NOILVIDD LY ¢

L] L] ‘d

. t3SNOHIYVM Lv SNivLS NJ0LST ¢ et

L] L -

. 89191°90637 2371443 0 z007:S1INn 330300 LI 4 §

. 0 1709 39vI¥¥vI XIvig Gv3IH Avi3d NI 8/€ :NOILd13¥253Q0 * o1

. . * 60

. $SNLVLS %I01ST * 90

] _ L] FO

. B00TJ:ON SHMA * 90

. J2n€21%:0N 13vdX * S0

. e f°

. svivQ ¥3ILIN3D * €0

. L] NO

. 3000 NOILIVSNVYL ¥31N3Bvane™ 10

Al Oo-.o-v-.-hoooo@uo000-0000.oomuoooﬂntt-owooouﬂ.oo-ﬁ.ooo#oc-Noouoﬂo-oo.—o-yo.ooo
(20°10) 170%=30S3¥N) QL=Q1V

¢ Vs 0000€TT) 2000 0810
¢ 0 28/11/01 :40 SVO MW O »0%0%s O%110401 24841974 14190414 0»QTVL9) 9G0%23T) 04Q193%0 T104QT %3 04930494 2200 0910
506 1¥3090 NOO 3W O 28/560/€0 :4¢ 04640401 V2606I%) 60900%6Q 90034016 »ATT040T 24841964 0419€404 0»QAIVL9D 2%00 0510
60 - SY0 071 0 »1906T9 :ONVH NOO SM¥& 90042319 040190€Q TT10401%d 13940464 14940901 VZ%I60T1) 81056090 04015420 2900 0210
6 0 9% °VId SIWVIW :NOILVIO0I0 Az T1040%0% 22202€8% T1I€0920% 8962901 62900501 V250906 €3T1I€I90 €0040163 2800 0010
of TISNOHIYVM LV SNLVLIS NIDL1SO N = TOTIVLE) 2323908) §I6QTI93 O%€3TI0» 23%3€3T1I €3230%20 €I90€323 04015034% 2v00 0300
¢ 0 9191°906% :3J1¥d0 3) O 200% 11040193 13494148% 94046485 0%0T1VvLSD €I5I6G20 0301930 T11034010% 0%639G%) 2200 0700
& ISLINN ¥30¥00 A> 0 > ¥> 1108z 0501vL23 €36I60%3 0%606I%) 60900401 63251104 OTVGIHIT 0%602%I€ £3€0902) 2300 0VO0O
& 39VI¥y¥vd NIvI8 GV3IH LVI4 NI B/Es 0%G6IZI1I 6360601 €I0%20€ID II€0220% »I1I528) 0%€3ITIEQ 9I0%606) 09841964 ZOTO 0800
& INOILdI¥IS3IA0 N°® :SNLVLS NJOLSex 0%0TVLSQ 906I€3LQ 6I60EIZ3 $I»I0301 608%TTIve 23%3IEITI €3230%20 €I90€323 2210 0900
©0 31 0 0013 :ON SHMA N4 0 2%€213% 04016762 T1040104 03140601 v290600% 23879383 GTG09ITT 04012444 €4241406 2510 0%00
© :ON L¥VdA 33 :vVivQ ¥3IN3IO 68 30% OTv2906Q 0%E3601) 20830T6I SITIVZII €312%J0% 6063€360 §2040164 ZITT16I9d 2910 0200
0D NOILDVSNVYL ¥ILNIO VINWY J% 90€£20%$0 906I€3€) 122360T1D 60€30%60 $IEISCSI 04011260 »3»QTIAT O¥OTTED 2810 0000
661880 BE°86°GT G4-1NdiND 11531

Figure 54. SIM3270 Printout from Simulation Mode Execution (Page 20 of 20)

158

Subsystem Testing

Chapter 12

IWA 78 907 NwE ¥sn $974 art ELI S 31va NWW

Jss b1y] ¥d0 Gv3y¥HL N3TISW

o *€03JINdL*NMOLS 92€d4 034629I2) »320€389 $093%J¢€3 000000
44 00 10 0 00 0000 €034 166%°96°61 s61°88 I3 0000/*°* GQOO/N°* 24 0o 95
4 bt -} 0000 00000000 00000000 00000000 280000
[AR RS i 00000000 00000000 00000000 0000%000 000008490 00000000 00000000 00000000 000000
44 00 vi 0 00 0000 20349 166%°96°61 s61°088 9 0000/°° SQOO/N°* 24 € 88
44 00 of 0o 00 0000 20349 166%°96°61 s61°88 9 0000/°°* SOO0O0/N°® 24 € t44
* *20349NdL*NMOLE 9224 04529320 %3.0€389 §093%)¢3 000000
44 00 To 0o 00 0000 20349 T66%°96°61 s61°88 9 0000/°° SQO00/N°* 24 0 9s
® cecoccccecccney 0000 00000000 00000000 00000000 2€0000
EARAR AR AR i 00000000 00000000 00000000 0000%000 000008%0 00000000 00000000 00000000 000000
44 00 vid 0o 00 0000 10349 166%°96°61 s61°88 S 0000/°° SQOO/N°* 24 € es
44 00 0¢ [} 00 0000 10349 1669 °96°61 $61°88 13 0000/°°* SQO00/N°* 24 € [4
L] *10349NdL*NMOLE 9213 046J9J3L) %3.0t8389 S§093%J¢3 000000
44 00 10 0 00 0000 10349 1669 °96°61 s61°88 S 0000/°° SQO0O0/N°* 24 0 9¢
10 00 O€ 0 00 0000 T01N)D 216%°96°61 so1°ge L4 0000/°°* 8Q000/0° 20 k4 t44
10 00 10 0 00 0000 T01ND T16%°96°61 s61°88 L4 0000/°°* 8Q00/0° 20 0o 2v

* °96°GT 98-€1-20 : AQvIY SI=x LE 94648%64 T40%0%84 B8409€4Td
¢ WWOJDYILNI »oNOONJILAV Q00D 62 0O%%Q%090 €26052€3 $06J0%0% 16264090

0924040v 0%0%VYL0% 83%JTJ6) 600%236) 280000
90506057 €392120% $29090LJ3 0%J6I362§ 000000

0s 00 24 0 00 0000 TOIND 905%°96°S1 so1°88 € »300/n° 0000/°° 20 1 €01
0s 00 o0t 0 00 0000 TO0IND 66%%°96°61 s61°88 4 0000/°°* ¥»300/n° 20 1 I44
L 96 9464 %90000

$°61T @88-€1-20 : AQv3Id SI WWOQU% g964140% 0%848409 €41309L4 040%0%0%
¢3UINI NOONu3LJV Q009 2sx°°°°°°p 63€3506) 0%0%26J¢6 60909060 6062€39)

vL0%93%) 1362600% 23670%%0 »090€J60 2€0000
1J0%%390 90LJ0%J5 J6ISIET0 02002044 000000

0s 00 10 0 00 0000 T0LND 66%%°96°G61 s61°88 t4 0000/°°* %»300/n°* 20 0 801
s ceececccccccccy 0000 00000000 00000000 00000000 2€0000
[AARAAAS A AR 00000000 00000000 00000000 00004000 000008%0 00000000 00000000 00000000 000000
0s 00 v4 0 00 0000 I1volL Y889 °96°G1 s61°68 1 0000/°° %300/Nn° 20 1 88
0s 00 0¢ 0 00 0000 q7volL 0L%%°96°61 s61°88 1 0000/°* %»300/n°* 20 1 v
s 962 93464 %90020

$°61 088-t1-L0 3 AQv3IY ST WWODus 9%64130% 0848409 €E34T13409L4 040%0%0%
S3LINI &aNOONY3L4V Q009D se&®*°°°°% 6J€3606) 0%0%J262S 60909060 605I€39)

0s 00 10 0 00 0000 Iv0L 62€%°96°61 s61°68 1
L X900z
SLlINI = 39vSS3IW dNIAVLIS WWOIIIINIx €3€3606) 0%090%SD £J1J2323 SJI»00%L0
00 00 46 0 00 0000 q7volL 62€E%°96°61 so6l1°68 1
INA 378 907 NuE ¥sn $974 a1 LI DY 31va NUWW
1 39vd aves AV 14 S 1Q 901

WuWO0OIYd3I L NI vess

vL0%83%) 1262600% 236J00%%0 »090€J60 2€0000
1J0%%290 90GL420%JS J6I6JET10 02002044 000000
0000/°°* %»300/Nn° 20 0 801

- crccecee

£3¥340304 Z2€0000
%3E3601) €3230%%0 %090€260 $IE3506D 000000
0000/°* 0000/°°* 20 0o 8L

131 Sy ¥do Gv3y¥HL N3OS

02°21°91 3WIL ¢61°89 31va

Simulation Mode Execution Log Printout (Page 1 of 8)

Figure 55.

159

Subsystem Testing

Chapter 12

IWA %79 907 Nuwe ¥sn $974 ali NIl iva NWW JsS sy ¥do GV3IY¥YHL N3T9SW

¢ SNLVLS XJOL1SI°N °0°d)° °:3)1ud0e 0%23%3€3 1J0€3230% 20€J90€3 23030150 491710401 200%1T0% QTIVLGSIED 62602004 091000

€°4)°0°8>° °:SLINN ¥IQYO0°A>°0°°>e Q19J30%11 040184J% 11040TVL 23€36260 9306050 3609004 GTIS3IDTT 0401VSIH 821000

6° °:INOILJIU¥ISIAO°N°*°:SNLIVLIS ¥I01z T10%01ve S09062€3 206J60€) 235I%J04 Q1608411 v.i23%3€E3 1J€3230% 20€290€3 960000

6S0°31°0°/4°3°:0N SHMA®NI*O°W3°3°s 2304016) 62110401 19921105 Q1vZ90S0 0%238J93 83015090 110401%0 SIT10601 %90000

430N 13¥VdA®33°:viva d31N30°58°300% v290500% €36QTJ220 ©30T626) TIVLIIE] TI%J0%60 $J€3505) 0401642) 1152%I9Q Z€0000

#) NOILDVSNVYL ¥3IIN3IO® ve °J62% £J0%5090 6J€3€IJ1) 23501260 €30%605) £3606204 Q10%0%0% O%T1J0T0% O%ITEJSS 000000
L9 00 24 1 00 0000 T1S3L 6926°96°61 s61°88 11 »Q%0/WW 0000/°° 20 1 05k
44 00 ot 1 00 0000 11831 €126°96°61 s61°88 01 0000/°° %»Q%0/WW 24 1 (44

% CUTdYNCLVLISHLIS) *MOHS ¢ INWHL 92 Q0s14201) »089€31) €32320€3 230%8993 90822389 €J%3%0%0 000000
44 00 10 1 00 0000 11834 Z126°96°61 $61°88 ot 0000/°° »Q%0Q/WW 24 0 L9

] C(TdVW LVLISHLIS) MOHS INWWE 92 06142010 »089€31) €32320€3 2308993 90822389 €I%390%Q 000000
00 00 14 1 00 0000 145831 2126°96°61 s61°88 0 0000/°° 0000/°* 20 0 L9
(1 00 &4 0 00 0000 ao¥elL 6016°96°61 s61°88 6 ¥300/n° 0000/°° 20 1 2
0s 00 €4 0 00 0000 101N 6016°96°61 (12 841] € »300/n° 0000/°° 20 1 2y

cocooccccccecy 6100 00000000 00000000 00000000 2€0000

AR A S 00000000 00000000 00000000 00006200 00000%€0 00000000 00004000 00000000 000000
00 0000 T01N) SEBY°96°GT s61°88 » 0000/°°* ©Q00/0° 20 4 L1

% seecccecccccccy 080000 00000000 00000000 60000000 90000000 66L%9561 000000
(1] 00 0000 * * €28%°96°61 S61°88 0 0000/°° 0000/°° 20 2 $9

s cececccccccccy 0000 00000000 00000000 00000000 NnoooQ

geececee te0atoccccsccccccy 00000000 00001000 00001000 00009100 00000921 00002000 00000000 00000000 000000
0s 00 vd 0 00 0000 gousL 0TL%°96°sT s61°88 8 0000/°° %»300/Nn° 20 1 (1]

L °96°¢1 @8-E1-20 3 AQV3IY SIx LE 945484964 14050584 8409€41d 09240404 0%0%VLO0%» 83%J2126) 600%236D 2€0000
o WWOJYIINI s&«NOON¥31d4V 0009 s 0¥%0%090 €26052€3 50620%0% 26266090 90506052 €3921J0% %29090LJ) 0%35I6I6 000000
0 00 24 0 00 0000 Gouel 602%°96°61 s61°88 6 »300/n° 0000/°° 20 1 €01

0 00 0¢ 0 00 0000 Q0uel 60L%°96°61 s61°88 8 0000/°° %»300/n° 20 1 2
¢ 962 9464 %90000
%°6T 88-€£1-£0 2 AQV3IY ST WWOOU: 8754140% 09848409 €4140944 040%04%0% vL0583%) 1262600% 23620%%0 %Q90E J60 2€0000
¢3INI coNOONY3L4Y Q009 Hus®°°°°°3 $2€3606) 0%0%2625 $0909050 6052€39) 13059390 90220%26 J6€ISIET0 02002044 000000
0¢ oo 1o (] 00 0000 aouel 80L%°96°61 s61°88 8 0000/°* »300/n°* 20 0 801
] cooccscccccce 0000 00000000 00000000 00000000 2€0000
geeceee At R 00000000 00001000 00001000 0000L100 00000921 00001000 00000000 00000000 000000
0s 00 Vi 0 00 0000 101N) 80L%°96°61 561°88 4 0000/°° %300/n° 20 1 [1]
% coeccccccctsecy 0000 00000000 00000000 00000000 2€0000
L eeeccccsccccccocccecey 00000000 00000000 00000000 000049000 000008%0 00000000 00000000 00000000 000000
33 00 Vvd 0 00 0000 €0349 166%°96°61 561°88 L 0000/°° SQOO/N* 24 3 (1]
EE] 00 O¢ 0 00 0000 €0349 166%°96°61 s61°88 L 0000/°° SQO00/N°® 24 € t44
IWA 378 907 Nu® ¥sn sO74 a1 LR 31va NWW 13 Y sy ¥d0 Qv3IYHL N3ITISW
z 39vd 000 AV 1 d SI1Q 201 WHWOIJ¥3ILNI c2o 02°21°91 3IWIL S61°00 31va

b

Simulation Mode Execution Log Printout (Page 2 of 8)

Figure 55.

160

Subsystem Testing

Chapter 12

IWA %18 901 NNW@ asn $914 aI1 ELR S 3iva NWW JsS sy ¥d0 GV3¥HL NITISM
3 **62°02 €O0ET 64261104 %90000
&° $(°°ONNOJ LION §°(° WIBWNN LuVda ato»89as JE8%%I50 %390930% €£390500Y §4v»Q06IE 0%60532) »0%3500% €360T2.0 280000
sH°85°239VSSIW YONUUIA® WS °3°3°°)1 82078436 TIvesILI 12232350 %00%6090 60605283 QT4L8G6TT 46862106 G&TTEITS 000000
L9 00 24 € 00 0000 11831 1981°L6°61 s61°88 [1J60/vy 0000/°° 20 1 211
44 00 ot € 00 0000 14831 0681°L6°ST s61°88 1 0000/°° T1J60/vd 24 1 I44
° °002°4°66695 3°¢vinuz 92040424 36971164 64546464 45621189 1I60%3%0 000000
44 00 10 € 9) 0000 11831 0681°26°61 s61°88 LA 0000/°° 1Je6Q/v¥ 24 0 29
° *002°4°65555 3I°tvunwz 92040424 369JT16d4 64646464 49621189 1260%3%0 000000
00 00 14 € 00 0000 T1S3L 65%81°26°61 s61°88 0 0000/°° 0000/°° 20 0 29
L9 00 €4 4 00 0000 11831 9TwT°26°6T s61°88 €T 1J)60/vy 0000/7°° 20 1 44
L AR 0000 00000000 00000000 00000000 2€0000
L AAAA AR AARAR LA OOt 00001000 00002000 00001000 00001500 00000691 00006000 00001000 00000000 000000
44 00 vd 4 00 0000 T1S3L €960°L6°61 s61°88 21 0000/°° 1J60/vVY¥ 24 T, [1)
L °°V °0°28/11/01 °:d2 €0ETTD 0»T11040T 246841914 14190414 0%0IVL9D 26€000
60 SVO°MW°0°LT90%0% °:33040 NOO°3I% 900%231J 040T93%0 T104QTLd Td49304%d 04940501 v26062%) 60900%SA 9004QT6D 02€000
eW°0°28/50/€0 °:40 SVO°071°0°90519% »0T10401 24841964 0419€404 09QTVL9D 900%231) 040190€0 11040194 04531494 982000
oT9 °:ONVH NOO°SX°0° 9N°°VId ¢IWVe 14940%0T vL%I501) 82095090 03016320 11040704 £J20J€8% 12€0970% 8962%01) 962000
¢IW °INOILVIOTO®AF®33SNOHIYVM LV ¢ 6J%00%01 v.60906) €E3TJ€290 €0030T63 10TTVL6D 2393908) $2601293 OYE3TI0% 22000
aSN1VLS MIDOLSO°N °0°L060°S05% °:3¢ 23%3€31) €3230%20 €290€323 0401504y 11040124 0463048% 64046486 0¥QTVLS) 261000
6J1¥d0°4)°0° S¥9 °:SLINN ¥3IQAU00°% £3636020 0401920% T1040T0% 092360L) 0501vL23 £36250%3 0%605I%) 60900401 091000
SAD>°0°°>° ¥D>CYIHSVM 1331S NI 2/1 63251104 QTVSI»TIT 0%60J%2€ 60628J23 1J930%€0 §35J0€323 0950620% 2419140% 821000
6°INOT1dI¥ISIQO°N°°:SNLVLS XI01S0% QTve6090 62€3206) 60€EI235D »J0401S0 8y T1veZ3 »3€310€3 230%20€) 90€32304 960000
6°31°0°0023°:0N SHMA®NA°0°S»€213°x Q1606211 04010404 24050TVL 90500%23 82938301 SQ9J110d4 Q1SJ%4€d 24140601 990000
¢:ON L¥VdA®33°:viva ¥3ILN3IO0°68° 300« v190600% £36012.0 8301660 TIVvLTIES 1I%J0%60 $I€360$) 04016427 116I%I90 2€0000
2D NOILIVSNVAL ¥3IINIO°VIANWV® °I6s €30%5090 6J€3€I1I 23501260 €£30%605) €3606304 OTT1J60%3 »QATI0T0% O¥Y1TEISS 000000
L9 00 24 2 00 0000 Tis31 2960°265°61 s61°88 ET 1J60/vy 0000/°° 20 1 (344
44 00 ot 2 00 0000 T183¢L 88%0°L6° 61 s61°88 21 0000/°° 1J60/vd 24 1 2y
L] °002°4°69€21 3°¢VANUS 92040424 36901164 »4€424Td 49621189 1260%3%0 000000
44 00 10 2 9) 0000 11831 88%0°26°61 s61°@88 Z1 0000/°°* T1J60/vd 24] 29
L] ©002°4°GY€E2T 3° ¢viNWx 92040424 36901164 »d4€42414 49621189 1J60a%3%0 000000
00 00 T4 2 00 0000 11531 88%0°26°6T s61°88 0 0000/°° 0000/°° 20 0 29
L9 00 €4 1 0o 0000 TiS3L €600°26°S1 s61°88 11 »0»0/WW 0000/°° 20 1 2y
L] secoccccsceccey 0000 00000000 00000000 00000000 2€0000
L AR A A S AR] 00001000 0000T000 00001000 00003200 00000422 0000.000 00002000 00000000 000000
44 00 vid 1 00 0000 11§31t 6%26°96°61 s61°88 (D¢ 0000/°°* %0%0/WW 24 1 (1}
s °°V *0°9uW° °*:d40 SVO°=z €0ETTIO0Y 11040194 »0110%01 v29I900% 23120401 892000
MW °0°dW°® °:¥30¥0 NOO°IW°O°MI°* °:2 93501104 QT120%0T1 0%0Tve6Q $2%J6090 05609004 QT1SJI»Q11 040193€0 T10%01VeL 962000
640 SV0°071°0°31° °:ONVH NOO°SXN°0°z 93900%23 1J040190 €0QTT1040T 9IEQT10% QTve»d60 138060 90040164 20110401 22000
S9N *:INOLIVIOTNO°Ar*:3ISNOHIYVM LV 2320T10% Q1v25090 6J€312€D 90€00401 S3TATTIVL 6I23%390 8I6J601I 930%€31) 261000
IWA 378 907 NWE ¥sn $974 artL ELIPY iva NWW J$S sy 440 QV3Y¥YHL N3ITISW
€ 39vd *0%x A V14 S 10 901 WHWO0OJ¥3ILNI posn 02°21°91 3wIL $61°88 31va

Simulation Mode Execution Log Printout (Page 3 of 8)

Figure 55.

161

Subsystem Testing

Chapter 12

IMA 378 907 NNWE ¥sn s974d arl Wil 31va NWH JSS sy Ud0 OvVIYHL N3T9SuW
MRS SR 0000 00000000 00000000 00000000 2£0000
MRS ASS A & 00000000 00001000 00001000 0000SEOQQ 00000L%1 0000€000 00001000 00000000 000000
44 00 vd 1 00 0000 _ TiS3L A AL AN A REY s61°88 81 0000/°° TJ60/v¥ 24 1 (1
s **6%°0° *(°009 3% €0€ET63IS TTO04QTO0» @90SI€03 034930%6) ¥90000
«SNOHIAVM N1 ONNDJ LON THEZT L¥Vds 23%3908) 6601293 0%50620% %J50»390 9J0%€390 SQO0%Td%d €424140% €3601220 280000
oH® 8 °:397SSIW A0UUIA LS $°3°° D12 83018436 TIVLG6ILD 1I23235) »Q0%6090 60606283 QT4486TT 346862106 8%TTEITS 000000
L9 00 23 S 00 0000 Ti1S31 2918°L6°S1 s61°88 61 1J60/vy 0000/°°* 20 1 [Z4¢
44 00 ot S 00 0000 11831 [124 AN AL $61°88 81 0000/** T1J60/vd 24 1 2y
[*009°4°TvE2T 3°*VINW 92040494 36971114 »d4€424T4 49621189 12604350 000000
44 00 10 1 9) 0000 11831 §6T%°26°61 s61°88 81 0000/°° 1J60/v¥ 24) 29
s *009°4°T9€2T 3**Vianux 92040494 35971114 #4€£424T4 45621189 1J60%3%Q 000000
00 00 14 S 00 0000 11831 ¥619°26°61 s61°88 0 0000/°** 0000/°°* 20 0 29
19 00 ¢4 L4 00 0000 11831 ETLE LG ST s61°88 L1 1J60/vd 0000/°*° 20 1 2y
* Sooseceririecey 0000 00000000 00000000 00000000 2€0000
 3AAAAA AL AL LA RAA A S AR 00000000 00001000 00001000 00008400 00008091 0000000 00001000 00000000 000000
44 00 vd L [+]4} 0000 1183t 0t182°L5°s1 s61°88 91 0000/°*°* 1J60/v¥ 24 1 8¢
o °°VY °0°28/11/01 °*3 - €0 €T1J05TT 040124984 T9TJ4TIT9 04140%01 26€000
€340 SVO°MW®°0°9060605 °:¥30¥0 NOO2 vL£93900% 23170401 93901104 Q1940464 034630463 0%0TVL60 $I%JI6090 09509004 02€000
4°3W°0°28/60/€0 °:40 SV0°01°0°L06® QT$J%0TT 04012484 19630419 €4040%01 vi93900% 23170301 90eQTT10d Q1230464 882000
20606 ONVH NOO°SX°0° 9%°°10) ‘us 04640464 0%QTve%) 6013820% $09003401 63201104 Q1042J20 J€E8%€Q90 €2048960 962000
$3AN3Q °:NDILVIOTO® AL °:ISNOHIYIVM ¢ 63635063 %J0»0Tve $0906J€3 1J3€290¢€0 04016310 TIVL6I23 93908260 60129309 »22000
«l¥ SNLVLIS NIO0LSO°N °0°9050°506% o €3100%23 »3€31J€3 230%20€) 90€32304 01604571 0J40T9304 630348%Gd 0364860 261000
6°23218d0°3)°0° HIVI °:SLINN ¥IAYS QTVL62€) 62602004 QT9I20%1T 030T0%8D €21J6J00% QTvL23€3 6I50%30% 605I%J60 091000
s00°A>°0°*>° ¥>°3IVIS KNIV L4 € = 90040163 J»TT1040T VSI»TTO0% 60I%IESD €Q12€323 0%»Q%3€0 €ATIOYEI 9I0%EJ0% 821000
6°INDIL1dI¥ISIAO°N°*2SNLVLS NI01SO0% Q1vis090 62€3206) 60€2236) 2040160 9y TTIVL23 »3€3TI€3 230%20€) 90€3230d 960000
$*°3]°0°00€E3°:0ON SHMA®NI®0°85€2T3°% Q156211 04070404 €4050TveL 90600%23 93936301 60921104 Q184%4€4 24140601 %90000
930N L¥VdA°33°:viv0 ¥ILNI0°5E°300s v490600% €3601320 €30TSI6D TIVLTIIES 13430960 $3€360S) 040T$42) 115I%I90 2€0000
#) NOILIVSNVYL ¥3IINIO°VINWVY® °IGa €3095090 62€3€J1) 2360TJ60 €30%60%D €3606304 QT1J60%3 »A12QT10% O09TTEIGS 000000
19 00 24 L4 00 0000 11831 6082°L6°61 561°88 A ¢ 126Q/v¥ 0000/°° 20 1 194
94 00 ot L4 00 0000 1183t 2082°26°61 $61°088 91 0000/°° 1J60/vd 24 1 [44
L] *00€°J°8YEZT I° V3NN 920404¢ 4 36901184 »4€424T1d I%$2T189 12609340 000000
14 00 10 L4 9) 0000 11831 1082°26° 61 s61°88 91 0000/°* 1J60Q/vy 24 0 29
s *00E°I°BHE2T 3°‘VINWE 920304¢€4 36921184 »d4€424T4 45601799 1260%3%0 000000
00 00 T4 L4 00 0000 11831 1082°26°61 s61°88 0 0000/°° 0000/°°* 20 0 29
L9 00 €4 € 00 0000 11831 89€2°Ls° ST s61°88 s1 1J)60/vy 0000/°° 20 1 44
L e ‘% 0000 00000000 00000000 00000000 280000
goooeococcccecccccsccccnnnce % 00000000 00001000 00001000 00009€00 00000€EST 00002000 00002000 00000000 000000
44 00 vi € 00 0000 11831 1981°26°61 so1°88 LA 0000/°° T1Je6G/vd 24 1 88
IdA 318 907 NW8 asn S94 all ELDUE iva NuWW 133 sy ¥d0 QV3yHL N3IT9SW
L4 39vd s8¢ A V1 d ST Q 901" WWOIJIY¥3ILNI o 02°21°9T 3WllL s61°88 31va

Simulation Mode Execution Log Printout (Page 4 of 8)

Figure 55.

162

Subsystem Testing

Chapter 12

IWA %18 307 NwE® ¥sn $974 ari 3uWlL 3iva NuWW JIsS ISy 340 QV3I¥YHL N3ITOSW
SH®05°239VSSIN YOUYIA WS °$°3°°D1s 82018426 TIv26IeD 13232360 »00%6090 60606383 OT42861T 46862106 8YTTEITS 000000
L9 00 23] 00 0000 11831 8%01°86°61 s61°88 [T4 1J60/vy¥ 0000/°°* 20 1 1e1

44 00 Ot 8 00 0000 11831 L90T1°86°61 s61°88 L% 0000/°° _Dea/vy 24 1 t44
] *A02°4°XYE2T 3I°CVANNS 92830424 36901123 »4€42414 4%6I1189 1J60%3%0 000000
44 00 10 8 92 0000 T1S31 9%01°86°61 s61°08 w2 0000/°°* 1J60/vy 24 0 29
s *A02°4°XYEZT 3°¢VUNH 92830424 36931123 »dJ€424T4 49621189 1260%3%0Q 000000
00 00 14 8 00 0000 11831 9%01°86°91 s61°88 0 0000/°** ©0000/°° 20 0 29
L9 00 ¢4 L 00 0000 T1S31 6190°86°61 s61°88 e2 1J60/vd 0000/°°* 20 1 I44
] AAAAAARRARARARS 0000 00000000 00000000 00000000 2€0000
L MMM SR A R A AR b R 00000000 00001000 00001000 00008200 00008941 00002000 00000000 ©0000000 000000
44 00 Vi L 00 0000 11831 0600°85°61 561°88 22 0000/°*°* TJe6Q/vy 24 1 1]
s **62°0° ‘(°Jl¥x €0€T 64361103 ATO0¥890$ IEEI6I6A ¥90000
23WAN 38 1SNW DNSHM :v1iva QITVANIx 6J%0%350 0962220% €323%3%0 0%905023 839305ve TI€31J2%) 0v%I62€0 12636062 2€0000
oH° 8 :139VSSIW YOUYIAw$®°$°3°° D10 83018436 TIvZ6I2D 12232367 »A0%609Q 60606283 QT4286TT 36862105 Q»1T1E014d 000000
L9 00 24 3 00 0000 11531 0600°85°61 s61°88 €2 1J6G/vd 0000/°°* 20 1 021
44 00 Ot I3 00 0000 11831 8800°86°S1 se1°e88 22 0000/°° 1J)64/v¥ 24 1 2y
¢ *008°3°65€2T 3°¢VyNUL 92040420 369ITT6d »d€42414 49801189 TI60%3A 000000
44 00 10 L 9) 0000 T1s31 8800°86°61 s61°88 22 0000/°° T1J60/v¥ 24 0 29
L4 *008°3°GHE2T 3° VYN 92040429 wmouawmu »d€42414 49631189 1J60%3%0Q 000000
00 00 T4 L 00 0000 11834 8800°86°61T s61°98 0 0000/** 0000/°° 20 0 29
L9 00 €4 9 00 0000 11s31 €696°26°6T s61°88 12 1J6a/v¥ 0000/°° 20 1 r44
L soeoeccossscccey 0000 00000000 00000000 00000000 280000
AR L A S i - 00000000 00001000 00001000 00008200 00000241 00002000 00000000 00000000 000000
44 00 Vi 9 00 0000 11531 82T15°26°61 s61°88 02 0000/°° 1260/v¥ 24 1 o8
L **6%°0° ¢(°D1¥3a €0€T6d ISTTO4AT 0¥E90GIE €262609) %90000
SWAN 38 1SNW ONLYYd :viva QITVANIs »0»3600% $2220%€3 23%3¥00% 9050€360 1J200%ve TI€31I%) 0v%J62€0 13636060 2£0000
oH* 002 30VSSIN HOUYIA WS °$°3° °)10 82018426 TTIvesdLD 1223234) »00%6090 60606283 GTJ42686TT 46862106 GYTITE£IT4 000000
L9 00 24 9 00 0000 11831 L2T6°L5°6T s61°88 12 1J60/vy 0000/°° 20 1 121
44 00 Ot 9 00 0000 11831 9216°26°61 s61°88 02 0000/°* 1)60/v¥ 24 1 2y
L] *002°4°S9E2V 3°*ViNN2 92040424 3691164 »4E€424TD 49621189 1260%3%0 000000
44 00 10 9 9) 0000 11831 9216°26°61 s61°88 02 0000/°°* 1J6Q/vy 24 0 29
¢ *002°4°G%€2V 3°‘VINNS 92040424 369JT16d »d4€ 42410 49631169 1260%3%0 000000
00 00 14 9 00 0000 11831 6216°26°61 sel°ge 0 0000/°°* 0000/°° 20 0 29
L9 00 €4 S 00 0000 11831 ”89%°L6°6T s61°88 61 1)60/vy 0000/°° 20 1 t44
INA %18 207 NuWE ¥sn S914 all INIL 3iva NWW Jss R] 440 QV3IWYHL N3VOSW
$ 39vd %38 AV 1 4 S 1 Q 901 WHWOIU¥WI L NI saxs 02°21°91 3wWIL $61°89 31va

Simulation Mode Execution Log Printout (Page 5 of 8)

Figure 55.

163

Subsystem Testing

Chapter 12

IWA 278 907 Nu8 ¥sn SO ari IWIl jiva NWW 133 sy ¥d0 QVv3IYKL N3IT9SW

% eV & €0ETTII0Y #8€000

6°0°28/11/01 °:40 SVO°MW°0°%0%0%0% 11040124 84191414 1904140% QTIVL9I9Q 05231204 Q193%01Y 040T%404 »304%404 268000

26 °:d¥3030 NOO*3IN°0°28/60/€0 °:402 640%0Tve 6052%260 900%5$090 04015240 11030124 84195404 19€30340% QTIVL9I9Q 02€£000

% SVO°0°0°%T906T9 °:ONVH NOO°*GX°% 04231204 QTSQEO0TT 0J4O0T»dTd 94046314 940%01vL. %J60128) 04609004 Q16342011 882000

60° 9N°°VId *IWVIW °*INDILVIOTNO°Arx 04010%2J 202€8%1D £0920%89 62%01J6) %0Q0%Q01ve 609060€3 TJ€J90€0 040TS3TQ 952000

4°13ISNOHIYVAM LV SNLVLIS NIOLSO°N °2 11vL6223 %390€26) 6012930 £3170%23 »3€312€3 230%20€) 90€32304 QTSQ4°T1 %22000

20°9191°906s °:3J01¥d0°4)°0° 200 = 04019414 934148594 04534860% O1VLGIED 636024004 Q1920411 03QT0%0% 6390%J0% 261000

&*:SLINN ¥3QU00°A>°0°°>° ¥>°1708 Q1v223€3 6250%30% 6052%J60 90030163 J#T10401 VvSIH»TT0% 602%J€€3 €090270% 091000

#39VI¥AVI MNIVIE QVIH LvId NI 8/€ * $343136) 6060TIED 0%20€ITI €0ZI0%%) 1262€20% €31J€09) 0%50620% 8419€40% 821000

:NDILdI¥IS3QO°N"*:SNLIVLS %J01S0% Q1ve5090 62€3206) 60€2236) %J04Q160 9y TTvL23 »3€312€3 230%20€) 90d€32304 960000

%°31°0°00T3°20N SHMA®NI*0°2%E2T13°% 01526211 04010304 1340501vZ 90500423 82938301 S09J1104 Q12Z4%4€4 24740601 %90000

430N 1¥VdA®33°:viVv0 ¥3LN30°56°3002 v£90500% €3601320 830T1625) TIvLIIE] 1I%J0%60 $J€3606D 03QT6342) 11834290 Z2€0000

6 NOILIVSNVYL ¥3INIO°VAINWY® *I6n €3055090 6JE3€ITI 2360T1J60 €30%6Q5) €3606304 Q11J60%3 $01J010% 0¥1T€ISS 000000
L9 00 24 o1 00 0000 11831 9862°86°61 s61°88 62 1J60/vy 0000/°° 20 1 0EYy
44 00 ot 01 Q0 0000 11531 LL62°85°61 s61°88 82 0000/°° 1J60/v¥ 24 1 I44

% *00T°4°2%€2T 3°¢vunuz 92040414 36921124 %4€42414 49$IT189 1I60%3%0 000000
34 00 10 01 9 0000 11831 1162°86°61 s61°88 82 0000/°° 1J6Q/v3 24 Q 29

L *00T°4°2%€2T 3°¢Vinus 92040414 359I1124 »4€42414 4%6I1189 126Q%3%0 000000
00 00 14 o1 0o 0000 11831 LL62°85°61 s61°88 0 0000/°° 0000/°°* 20 0 29
L9 00 €4 6 00 0000 11831 €962°86°61 $61°88 L2 1J60/vy 0000/°° 20 1 I44

L4 cocoeecsccnces 0000 00000000 00000000 @Q000000 2€0000

gooteeetccccrcccctssccccccceccocty 00000000 00001000 00001000 0000TEOO 000089451 00002000 00001000 00000000 000000
44 00 v4 6 00 0000 11531 0%02°86°61 s61°88 92 0000/°° 1J6G/vy 24 1 ee

L] *°62°0°e €0€T64 26110401 ¥90000

& *(°°ONNQJ LION 6%E2T Y3IBWNAN LUVda 0%8905J0€ 8%%)50%3 90920%€3 90500964 »4€424T4 0460622) »0»3500% €360TI.0 2£0000

aH*85°:JOVSSIN YDUY3IA ws°°$°3°° s 82018426 TIVZG6ILI 1223236) %00%6090Q 60605283 QT428611 346862105 @5T1€I14 000000
L9 00 24 6 00 0000 11831 0%02°86°51 s61°88 %4 1J60/vy 0000/°° 20 1 (28
44 00 Ot 6 00 0000 11831 920z°86° 61 s6l1°88 92 0000/°° T1J6Q/vy 24 1 2y

L “00T°4°65€2T 3°*ViNWx 92040413 36931164 %4€42414 49501189 1J60%3%0 000000
44 00 10 6 9) 0000 11531 9202°96°S1 s61°88 92 0000/°° 1J60/v¥ 24 [29

L] “00T°4°6%E2T 3° ‘vinNus: 92040413 36931164 »d4€42414 45621189 1)60%3%0 000000
00 00 14 6 00 0000 11831 9202°85°6S1 s61°88 0 0000/°°* 0000/** 20 0 29
L9 00 €4 8 00 0000 115831 6861°86°61 s61°88 (T4 1J60/vd 0000/°° 20 1 2y

8 ceccccocccccccy 0000 00000000 00000000 00000000 2E0000

LA 00000000 00001000 000071000 00008200 000082 %Y 00002000 00000000 00000000 000000
44 00 vd 8 00 0000 11831 8%01°86°S1 s61°88 L4 0000/°° 1J60/vy 24 1 88

L *t6n°0° JI¥3IWNN 38 1SN €0 ET63I6TT 03QT0%0% 0%0%£26) 605J2%0%3 $00%$J2) 0%¥€323%3° »90000

oW ONSHM ONV ON1¥Vd :VIVO QITVANIZ »00%9050 2382930% %J601J0% 9050E360 1J200%ve TIE3TI%D 0%%J6I€Q 12653506) 2€0000

IA %78 907 NW8 ¥sn 974 ari INIL Jiva NHW 28§ sy ¥do Qv3Iy¥HL N3ITOSW

9 3ovd s%g0 AV V4 S 10 201 WWO0ODJUY¥I LNI 2280 02°21°91 3uWlL $61°88 31vO

Simulation Mode Execution Log Printout (Page 6 of 8)

Figure 55.

164

Subsystem Testing

Chapter 12

IWA X178 907 NuE ¥sn S974 all INIL 3iva NWW JSS ISy ¥do QV3I¥HL N3T9SW
0s 00 O€ 11 00 0000 [{DE]: DS »58%°86°6T 561°88 (13 1agoo/r* %»300/Nn° 24 1 2y
o 86« 8464 %90000
¢°61 088-€1-L0 133507 S1 WWOOY% 8%534140% 0%848409 €41409L4 030%0%0% vL®26I23 90€Q€I0% 23620950 %090€J60 2€0000
$ILINI &xNOON¥3L4V Q009 xex®®°*°°°% 6J€3606) 0%0%236J26 60909050 606I€39) TJ0%%290 90LJ0%26 J6I6I€T10 02002044 000000
0s 00 10 1t 00 0000 [([s}.1:BY »G85°86°61 s61°88 (23 1000/r°* %300/Nn° 24 0 8d1
% coccececccccncy 0000 00000000 00000000 00000000 2€0000
LA RA A AR AR AL D 00000000 00001000 00001000 0000L100 00000921 00001000 00000000 00000000 000000
0s 00 Vi 11 00 0000 TOLIND %l9%°86°61 s61°68 2€ 1a00/r°* %300/n°* 24 1 (1]

] °8&°ST 88-€1-20 $03S07) Slis L€ 84648554 T40%0%84 8409€4T1d 09.4030% 0%0%VL%) 6J2390€0 €20%236) 2€0000
& WWOOMILINI &&NOON¥ILJV 0009 #so 0%%0%090 €2606J0€3 606J0%0% 26265090 90606052 €39I2T120% %29090L) 04262626 000000
04 00 24 11 00 0000 T01ND 1L9%°86°61 561°68 €e ¥300/0° 0000/°° 20 1 €01

0s 00 o€ 11 00 0000 T01N) €99%°86°61 s61°88 2€ 1000/r° &300/0° 24 1 2
% (114 8464 %90000
8°6T B8-€T1-20 $03S07D S1 WWOO Y& 8%64140% 09848409 €4T1409L4 040%050% vL%2%323 90€Q€EJ0% 23620950 %090t J60 2€0000
$3INI weNOONY314V Q009 Bss°***°°n §3€3606) 0%0%3626 $0909060 606J€39) 130%%J90 90GLJ0%IS6 J6ISIETO 02002044 000000
0s 00 10 1t 00 0000 T01ND €99%°86°61 s61°88 2¢€ 1g00/r* %300/0n° 24 0 801
] cevcecscccccny 0000 00000000 00000000 00000000 2€0000
geoeettteccctccccteccctcctcctoy 00000000 00000000 00000000 0000%000 000008%0 00000000 00000000 00000000 000000
0s 00 v4 11 00 0000 J7vol €995°86°61 561°08 1€ 1Q00/r°* %300/0n° 24 1 1]
0s 00 o€ 11 00 0000 VoL 9695°86°61 561°88 1€ 1000/F°* %300/Nn° 24 1 r44
L] A 0000 00000000 00000000 00000000 2€0000
LAAAAA AR AR LA RS LR A AR e 00000000 00000000 00001000 00002000 00000420 00000000 00000000 00000000 000000
44 00 vi 1 00 0000 T101ND 9695°86°61 s61°08 0€ 0000/°° 1Q00/r° 24 1 88
] 86 8464 290000
$°6T1 088-€71~20 1035070 SI WWOJ¥s 8564140% 05848409 €4T140924 040%0%0% VL%J6J23 90€0€J0% 23630%%Q %090€J60 2€0000
o3INI oaNOONJ3LdVY Q009 #pac**°°°p 6J€3606) 0%0%J536 60909060 60%I€39) 130%%290 90220%JS J6I6IET0 02002044 000000
(19 00 1O 18 00 0000 IIvoL 9694%°86°61 s61°88 1€ 1000/f° #&300/n° 24 1 801
EE] 00 OF 11 00 0000 TO0IND 6€9%°86°61 s61°88 /] 0000/°° 1Q00/f° 24 1 2y
L] *4QJUN2 9289 %J€2605Q 000000
44 00 10 Tt 00 0000 TO0LIND 6€9%°86°61 s61°88 0€ 0000/°°* 1Q00/f° 24 0 8y
L] *4QI¥Ns 9289 %JEI6050 000000
00 00 14 11 00 0000 TO1ND T€E9%°86°61T 561°68 0 0000/°°* 0000/°°* 20 0 -1
L9 00 €4 o1 00 0000 11831 126€£°86°61 s61°88 62 136Q/v¥ 0000/°° 20 1 2
L] L S i] 0000 00000000 00000000 00000000 280000
LA AR AAAA MR A S 00000000 00001000 00001000 00008%00 00008191 0000000 0000T000 00000000 000000
44 00 vid ot 00 0000 11531 9862°85°61 s61°88 82 0000/°° 1J60/vV¥ 24 1 [:1]
INA %78 207 NWE ¥sn SO alt Wil 31va NWW Y 1%] ¥d0 av3yHl N3T9SwW

L 39vd aoak AV 1 d S 10 2017

WWODJ2 3L NI soas

02°21°91 3uWlL

s61°88 31ivaQ

Simulation Mode Execution Log Printout (Page 7 of 8)

Figure 55.

165

Subsystem Testing

Chapter 12

° X%00¢ L3%40404 2E0000
elINI 39vSS3IW NMOO3SDTI WWOI¥3ILINIs €3€3606) 0%$24J1) 23Z362%0 0%%09394 %J6J2390 €QEIO0»»0 %090€J6Q $I€3506) 000000
00 00 vv 0 00 0000 s ¥265°86°61 s61°88 0 0000/°°* 0000/°°* 00 0 8L
vd 00 o€ 11 00 0000 T01ND 05%6°86°61 s61°88 8€ 0000/°° 1000/r° 24 1 2y

L *¢QIUNe 9289 &J£J6050 000000
vd 00 1o 11 00 0000 TO0IND 0655°85°6T s61°88 13 0000/°°* 1Q000/r° 24 0 8y
0s 00 €4 11 00 0000 aox8l €L26°86°6S1 s6T1°88 SE #300/n° 0000/°° 20 1 t44
0s ooalmm 11 00 0000 T01IND $ST16°96° 61 s61°88 €€ %300/0° 0000/°° 20 1 t44

s M 6100 00000000 00000000 00000000 2€0000

goo0ccccccrsotcrre orcecescrcrney,

10 00 Vi 0

00000000 00000000 00000000 00006200
00 0000 TO0LND 0216°86°651 s61°88

00000¥€0 00000000 00005000 00000000 000000
LE 0000/°°* 8000/0° 20 1 [

L AR A A] 080000 00000000 00000000 52000000 91000000 €60S$86ST 000000
00 00 00 0 00 0000 b »116°86°61 s61°88 0 0000/°° 0000/°°* 20O 1 s9
10 00 O€ 0 00 0000 TO0LIND 6606°86°61 s61°88 LE 0000/°°* 8Q00/0° 20 1 [44

s eecccceseccccey,

AR AL R A A RN AR P

00000000 00000000 00000000 0000€000

0000 00000000 00000000 00000000 2€0000
00008£00 00000000 00000000 00000000 000000

24 00 Vvid 11 00 0000 TO0LND §606°85°51 s61°88 9¢ 0000/°°* 1000/f° 24 1 -1
10 00 10 0 00 0000 TOLND 6606°86°61 s61°88 Le 0000/°° 8Q00/0° 20 0 mc
24 00 Ot 11 00 0000 TOLND 2606°86°61 661°88 9 0000/°° 1000/Ff° 24 1 2y

L *¢QIuNa 9289 %J€360S0 000000
24 00 10 11 00 0000 101N 2606°85°61 s61°88 9 0000/°° T1Q00/f° 24 0 8y
L R 0000 00000000 00000000 00000002 2€0000

AR AR RN R AR A AR AR RN

0s 00 vid 11

00000000 0000T000 00001000 00009100

00000921 00002000 00000000 00000000 000000
e 1000/r° #300/Nn° 24 1 1]

L] °86°Ss1T 88-€1-L0

(1 00 24 T1

:03S07) SIz
¢ WWOJDYILINI <2>NOON¥3L4V 0009 e

00 0000 aowe. 968%°86°S1 S61°88

LE 84648564 140504984 8J09E4Td
0%%0%090 €26062€3 $0620%0% 15755090
00 0000 aodel §68Y°86°6T s61°88

09.3030% 0%0%VL%) 612390€Q €I0%9236) 2€0000

906060as) €£392120% 42909020 0%JI62626 000000
(13 »300/Nn°* 0000/°*° 20 1 €01

INA %78 907 NwE

[} 39vd

¥sn S974 ari ELIBY 31va0

e AV 7 4SS 10 9017 WWOIU¥3

NWiW 13y R ¥d0 QV3¥HL N39S

1 N 1 secs 02°21°91 3wl 661°98 31va0

Simulation Mode Execution Log Printout (Page 8 of 8)

Figure 55.

166

Chapter 13

SUBSYSTEM TESTING IN TEST MODE

13.1 INTRODUCTION

All of the testing functions may be performed using the Intercomm
Test Mode of operation without a Front End defined. Rather than
receiving messages from a terminal, the Test Monitor reads messages
into the system from a card-image data set. Snaps of input (snap
id=15) and output (snap id=20) messages constitute a history of Test
Mode execution. Essentially, the Front End is replaced by the Test
Monitor (PMITEST) to drive the Back End as wusual. In this way,
subsystem testing can be going on in one or more regions or address
spaces without affecting the on-line system. Figure 56 illustrates a
sample reentrant Assembler subsystem (SQASM) designed for the same

purpose as SQASMA, but using the Edit, Output and Change/Display
Utilities.

13.2 TESTING A SUBSYSTEM IN TEST MODE

To add and test an application subsystem in Test Mode, do the
following:

NOTE: Steps preceded by an asterisk (*) may often be performed
for the application programmer by an installation’s
Intercomm System Manager. Appendix C summarizes the
Intercomm Table entries.

1. Compile and 1linkedit the application program. Appendix A
describes Intercomm-supplied Assembler JCL procedures.

*2. Create or add to a USRSCTS member on a user test library to
contain a Subsystem Control Table Entry (SYCTTBL macro) which
describe the subsystem. Reassemble and 1link INTSCT which
copies the USRSCTS member from the test library (see Figure
57).

*3. Create or add to a USRVERBS member on the user test library
to contain an Edit Control Table (VERBTBL) entry for editing
of input test messages by the Edit Utility. Reassemble and
link PMIVERBS which copies the USRVERBS member from the test
library (see Figure 57).

*4, If a Fixed Format output message (VMI=X'72’) is created for
processing by the Change/Display Utility, code an entry for
the CHNGTB (see Figure 57) to define the DES000 data set
entry number for the File Description Record (DES0O000l--see
Figure 58). The PMIEXLD utility must be used to load the FDR
to the DES000 file (see the Utilities Users Guide and the
Operating Reference Manual).

167

Chapter 13

*7.

*8,

10.

11.

Note:

Subsystem Testing in Test Mode

Code, assemble and link and add an INCLUDE statement for the
OFT load module RPTnnnnn (RPT00100 and RPT00501--see Figure
58) to the Output Format Table (PMIRCNTB) in the Test Mode
Intercomm linkedit for output message formatting by the
Output Utility.

Prepare test messages via the SIMCRTA utility or as direct
card-image input data (SYSIN data set). An input test
message consists of a header card, detail cards, and a
trailer card, grouped together as illustrated in Figure 60.
Figure 59 details the required card formats. The message
area in the Test Monitor will accomodate a message text up to
958 bytes long. Longer messages would require a modification
to the Test Monitor (PMITEST), as described in the Operating
Reference Manual.

Add control cards to the linkedit deck for the user program,
unless the subsystem is dynamically loadable (see Figure 61).

Linkedit to create an Intercomm Test Mode load module (see
Figure 61).

Create test data sets and add DD statements for them to the
execution JCL.

Execute in Test Mode with test messages in card-image format:

a. Single-thread test the subsystem; to test a reentrant
subsystem, initially specify MNCL=1 in the subsystem’s
SYCTTBL macro.

b. Multithread test a reentrant subsystem (change MNCL)
using several test messages.

Test Mode execution is activated by the parameter ’‘TEST’' on
the Intercomm EXEC statement. Figure 61 illustrates a sample
execution deck with test message input (DD statement SYSIN)
for the sample inquiry program and JCL to print the system
log.

The resulting snaps for the test mode execution of the sample
inquiry subsystem are illustrated in Figure 62.

The System Log printed after executing in Test Mode with the
sample inquiry subsystem is shown in Figure 63.

Test the subsystem concurrently with other application
subsystems.

"to implement the sample subsystem for on-line execution, it

would be necessary to code a BTVERB macro (in USRBTVRB--see
Chapter 12) as follows:

BTVERB VERB=RTRA, SSCH=R, SSC=A,CONV=18000,EDIT=YES

168

Chapter 13 Subsystem Testing in Test Mode

2 SQASM CSECT
3
4 SAMPLE REENTRANT ASSEMBLER SUBSYSTEM USING ThHE FILE HANDLER TO
5 * ACCESS BDAM AND VSAM FILES. THE EDIT UTILITY IS USED FOR INPUT
6 * MESSAGE EDITINGs THE OUTPUT UTILITY FOR QUTPUT ERROR MESSAGE
7 FORMATTINGy ANO THE CISPLAY UTILITY FOR OUTPUT MESSAGE TEXT
8 * CONVERSION TO AN OUTPUT UTILITY FORMATTING MESSAGE.
9 *
10 *# 33852k 25 0288000 %n REGISTER USAGE FEERRERRRREREREEEREERIRR RN SR
11 *%% R2 PARAMETER SAVE REGISTER e
12 *+* R3 SPA ADDRESS hibehd
13 **x R4 INPUT MESSAGE ACDRESS ke
14 **% RS BASE REGISTER FOR OUTPUT MESSACE DSECT A
15 ***% R6 HOLD OUTPUT MESSAGE LENGTH "
16 *#** R7 = UNUSED -~ e
17 *** RS - UNUSED =~ *hx
18 *#** RS9 WORK REGISTER e
19 #*%+ R1C RETURN CODE e
20 *** R11 BAL REGISTER ke
21 *** R12 BASE REGISTER "
22 **% R13 SAVEAREA(WORKAREA CSECT) *ee
PRI RIS AR LR S AR R A R RS R R R R R R R R R R R AR S RS A RS R R RS R]
25 REGS
26+*% EQUATE RN NAMES TO ALL GENERAL PURPOSE REGISTERS
2T+ LAST REVISION 12/10/68
28+R0O ECU 0
29+R1 EQU 1
30+R2 EQU 2
314R3 EQU 3
32+R4 EQu 4
334R5 EQU 5
34+R6 EQU 6
35+R7 EQU 7
36+R8 EQu 8
37+R9 EQu 9
38+R10 EQu 10
39+R11 EQU 11
40+R12 EQU 12
41+4R13 EQU 13
42+R14 EQU 14
43+R15 EQU 15

Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 1 of 10)

169

Chapter 13 Subsystem Testing in Test Mode

45 PRINT NOGEN
46 SQASHM CSECT
47 SRS RIR AR RRERARRRRARRRRFERA R AR R AR PEF R AR RN R AR IR EBEAS RN AR RN AR

48 * PROVIDE LINKAGE AND OBTAIN CORE *
R M, TmIImIIInmnmMnImnmTmMTInmIoTmnm Mmoo
50 USING INMSGyR4

51 USING DUTMSGsR5

52 USING WORKAREAsR13 .

53 LINKAGE BASE=(R1Z2)sLENSDYNLENysPARM=(R2)9ySPA=(R3)yMSG=(R4&]} X

DSECTS=(SCTyMSGyR13)

55+ PRINT NOGEN

69+ PRINT NOGEN

T4+ PRINT GEN

75+ PUSH PRINT TURN OFF PRINT GENERATION

76+ PRINT NOGEN

789+ PCP PRINT RESUME PRINT GENERATION

Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 2 of 10)

170

Chapter 13

Subsystem Testing in Test Mode

8l6+
917
918
519

922 +*

925

937

638

939

940 *

941

942 MSGCKAY
943

944

G46 *

PRINT NOGEN

LAD
MVC
SR

G24& MAPINPUT DS

CALL
LTR
B8z
LA

B
DS
L
ST

ERRMSG,C' * BLANK ERROR MESSAGE AREA
ERRMSG+1(L'ERRMSG=1) yERRMSG
R10yR10 SET RETURN CODE TO ZERO

G21 #4334 AR ARR AR KRR AR RRRRR R EBRERRRR AR RS ERR RN KA B RRARRRESEEESFERER KRS

INVOKE EDITCTRL e
PR LR 2T R R R 2 2 R R 2 A 2 R R R R R R R R S A R A R R S R R R R R SR RS R R R R 2T 2 2 2)
OH
EDITCTRLs((R4)9(R3)40)yVLoMF=(E,PARMSAVE)
R15,R15 EDIT OK ?
MSGOKAY YES
R10s4 NC - SET RETURN CODE
NOTE: EDIT UTILITY RETURNS ERROR MESSAGE
RETURN EXIT (NO MSG TO FREE)
OH
R4yPARMSAVE LOAD EDITED MSG ADDRESS
R4y IMSGADDR SAVE MSG ADDR FOR LATER FREE

G45 322X XR XXX RBRFEXNRERRR RS RARRARRHRRRRRRRRE R R RRR R Rk b RbbeR bR

PREPARE TO SELECT AND ACCESS BDAM FILE *

LrYAR R A R SRR ER R EE R R RS R R R S R R AR R 2 R R R R R R R R R R R R S R RS SRR R L D)

948 MvC CLRRFILE y=C'PARTFILE® DD NAME OF BDAM FILE
949 BAL R11+SELECT SELECT THE FILE-EXIT IF NG GOOD
950 PACK DBLWORDyRBNBYTE PACK RBN DIGIT INTO DOUBLEWORD
951 cvs RG,»DBLWORD CONVERT TC BINARY
652 ST RG4FULLRBN RBN FOR ACCESSING BDAM FILE
953 CALL READy(EXTDSCTyFHCWyBDAMFILEJRBN)9yVLyMF=({E4PARMSAVE)
567 CLI FHCWsC'O" WAS READ SUCCESSFUL?
568 BNE BDAMERR NO
969 BAL R11yRELEASE RELEASE THE FILE
970 cLC PARTNOs PARTNUM DO WE HAVE THE CORRECT RECORD?
971 BNE NOTFOUND NO

Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 3 of 10)

171

Chapter 13

Subsystem Testing in Test Mode

Q73 2552252545585 4 RN RRERBERESHEX S DBESERRERR X RS FREPRRREENE bR %S
§74 * PREPARE TO SELECT AND ACCESS VSAM FILE *
GT75 X454 AR PR AL SRS LB RS BRE SRR P ASERR AR ARE AR XA S SR AL BRGS LR A ARk bRk kPR
976 XC EXTDSCT4EXTDSCT CLEAR EXTDSCTY
977 MvC CURRFILE 9y=C*'STOKFILE' DONAME OF VSAM FILE
978 B AL R11,SELECT SELECT THE FILE-EXIT 1F NO GOOD
79 MVC KEYPART9PARTNO FORMAT KEY FOR VSAM GET
980 MvC KEYWHS y WHSNO VSAM KEY NCW COMPLETE
68l CALL GETVy(EXTDSCTsFHCWyVSAMFILEs VSAMKEY) sVLyMF=(E,PARMSAVE)
995 CLI FHCW,C'0" WAS GETV SUCCESSFUL?
996 BNE VSAMERR NO
997 B AL R11,RELEASE RGUTINE TO RELEASE FILE
998 LA R6yODUTMLEN SET OUTPUT MSG AREA LENGTH
599 BAL R11,GETOMSGC GET AND INIT OUTPUT MSG AREA
1C00 B MOVE INFO SET OUTPUT TEXT AREAS
1002 #*2 %3252 2545 24X 65X A R XXX NER R B LR DR XXX R FREREER AR R R R R R kR XAk SRk EBRESEE S
1003 =* SELECTy RELEASEsy AND OUTPUT MESSACE °'STORAGE® ROUTINES *
1C04 ** %5224 %5852 522k REXR P RLRE R L RN RXRRERRRRRRR LS SRR E AR XX Rk ARk R
1C05 SELECT 0s OH
1006 MvC FHCWyBLANKS CLEAR FILE HANDLER CONTROL WORD
1€07 CALL SELECTs(EXTDSCT9FHCWsCURRFILE)sVLyMF=(EsPARMSAVE)
1019 CLI FHCWsC'O' WAS SELECT SUCCESSFUL?
1020 BNE SLCTERR NO '
1021 MVC FHCWBLANKS CLEAR FHCW FOR I/0
1022 BR R11 BRANCH BACK
1024 RELEASE DS OH
1025 CALL RELEASE+{EXTDSCTyFHCW) 4yVLyMF=(EsPARMSAVE)
1C36 BR R11 BRANCH BACK
1038 GETCMSG DS OH :
1039 STORAGE ADDR=0OMSGACCRILEN=(6)sLIST=PARMSAVE,SPA=(3)
1050 LTR R154R15 WAS STORAGE ACQUIRED ?
1C¢51 B8z CONT YES
1C52 LA R10+8 NO CORE RETURN CODE
1053 B FREEIN NOTHING CAN BE DONE=-GO BACK
1054 CONT LS OH
1055 L R49IMSGADDR RELOAD INPUT MSG ADDRESS
1C56 L R590MSGADDR LOAD OUTPUT MSG ADDRESS
1C57 MVC MSGHLEN(MSGHLNTH) »O(R4) MOVE INPUT MSG HEADER
1¢58 STK R69MSGHLEN STORE CUTPUT MSG LENGTH
1C59 MVI MSGHQPR,C'2' SET QPR = SINGLE SEGMENT MSG
1C60 MVC MSGHSSCHyMSGHRSCH SET HI-ORDER SENDING SS CODE
1061 MvVC MSGHSSCyMSGHRSC SET LO-ORDER SENDING SS CODE
1062 MVI MSGHRSCH,» O SET HI-ORDER RECEIVING SS CODE
1C63 B8R R11 BRANCH BACK
Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 4 of 10)

172

Chapter 13

Subsystem Testing in Test Mode

1C66
1C67

1069
1070
1071
1¢72
1C73
1074
1C75
1C76
1¢77
1c78
1079
1080
1081
1082
1083
1084
1085
1086
1c87
1c88
1C89
1090
1091
1092
1093
1094
1C95
1096
1097
1€98

1065 #4528 4 4582242 XXREENRRAEEBERAEERRRER SRR R IH R EERRES LSRR RN b S hED

* MOVE DATA FROM FILES TO GUTPUT MESSAGE AREA *
* PACKED INTERNAL FIELDS ARE PRE-EDITED FOR DISPLAY UTILITY *
1068 ** %325k 2523545k R XS RRXRREFRERRRERERRREERRRRRERE RS RERAARE SRk bR bR gy

MOVEINFO DS OH

MVI MSGHRSC,C'H* SET RSC FOR DISPLAY SS

MVI MSGHVMI,Xx*72" SET VMI FCR DISPLAY SS

MVC FMTNAMEsDISPNAME FILE DESCRIPTION RECORD NAME

MVC OUTWHSNO(2)9BLANKS LEADING BLANKS NEEDED

MVC OUTWHSNO+2(3) yWHSNO WAREHOUSE NUMBER

MVC PRTDATASPARTNUM PART #9 DESCRIPTION,y UNITS

MVC PRCEDITHZEDITPRC MOVE EDIT PATTERN TO WORK AREA

ED PRCEDITsPRICE EDIT UNIT PRICE

MYC PRTPRCyPRCEDIT PRICE

MYC WHSLCC 9y WHS WAREHOUSE

MVC NUMEDITLEDITNUM MOVE EDIT PATTERN TO WORK AREA

EC NUMEDIToSLEV ECIT STOCK ON HAND

MVC STKLEVsNUMEDIT+1 STOCK LEVEL

MVC LEVDATE(2)sSDATE MONTH

MVI LEVDATE+24,C'/"

MVYC LEVDATE+3(2)4ySDATE+2 DAY

MVI LEVDATE+5,C* /"

MVC LEVDATE+6(2)sSDATE+4 YEAR

MVC NUMEDIT EDITNUM MCOVE EDIT PATTERN TO WORK_ AREA

ED NUMEDITHOLEV EDIT STOCK ON ORDER

MVC STKORD yNUMEDIT+1 STOCK ORDER

MVC ORDDATE(2)y0DATE MONTH

MVI ORCDATE+2+C" /"

MVYC ORDDATE+3(2) yODATE+2 DAY

MVI ORDDATE+54C*/ !

MVC ORDDATE+6(2)9sCDATE+4 YEAR

(2R S R R R R R SRR R RS R) 2)]

*

INVOKE MSGCOL TO QUE

UE MESSAGE FOR DISPLAY UTILITY *

L 2R R R R R R R R R R R R R R R R RS R S R R R R R R R A R AR 2R 22 R 2 2 2)]

(Page 5 of 10)

173

1099 CALL MSGCCL9((5)9(3))yVLsMF=(EsPARMSAVE)
1110 LTR R154R15 SUCCESSFULLY QUEUED?
1111 BZ FREEIN YES
1112 LA R10,8 NO CORE RETURN CODE
1113 B FREEIN EXIT
1114 PRINT NOGEN
Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

Chapter 13

Subsystem Testing in Test Mode

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1246
1247
1248
1249

1116 2463202088550 28n b pd g kR0 RR R AR 00kt ks bbb skt R nbprbRetsbshsbtbnns

1117 + FREE INPUT MESSAGE AREA AND RETURN &
1118 #2550 8 80254k kR AR R R XX R R SR A RS AR ARERRRRR R e bR pRbRbbegSk
1119 FREEIN DS OH

1120 L R1,IMSGADDR RELOAD INPUT MSG ADDRESS

1121 LH ROs0(R1) LOAD MESSAGE LENGTH

1122 STORFREE ADDR=(1)4LEN=(Q),SPA=(3)

1123+ PRINT NOGEN CH
1128+ PRINT GEN CH
1126+ N Os=X'OCFFFFFF! ENSURE SUBPOOL BYTE IS CLEARED.
1130+ L 159SPAFREE~SPALST(3) . LOAD STORFREE RCUTINE ADDR SK
1131+ BALR 14,15 CALL ROUTINE.

1132 RETURN DS OH

1133 PRINT NOGEN

1134 RTNLINK ADDR=(R12)sLEN=DYNLEN)RC=(R10} RETURN CONTROL
1144+ PRINT NOGEN

1180+*4GETSPA - V7.0 - 11/76 - SM

I E R RS R R R R R R R R R R R R R R R R A R R R R R R R R R

*

SLCTERR

ERROR PROCESSING .
RESR A RAFRRR AR R IR IR AR R R AR R R R AR R R R R R I F R R R R RN B A RR R R RS R R AR R R AR R bRk
DS OH
MvC ERRMSG(8) s CURRFILE MOVE FILE NAME

NOTFOUND

VSAMERR

BDAMERR

DOERRMSG

MVI ERRMSG+9,C'~" .
MvC ERRMSG+11(L*SLCTMSG) ySLCTMSG SELECT-ERROR MESSAGE

B DOERRMSG

DS OH

MvC ERRMSG(L*NCFNDMSG) yNOFNDMSG ELUSIVE=-PART MESSAGE
MvC ERRMSG+5(5)sPARTNO MCYE IN INVALID PART NUMBER
8 DOERRMSG

DS OH

CcLI FHCW,C'2" RECORD NOT FOUND ?

BNE BDAMERR NO - I/0 ERROR

BAL- RI11,RELEASE
MVC ERRMSG(L 'NOWHSMSG) yNOWHSMSG WRONG-WAREHDUSE MESSAGE

MVC ERRMSG+5(5)yPARTNO MOVE IN INVALID PART NUMBER
MVC ERRMSG+34(3)yWHSNO MOVE IN INVALID WHS NUMBER

B DOERRMSG

0s OH

BAL R114RELEASE

LA R10s12 I/0 ERROR RETURN CODE

B FREEIN

0s OH

LA R6yERRMLEN SET ERROR MSG LENGTH

BAL R11yGETOMSG GET AND INIT QUTPUT MESSAGE AREA
MVI MSGHRSC,C'U" SET OUTPUT UTILITY SS COOE

MVI MSGHVMI,X'50° SET FORMAT MSG VMI

MVC ERRORFMT yERRMSGID MOVE REPORT #, ITEM CODEs LENGTH
MYC ERRORTXTsERRMSG MOVE ERROR MESSAGE TEXT

CALL MSGCOLs((5)9(3))sVLIMF=(EsPARMSAVE)

LTR R154R15 WAS MSG QUEUING SUCCESSFUL?

BZ FREEIN YES - FREE INPUT MSGy, EXIT

LA R10,+8 NO CORE RETURN CODE

8 FREEIN NOTHING CAN BE DONE-GOBACK

Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 6 of 10)

174

Chapter 13

Subsystem Testing in Test Mode

1251 S 40040ttt abntbast ettt tdtt e a st bRt R R RN E NN RR AR e bR R AR ARt b ko b i
1252 * CONSTANTS *
1253 #$400Sbatttts st kb b s Ra e AR AN RA BRSNS RN A R AR R RN SRR
1254 BLANKS ocC CL4' '
1255 SLCTMSG ©OC C'FILE COULD NOT BE SELECTED®
1256 NOFNDMSG DC C'PART XXXXX NOT FOUND'
1257 NOWHSMSCG DC C'PART XXXXX NOT FOUND IN WAREHCUSE YYY®
1258 DISPNAME DC C'SSRQOO0OL"* FDR NAME IN CENGTS
1259 DC ctao’ FULL MESSAGE INDICATOR
1260 DC c* ' USE OFT # IN FDR
1261 ERRMSGID DS OH ALIGNMENT
1262 bC X'FF0O2" ITEM CODEs LEN FOR REPORT #
1263 DC H'501" ERROR MESSAGE OFT NUMBER
1264 DcC X'FQ! ERRCR TEXT ITEM CODE (249)
1265 DC HL1'50" ERROR TEXT LENGTH
1266 EDITPRC DC C'3'9x'2021204B20202020' PRICE EDIT PATTERN= $NNJNNNN
1267 EDITNUM DC X'40206B20202C6B202120"' # EDIT PATTERN= NyNNN,NNN
1268 LTCRG
1269 =C'PARTFILE"
1270 =C'STOKFILE'
1271 =X'00FFFFFF"
1272 =Y (PMIRTLR)
Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 7 of 10)

175

Chapter 13

Subsystem Testing in Test Mode

(Page 8 of 10)

176

1274 3443250545888 5 8048858088 X 2R X SR E R X0 EHEERREE R0 Rtk etss
1275 * DSECTS »
1276 #5343 28284444 XA XA RRF XXX B RH RSB XXX RR XX SRS SRR REEEkERs
1277 WORKAREA DSECT
1278 SAVEAREA DS 18F
1279 IMSGADDR OS F ADDRESS OF INPUT MESSAGE
1280 OMSGADDR DS F ADDRESS OF OUTPUT MESSAGE
1261 PARMSAVE DS 6F 6 IS MAX NUMBER OF PARMS PASSED
1282 DBLWORC DS D USED IN CREATING RBN
1283 FHCw DS F FILE HANDLER CONTROL WORD
1284 EXTDSCT DS 12F BDAM AND THEN VSAM CONTROL AREA
1285 FULLRBN DS OF
1286 DS xL1
1287 RBN DS XL3 USED FOR ACCESSING THE BDAM FILE
1268 VSAMKEY DS ocL8
1289 KEYWHS DS CL3
129C KEYPART DS CL5
1291 CURRFILE DS cLs
1292 BDAMFILE DS ocLlo0 100 BYTE BDAM RECORD BEGINS HERE
1293 PARTNUM DS CLS
1294 DESCRIPT DS CL54
1295 UNITS DS CLS
1296 PRICE DS PL4
1297 MFR DS CL15
1298 UNUSED1 DS cL17 ’
1299 VSAMFILE DS oCcL80 80 BYTE VSAM RECORD BEGINS HERE
1300 DELETE DS CcLl
1301 KEY DS cL8
1302 UNUSED2 DS cLz2s
1303 WHS DS CL23
1204 SLEV DS PL4
1305 SDATE Ds CLé6
1306 OLEYV DS PL4
1307 ODATE DS CLé
1308 ERRMSG DS CL50
1309 ORG ERRMSG REUSE AREA FOR NUMBER EDITING
131C NUMEDIT DS CL10
1211 PRCEDIT OS CL9
1312 ORG
1313 DYNLEN ECU *-WORKAREA TOTAL DYNAMIC WORKAREA LENGTH
1215 INMSG DSECT
1316 DR CL42 MESSAGE HEADER
1317 PARTNO DS 0CL5 PART NUMBER
1318 DS CL4
1319 RBNBYTE DS L1 FOR BDAM FILE ACCESS
13220 WHSNO [/} CL3 WAREHOUSE NUMBER
Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

Chapter 13

Subsystem Testing in Test Mode

1322 CLTMSG DSECT

1323 COPY MSGHDRC MESSAGE HEADER

1324 »

1325 # MESSAGE HEADER LAYOUT

1326 ¢ ERRREERRREERRRR RN

1327 » LAST REVISICN 10/20/82-RELEASE 9.0

1328 »* LAST REVISION 07/30/85-LU 6.2 SUPPORT

1329 =

1330 MSCFLEN DS BL2 LENGTH OF MESSAGE

1331 MSGFQPR DS BL1 CTAM/BTAM 1/0 PREFIX BLANK IF SS MSG

1332 MSGHRSCH DS XLl FI-0RDER BYTE OF RECEIVING SUBSYSTEM CODE

1333 MSGHRSC DS CcL1 RECEIVING SLBSYSTEM COODE

1334 MSGKHSSC DS cL1 SENDING SUBSYSTEM COQE

1335 MSCHMMN DS 0BL3 MONITOR SEQUENCE NUMBER X1078

1336 MSCGFTXTL OS BL2 RECORD LENGTH (FILE RECOVERY) X1078

1337 MSGFKEYL DS CL1 KEY LENGTH (FILE RECOYERY} X1078

1338 MSGHDAT DS ocLé CATE (YY.CDD) X1078

1339 MSGEYR DS CcL2 YEAR X1078

1340 MSCFTHRD OS BL1 THREAD NUMBER X1078

1341 MSGHDAY DS CcL3 DAY x107e

1342 MSGHTIM DS cL8 TIME (HH.MM.SS)

1343 ORG MSGHTIM FIELDS USED IN SCANVERB DURING JA

1344 * CONSTRUCTION OF MESSAGE IN LINE HANDLERS JA

1345 MSGRYFLG DS B FLAGS JA

1346 MSGHVFND EQU x'80" VERB WAS ANALYZED BEFORE CALLING BTSEARCH JA

1347 MSGHVBA DS AL3 A(BTYERB ENTRY) IF MSGHVFND FLAG ON JA

1348 ORG MSGHTIM4L*MSGHTIM JA

1349 MSGFTID DS CL5 TERMINAL ID (AAANN) AAA=CITY,NN=DEVICE ID

1350 MSGHMRCX DS 0x INDEX TO MULTIREGION MCT ENTRY

1351 MSGhHCON DS BL2 COMPANY NUMBER

1352 * SPECIAL VALUES CF MSGHCON JA

1253 MSGHCFLA EQU x'gsol’ FLUSF=-ALL CHASER MSG JA

1354 MSGHCP12 ECU X'8803" 3270 COPY FORM 1 (REM.=-SAME CU)y2 (3275-hR) JA

1355 * MSGHCP12: COPY TYPE 1 OR 29 ISSUING TERM REQUEST RESPONSE SM1124

1356 MSCFCN12 EQU X*'Bp13"’ COPY TYPE 1 OR 2y NO RESPONSE TO ISSUER SM1124

1357 MSGHCP3 ECU x'sgoz2' 3270 COPY FCRM3 (READ FULL BUF REQUEST) JA

1358 MSGHR12G ECU X'BBO4" IBM12S CARD READER RESET I/P INHIBITED MSG JA

1359 MSGFFEVR EQU x'BB* SET IN MSGHCON+1 OF RESPONSES TO F.E.VERBS JA

1360 ORG MSGHCON+1

1361 MSGHRETN DS BL1 RETURN COCE.

1362 MSGFCONY EQU c'ec! 30 LOGGED FROM CONVERSE.

1363 MSCGHFLGS DS OFL2 MESSAGE INDICATOR FLAGS SM11l¢6

1364 MSGHFLGl DS FL1 MESSAGE INDICATOR FLAG-BYTE-1 SM1166

1365 MSGHFSDR ECQU x'8o0! ASK FOR DEFINITE RESPONSE VTAM

1366 MSGFFSER EQU X'40' ASK FOR EXCEPTION RESPONSE VTAM

1367 * IF MSGHFSDR+MSGHFSER=0 THEN NO RESPONSE VTAM

1368 » SPECIFICATIONs USE OTHER SOURCES TO DETERMINE. VTAM

1369 MSGHFRSP ECU MSGHFSDR+MSGHFSER MASK TO CHECK 'SRESP' VTAM

1370 MSGHFSR1 ECU x'20°* 1 => RESPONSE TYPE 1 (FME) VTAM

1371 MSGFFSR2 ECU x'10°" 1 => RESPONSE TYPE 2 (RRN) VTAM

1372 MSGHFSEB ECQU x'o8' SEND EB WITH THIS MESSAGE VTAM

1373 MSGHNCON ECU X'04" DO NOT CANCEL CONVERSATION TIMEQUT XM0215

1374 MSGHFNF3 ECU x'g2’ 1 => DONT WRITE X°'F3' LCG RECORD FCR MSG

1375 MSCGHFRLS EQU x'or RELEASE NEXT OUTPUT MESSAGE SM1166

1376 * SM1166
Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 9 of 10)

177

Chapter 13 Subsystem Testing in Test Mode
1377 MSGHFLG2 DS FL1 MESSAGE INDICATOR FLAG-BYTE=2 SM1166
1378 MSGHFTRM ECQU x'ao' PSGFADDR PCINTS TO SOURCE BTERM/LUC SM11l66
1376 MSGHSRST EQU X'40°! SERIALLY RESTARTED MESSAGE INDICATOR (9.0) CH
1380 MSCGFSYSC EQU xt20' CUEUE THIS MSG TO A 6.2 SESSION EVEN 51MD
1281 »* IF NO CONVERSATION CURRENTLY ACTIVE 51MD
1382 MSGHFMHI ECU x'10' THIS MESSAGE CONTAINS 6.2 FMHDR S1MD
1383 * Js
1384 MSCGFBMN DS BL3 BTAY SEQUENCE NUMBER Js
1385 »* Js
1286 MSGHPMN EQU *

1387 MSGHSSCH DS ¥L1 HI/ORDER BYTE OF SENDING SUBSYSTEM
1388 MSGhHUSR DS XLl AVAILABLE T0 USER
1289 ORG MSGHUSR Js
1390 MSGHADDR DS AL3 ADDRESS OF AN AUXILIARY ARE2 {FE ONLY) Js
1391 ORG MSGHTID FOR FILE RECOVERY X1078
1392 MSGHBKID DS cLs B0AM BLOCK ID (FILE RECGCVERY) X1078
1393 MSGHDD DS cLs FILE DONAME (FILE RECOVERY) X1078
1294 MSGHLOG ©OC cro! LOG TYPE CODE -SEE MONITOR WRITEUP
1395 RVZONE EQU x'so* FILE REVERSAL ENTRY.
1396 RCZIONE ECU x'90°* FILE RECREATION ENTRY
1397 MSGFXFIL EQU RYZONE+15 CHECKPOINT RECORD.
1298 RCSTUP EQU RCZONE+15 STARTUP RECORD.
1399 MSGHRQST ECU X'A0" LOGPROC REQUEUEING STARTED.
140C MSGHRQND EQU X'Al' LOGPROC REQUEUEING ENDED.
1401 MSGhRBUF DS OH BUFFER LENGTH (BDAM FILE RECOVERY) X1078
1402 MSCGFMACR DS 0BL1l FILE FANDLER MACRO # J7
1403 MSCHBLK DS CLl BLANK (BINARY ZERQ)
1404 MSGHVYMI DS BL1 VYERB/MSG ID
1405 MSGFFFVM EQU X'e7? SPECIAL VMI FCR FULLY FORMATTED MSGS JA
1406 DDQVMI EQU X'EE! SPECIAL VMI FCR DYN. DATA QUEING MM
1407 *
14C8 MSGHEND EQU *
1409 MSGHLNTH EQU MSGHEND=-MSGHLEN LENGTH OF MESSAGE HEADER
1410 * :
1411 OUTTEXT DS 0CL147 TEXT AREA
1412 FMTNAME DS CL12 FIXED FORMAT AREA
1413 PRTCATA DS CL64 PART #y DESCRIPTIONs UNIT TYPE
1414 PRTPRC DS cL9 PART PRICE (EDITED)
1415 OQUTWHSNO DS CL5 WAREHOUSE NUMBER (LEADING BLANKS)
1416 OUTSDATA DS 0CL57 STOCK DATA
1417 WHSLOC DS cL23 WAREHOUSE SITE
1418 STKLEYVY DS CL9 WAREHOUSE IN STOCK (EDITED)
1419 LEVDATE DS cLs WAREHOUSE LEVEL DATE
1420 STKCRD DS cL9 WAREHOUSE ON ORDER (EDITED)
1421 CORDCATE DS CLs WAREHOUSE QORDER DATE
1422 DS oC ROUND UP MSG AREA
1423 COUTMLEN EQU *-0UTMSG OQUTPUT MSG AREA LENGTH
1424 ORG OUTTEXT
1425 ERRCRFMT DS CL6 ERROR MSG OFT #, ITEM CODEs LEN
1426 ERRCRTXT DS CL50 ERROR TEXT AREA
1427 DS Q0 ROUND UP MSG AREA
1428 ERRMLEN EQU *-0UTMSG OUTPUT MSG AREA LENGTH
1429 END
Figure 56. Sample Inquiry Subsystem; Reentrant Assembler

(Page 10 of 10)

178

Chapter 13 Subsystem Testing in Test Mode

PAGE 179 INTENTIONALLY MISSING

179

Chapter 13

Subsystem Testing in Test Mode

//TABLES
//*
//*

/*
//STEP1
//LIB.SYSIN

./ NUMBER
USRSCTS
RA

/*

//ASM. SYSIN
//*

//*

//*

//STEP2
//LIB.SYSIN

./ NUMBER
USRVERBS
RTRAECT

/*
//ASM.SYSIN
//*

//*

//*

//STEP3
//LIB.SYSIN

./ NUMBER

CHTB
CHNGTB

//

JOB
DEFINE SYCTTBL FOR SUBSYSTEM

EXEC LIBELINK,Q=TEST,NAME=INTSCT,IMOD=INTSCT
bD *

./ ADD NAME=USRSCTS

REW1=100, INCR=100

DS OH

SYCTTBL SUBH=R, SUBC=A,SBSP=SQASM, LANG=RBAL,OVLY=0,
NUMCL~10 ,MNCL=1, TCTV=60

DD DSN=INT.SYMREL(INTSCT) ,DISP=SHR
DEFINE EDIT CONTROL TABLE ENTRY

EXEC LIBELINK,Q=TEST,NAME~-PMIVERBS,LMOD=PMIVERBS
DD *

./ ADD NAME=USRVERBS

NEW1=100, INCR=100

DS OH

VERB RTRA,D9,256,2,FIX=YES
PARM P/N,1,7,5,10000111
PARM WHS,2,7,3,10000111

DD DSN=INT.SYMREL(PMIVERBS),DISP=SHR
DEFINE CHANGE/DISPLAY TABLE

EXEC LIBELINK,Q-TEST,NAME-CHNGTB,IMOD—CHNGTB
DD *

./ ADD NAME=CHNGTB

NEW1=100, INCR=100

TITLE 'CHNGTB - FIXED FORMAT OUTPUT-DESCRIPTOR NAME TABLE'’
CSECT

DC CL8'SSRQO001’ USED ONLY TO TEST BAL PGM. GUIDE S/S
DC F'0’

PMISTOP

END

Figure 57. Table Updates to Implement Test Mode Testing

180

Subsystem Testing in Test Mode

Chapter 13

00€€0000
002€0000
001€0000
000€0000
00620000
00820000
00220000
00920000
00520000
00%20000
00€20000
00220000
00120000
00020000
00610000
00810000
ooL10000
10910000
00610000
00¥T0000
00€T10000
00210000
00TTI0000
00010000
00600000
00800000
00200000
00900000
00600000
00%00000
00€£00000
00200000
00100000

SYy=0Ll¢QE=W0A4¢9T=300)

GE=0L¢TE=WOUH*,40 SV,=VLIV0O¢552=300)
€2=01¢ST=WDd4¢ST=300D
ETI=01¢9=W0Y¥d¢ , 43040 NO.=VLVI*G52=300)
Y=SWILI‘B=WNN

GE=QL¢TE=WOYd* 440 SV=ViVE*¢652=30I)
Gy=01¢8E=W0Dd4¢»T=300D
£2=D1¢GT=W0d4¢