INTERCOMM

C OPERATING REFERENCE MANUAL

C ::s: nt:::)I:A'rlom

330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR
Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Operating Reference Manual

Publishing History

Publication Date Remarks

First Edition February 1974 This manual corresponds to Intercomm
Release 6.0. It 1incorporates and
supercedes documentation formerly in
the Intercomm Users Guide, now
obsolete.

Second Edition March 1983 General updates and additions
corresponding to Intercomm Release
9.0.

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system

executing on the IBM System 360/370 family of computers and
operating under the control of IBM Operating Systems (MFT, MVT, VS1,
MVS). Intercomm monitors the transmission of messages to and from
terminals, concurrent message processing, centralized access to I/0
files, and the routine utility operations of editing input messages
and formatting output messages, as required.

Installing and maintaining an on-line system is a complex task
with many variables ranging from coordination of equipment delivery
and associated environmental planning to scheduling the implementation
of application programs which service users at remote locations. One
phase of this installation is implementing Intercomm, the on-line
system monitor which schedules and controls the operation of the
comunications network, as well as the application programs that
process the traffic input from, and produce the output to, the network.

This document provides guidelines for the installation,
maintenance and tuning of Intercomm, including an orderly breakdown of
responsibility for system definition, testing and production
operation. It serves as a reference manual for systems personnel
responsible for the operation of the on-line system.

The following Intercomm publications are prerequisite and/or
relevant to this document:

- Concepts and Facilities
o Installation Guide
® Basic System Macros
o Messages and Codes

(] System Control Commands

A Users Review Form is included at the back of this manual. We

welcome recommendations, suggestions and reactions to this or any
Intercomm publication.

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PL/1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Mess;ges and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

iv

FEATURE IMPLEMENTATION MANUALS

Amigos Users Guide

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Eantry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Remote Job Eantry (0S)

Store/Fetch Facility

SNA Terminal Support Guide

TCAM Supoort Users Guide

Utilities Users Guide

TABLE OF CONTENTS

d
2]
[¢]

Chapter 1 THE INTERCOMM ENVIRONMENT .cveescecsccscsoscsccscacs
1.1 Introduction seeeessessecssessossccsssssssssoannns
1.2 Front End .cceeeeecescesoccscsoscsescscscassscncccns
1.3 Subsystem Controller ..icceceecessscscessscccsssas
1.4 Queue Management ROUtINES .v.veeeeeranccccacossans
1.5 File Handler ..ececeecsccseesacsascssscscnasccsanas
1.6 DiSpatCher c.eeeeesceesscsccsscsssssasesansssssosse
1.7 Resource Managementccceveescesscessccsscsncns
1.8
1.9
1.9
1.9
1.9
1.1
1.1

—_
!

- 2
| I N |

1
OWOOO~NTOUVIEFFWLWWWN = =

Utility ProgramsS ..cesseessacsesscosassssassassaca

Region Organization ..eececeeccccscosescsceacscsas
1 Dynamic¢ Program Loading ..ceeecesscesoscscacccans
o2 Overlay Program Loading .c.ceceeeseccacsccanceasncs
3

. Asynchronous Overlay Loader ...cccceececceaccoass
0 Modes of Execution .icececeecocecessscaccscscascas
1 Intercomm TableS cececesccevsccscscaasasscsassasaca

| == oy =
1

—_
- |

Chapter 2 THE INTERCOMM OPERATIONAL SYSTEM .ticveccccccosscanse
2.1 Installation OVerview ..ccccececescsscscssccosnsacs
2.2 Libraries ceeceececcesscsascsasacacacssossssosanse
2.2.1 Source Library Concatenation Sequence ...ceccese
2.3 JCL Procedures ..ecececcscascscsascscscscsssaassacas
2.3
2.3

NN NN
| I A I |
RN 2 [I N N |

N
]
-—

1 Step NamesS .eeceecscssescacsacsssscascsossascscascs
2 JCL Procedures for Source Updates, Compiles,
Assemblies, Linkedits ..ccieeccecnccccocnncens
3.3 JCL Procedures for Utility Executionseec...
A System Installation and Maintenance
Responsibilities .uveeeeecessvsccessosancocaasss 2-19
2.5.1 The Intercomm System Manager(s) ..ceeeeecescaass 2=20
2.5.2 The Application Group{S) .eeeeeeesceesecossccans 2-21
2.5.3 Central Location Operations ..iceeeeescccsassaaas 2=-21
2.6 Standards seceeeteccccccccctsarsascccacstrassocenes 2-21
2.7
2.7
2.7

n N
11
—_—)
(o QY

System Control Functions and TableS ceeeccscesecas 2=-23
1 System Global Tables (INTGLOBE, SETGLOBE) 2-24
.2 System Control TableS ..veeeccscececsscscncssons 2-28

Chapter 3 MESSAGE MANAGEMENT ..vceeercoceoosssscocosasasacanns
Introduction .eeeeeeseasvescescsaasaasssssscancscss

General MessSage FloWw ceeeeessccsscscooscscacssaans

Input MeSSageS seeevesssessssassssssscssossaaccans

Output MeSSagES +eeesecosococssesssssesoscssosnans
Message/Subsystem Cancellation Processing.......

1 Message Cancellation User Exit--USRCANC
2 Message Cancelled Condition .eeeeceesvacacsnans
3 Subsystem Stopped Condition ceeeeveeecccecases
The Front End Verb Table ..ceeeesecscccsccccncsass

o1 Entries in The Verb Table .eieescesscssccssoaasca

1
NN OUNTUTW DN =

.
WWN MDD DO N
.
WwWww D -
.

Wwwwwww W ww w
L}

W Www Wwww w Www
.

Page

3.3.2 Short Verbs .eeeeeeessvecesscesosessssassssesses 3=10
3.3.3 Priority Verbs .eeesececcecccososssssscssssssssscs 3-10
3.3.4 Locked Verb Facility .veeeeecececsccccscsasssons 3-10
3.3.5 Conversational Verbs cceeeecescesosnsscnsncsnnansns 3-11
3.3.6 Separate Assemblies of Verb and Network Tables . 3-12
3.4 Back End Table Specifications for the Utilities... 3-12
3.4.1 Station Table seeseccccccsssssssssccsnsssssscens 3-12
3.4.2 Device Table soeeececosssssssccoscosssssscsanasss 3-13
3.4.3 Broadcast Table .eeeeccccessssssssscoscsssssssns 3-14
3.4.4 Message Mapping Utilities Requirements ...eeeess 3-15
3.4.5 Edit Utility Requirements ..ceeeeeeocscsssssccass 3-15
3.4.6 Output Utility Requirements ...ceeesecoceccssssss 3-17
3.4.6.1 Adding Output Format Table Entries .eeieessses 3-18
3.4,6.2 Error Messages from the Output Utility 3-19
3.4.6.3 Output User Exit--USROTEDT .vveevcccssnccccens 3-20
3.4.6.4 Output User Exit--USROUTCK svsescccscccsccosss 3-20
3.4.7 Change/Display Utility Requirements 3-21
3.5 Message Processing Facilities ..ceeecceccsssnccconsse 3-22
3.5.1 Message Switching weeesessccccascessossssscccens 3-22
3.5.2 Multi-Message Queuing via the Dynamic

Data Queuing Facility .eeeececossccsccccacesnns 3-22
3.5.3 Front End Control Message Facility eceeeececccses 3-23
3.5.4 Page Facility ..eeeeeeecososssssssssoasssssscnnns 3=24
3.5.5 Intermediate Message Data Storage ..eecsescessss 3=24
3.6 The System Parameter Area (SPA) .cvieesecssccossssnns 3=24
3.6.1 System Parameter List (SPA CseCt) sveeeveesesces 3-25
3.6.2 User Extension to the System Parameter

List (USERSPA) toeevsosccssascsccssssosnssaassns 3-25
3.6.3 Intercomm Extension to the System

Parameter List (SPAEXT CSecCt) cecececsococsnns 3-25
3.6.4 Separate Assembly of the SPA and

the SPAEXT CSECLS ceveesoncsosossssssesssncses 3-25
3.7 The Subsystem Control Table (SCT) eeveecsccessceosss 3=26
3.7.1 Coding Subsystem Control Table (SCT) Entries ... 3-29
3.7.2 Coding Subsystem Control Table Indices

(GENINDEX) teceeoenossocscsnosossccssssossnnss 3-33
3.7.3 Coding Overflow Disk Queue Allocations

(PCENSCT) eeesecossaosnscsassssnnssssosransssans 3-33
3.7.4 Adding a SUbSYStem s.vveevvccesssosssonsssensses 3=33
3.7.5 Subsystem Control Table Verification (CKOVLYNO). 3-34
3.8 Subsystem Processing Specifications ..eeeccevcececse 3-34
3.8.1 Subsystem Queue Specifications ..sieeesessescesss 3=34
3.8.2 Scheduling and Concurrent Accessing Limits 3-35
3.9 Subsystem Residency Considerations .eeveceeceseccees 3=36
3.9.1 Subsystem Reentrancy .eeceeeceescocsscssscscsscocs 3-36
3.9.2 Resident SubsSystems ..eeeeecscccesssssscscnsnsas 3-36
3.9.3 Overlay A and Execution Group Subsystems 3-37
3.9.4 Dynamically Loaded SubsSystemsSceeeescescesss 3-39
3.9.5 Dynamic Linkedit Faciliby ..ieeeessssscocessssen 3-40

vi

.
[T R Y
—_ 2

Q LWWWLWLWWLWLWLWLWW
. ° o . L4 . ® o .
R S U Y

a
1
2
2
2
2
2
2
2
2

=l N I i
L] L]

Chapter 5

5.1

(M EGRCONG, RO R, RS
e o] L] [] .
NNy 9 ~NonoU Fw

(GG EGRG R RGNS RS

-

.

U FTuwww
o o

WP N

.
—_

. .
~NoonNnEwwmh -

NN —

hapter 4

.
-

Subsystems Assigned to Overlay Region B,

C or D o0 e0 0000000000000

Subsystem Interfaces and Llnkedit Considerations ...

COBOL Subsystem Interfaces c.eecesceccccssscccans
COBOL Subsystem Linkedit Considerations
PL/1 Subsystem Interfaces .cceecesccccsscasscses

PL/1 Subsystem Linkedit Considerations
FORTRAN Subsystems .cc.eeeececcee

Subroutine Interfaces and Linkedit Considerations.

Resident Subroutines

Subroutines Linked with Dynamically

Loaded Subsystems ..cccececececces

Dynamically Loaded Subroutines .

Application Programming Conventions
Implementation .ceeeeceece cecessssenne
Transient Subroutine Overlay Region (TRAN)
Subroutine Overlay Region (SUB)

Generalized SubtaskKing ceceececcccccecccsss

Special SubtaskS cceeecceccccccas

Implementation cceeecececcces .

Time Controlled Message Processing .cceeececcacecs

TASK MANAGEMENT ..cccececccccce oo

Dispatcher and Related Service Routinesccc.e
Dispatcher QUEUES «ccveeescccscccccns
Defining the Number of Task Queue Elements
IJKPRINT-Output to SYSPRINT ...ece.

IJKTRACE-List Dispatcher Queues

IJKCESD--Initialize Csect/Entry Tables ..eeevees
IJKWHOIT--Find Csect/Entry and Subsystem Names .

IJKDH—'AY--RequeSt Time Delay o0 000000000

IJKTLOOP--Trace Program LoOp

RESOURCE MANAGEMENT ..eoeecosccces

Introduction llllllllllll ® 0 0 00 0 00 0000 00000000000
Resource Auditing and Purging .cccceeeeee

User-Defined Storage Pools

Resource Management Modules and Globals

COI‘e-Use St&tiStiCS e 000000000
Storage Cushion .eeeecsccecssscecnns

SETGLOBE Settings veeeeeeeececens

SPALIST Parameters

Obtaining a Save Area with Resource Management .
Installing Resource Management with Core-Use
Monitoring and Pools .ceececcccss

Defining the Intercomm Pools (ICOMPOOL) ..eeeee.
Dynamically Loaded Core Pools .. coe
Specifying Core Block Detail Statisties eeeceve.

Linkedit ceceeeeccccccccccacas
Execution ceeeecoes cececcne
Sample Output ceeeeeeccccccans

vii

o
')
(0]

1
(G C 0)) R g — i — i

0O wVOVwWoooONONWUNm &= F wWwWwwMPPOWOYUTUI D

ooty LTUuITuT LT

1 1
N =200 MNMNaaaaa

U
FLWWMNHND =2 =2

U'IU1U'IU'I\IJ'IU1U1U1

R ST W — |
MDD 20OV JOO0YO

5.8 Installing Resource Management with Resource
Audit and PUPEE ceveivrcenacccsaacccsnssccccnsas 5-16
5.8.1 SETGLOBE Settings .ieeececscescsaccssansacossone 5-16
5.8.2 SPALIST Parameters icecececescssssasssssassanasns 5-16
5.8.3 Macro Specifications ivieecececssecscccsasranncas 5-17
5.8.4 Linkedit .ceeveecscescesascnascncsascsssasssnscsnas 5-19
5.8.5 Enqueue-Dequeue Facility .c.cieececcscncccncnace 5-19
5.8.6 Thread Hung User Exit--IOEXITcecvceccccccacs 5-20
5.9 Debugging Aids--Thread Resource and Pool Dumps ... 5-21
5.9.1 The Thread Resource DUMD «cveessvecsososssaessaans 5-21

5.9.2 Status of Intercomm Administered Storage

(POOL DUMD) +ueeveoonsccasssasssssssssasssssas 5=27
5.9.3 Finding the Dynamically Loaded P0ools ...sveesces 5-27
Chapter 6 FILE HANDLER SPECIFICATIONS .etcececcacscascssancane 6-1
6.1 Introduction t.ieieererecssesaasassscscacsnsonsass 6-1
6.2 Access MethodS .eeevevenrorsssssssssscsccscccnanns 6-2
6.2.1 QISAM via BISAM ..iievecncncrsesscssscsscsoscansans 6-2
6.2.2 VSAM and VSAM/ISAM Compatibility .cceveeecccescs 6-3
6.2.3 IAM i iieeeevaosasacsacaasassssscsccccccssosssane 6-3
6.2.4 DISAM tuvivveeoenosaasssecssassssssssssnnsssssans 6-3
6.2.5 AMIGOS .iiveeecncncesosscssvessanscsscnssassoansass 6-3
6.2.6 EXCLUSive CONErOl veeeeveeesceonceaceonooanccans 6-3
6.2.7 Dynamic Buffering .eceesecessscccessosscesssscana 6-4
6.2.8 Overlapped GET and READ/WRITE Processing ...e... 6-5
6.2.9 Creating and Defining ISAM FileS .veeeeesanannns 6-6
6.2.10 Undefined Record Support ...cesececcassscsccssce 6=7
6.2.11 Variable Length Sequential File Supportcce. 6-7
6.2.12 Sequential Output Disk File Flip-Flop Facility . 6-7
6.2.13 File RECOVErY ceveecscscsscconsscsssssssnsnasons 6-8
6.2.14 Dynamic File Allocation Facility ceeeececccccans 6-8
6.2.15 On-=line File Control CommandS ...seecesssccccacs 6-9

6.2.16 Dynamic Deallocation and Reallocation via
File Commandcceeeeeecescscsascasscscaana 6-9
6.2.16.1 Retry of ALLOC or DEALL After Errorccece 6-11
6.2.16.2 Subtasking of DYNALLOC Macro ..eeeeceececcssccas 6-12
6.2.16.3 Status of Files While Deallocated t.eeseeeecas 6-12
6.3 VSAM File SuppOrt .e.cecececcscessasssssssscnsca 6-13
6.3.1 Using a VSAM Local Shared Resources Pool 6-14
6.3.1.1 Connecting Data Sets to the LSR P00l iieeeeese 6-15
6.3.2 Sharing VSAM Files Under Intercommceccceee 6-15

6.3.2.1 Implementation for Sharing VSAM Files

Across Regions ceceececscosnscscosvssssnssoans 6-16
6.3.3 ISAM/VSAM Compatibility Under Intercomm 6-17
6.4 File Handler ComponentsS s..eceeeeescssscsssssssssss 6-18
6.4.1 Data Set Control Table (IXFDSCTA) ...ceeeeesees. 6-18
6.4.1.1 Defining the Data Set Control Table ...eeesess 6-20
6.4.2 File Handler Initialization (IXFMONOO)ece. 6-20
6.4.3 File Attribute Record Processing (IXFFAR) 6-21
6.4.4 File Handler Processing (IXFMONO1) ..eeesocacacs 6-21
6.4.5 QISAM Scan Mode via BISAM (IXFQISAM) ...ceceveen 6-21

viii

e © o o o o
e o o o o
WD - O3 o

VTugLVuTo U=

. . . L] L] L] L] L] L) L] . L]
. e o o
- ~ow,m

e N W Vo R Ve JVo MVe Vo RVe o X\ e W WO BT, IO

L4 L3
-_
-_—

.
g

e o L] L]
DR PPN DN D D
e e o o o o o 4
oo EWN =

[o 32N« We Wo We We No We We)) (o)W Y [, 2N =22 e We We We Vo, We Wo We e We Ne) Wep) [o) e We e e We We We Y

Chapter 7

e o o o
N o

N NN =9
.) .)

EErrEFwWw N -
L] .

w N -

File Handler Termination (IXFMONO9) ..cceeecocss
Sequential Output File Abend Control (IXFB37) ..
VSAM Cross-region Shared Control (IXFVSCRS)
Data Set Specifications .eeeeeececcsscccascscccssnss
Required DD Parameters ..cceeeeeecceccccsccccans
Required DCB Parameters ..ccccececcsccsccasocccnns
Read-Only Data Sets ceeeeeececcscscscccsccconans
Shareability of Sequential Data Sets
(QSAM/BSAM) tiieveerscsacoscescescasssscancase
Data Set DisposSition seecececccccccsssscccsancns
SYSIN/SYSOUT Data SetS ceeesececcsccccsccccccanns
Reserved ddnames .cceeceecccccscescsccscccccsscnns
File Attribute Records (FAR) ..ceeeccccccccscssncacns
Coding the FARS teeceseesoscssocscscsscscssassccanse
File Handler Service Routine Summary ...ccccceeceeecs
Locate Facility seeececcccccccccscecscsoooccsaaocnns
File Handler OptionsS «.cceececcccecccsceccccsccoccnns
Exclusive Control Time-Out ...cecccecsscccccnccs
Conditional Assembly of the File Handler
Subtasked GETS ceeececessessssssssossccscssancnns
IXFDSCTA OptionS seeeeecesscecccsccccsascssanans
User-Specified DCBS .ceeeeescescccsscsscccoscnsnne
File Handler Statistics Report .cceeeeeececcscsccncane
File Handler LSR Statistics seceeeccssccccccccee
Creating the File Handler Statisties
File (STATFILE) cveveeeescccessacoassscsnsncansss
Using the File Handler Separately from Intercomm ...
Using the File Handler in LINKPACK for
Batch Programs ..cicececcscesoscssoscsssssosnsacs
DISAM--A File Handler Access Technique ceens
DISAM File Handler ...c.eoeeeeescsssssscsccsccnsns
DISAM File Record Formats ..cceeeeeeeccccccnncens
BDAM RecCOrds ccceeeecesececssasacsssacocanssanans
Size of Record Area for Variable Length Records.
ISAM Offset Value ceeeescescossocsccssoscsosansans
DISAM Operations cieeeeeecccssscoscescscsccnncnans
ISAM Conversion Utility--DISCONV ...ceeeeacscces
Index File Reorganization Utility--DISREORG
Intercomm CFMS Support cccceececescecsssscccsssesccace

EXECUTION OF INTERCOMM .vcicccccccsssccccsscscoasssnns
Introduction .eeececececcceccccccasoscccoscsoscsacccans
Generating a Linkedit DecK .seeescecccscccccaccscnnas
The Intercomm Linkedit ..cccceeccceccecceccocccccnne
Linkage Editor External Symbol Table Overflow ..
Linkage Editor Parametersccccceceeccccccass
Execution JCL .seeceecscococcsccssccsoscssosssacssassscs
Global WTO and MCS Routing ..cececeesccscsscccss
STEPLIB or JOBLIB Requirements ..eeeeeescsccsces
DD Statement Requirements ..cceeceeecccccacscccs

ix

o
L%
[(]

VTEwwmPdp D

N A A
Ao OYUITUTUITUTUI U UTW,
FTLOWIII3O00WN -

NN NN NN

OAOUTEWWMNDN = -

. e
.
—

.
N —

e o o o
e o
TWN -

o o
WoO-JToU ZWN —

. L] L]
L s D B WVVOVPOOVPOOWOOOOOTITITIITonOooUT U
. . .

R B R R I N B B B e e B e B I B B B B R e B
L] - L] L]) L] L] L L]
MNP NSO
. L]

System Startup ceeceesccsccnssss Cetestcretnoseasrans 7-8
Startup User Exits--USRSTART/USRSTRT1 crecesanee 7-11
System CloSedOWn ...seesscosssscsoscssssssse cecestnse 7-12
Closedown Time Limit ...cceveeeee cesenaes 7-13
Closedown User Ex1ts--USRCLOSE/USRCLSE1 cesesane 7-13
Live Operation eiiecescececcees e cesectecststsectosaoes 7-14

HASP Modification to Run Intercomm Under HASP .. 7-14
Intercomm and ASP ceeeecesceastascacaccanncannes T-14
Execution JCL cevieteieeocscaoosscctsonsscoocasns 7-14

Low-Core Condition-~SSPOLL .ccececvsscass ceeesne 7-16
Intercomm QUIiESCE cieeeveresvecsvrecsssssssasosssovaoss 7-18
0S/VS Operation .eeseeecscscsoscscssstsoscsccscsasans .o 7-19

Page Preloading c.eeeesesssosessscccsososcincoos 7-20

Page FiXing cceesesctscscccccosns ceeesctasessaass T-20

VS Installation Procedures cesecessesssaansnsa ‘e 7-21

Page Fixing Guidelines ..iceceecoocccseccosvcons 7-23

VS System Tuning Considerations cesessanas 7=-24

Subsystem Considerations ...cccccicetecccenocsnns 7-25

VS SYSGEN Considerations .eeeecesececcsscccsssss 7-25

VS1: WTP User Message Limit sieececscscsss ceres 7-26

VS2: SPIE Macro seeeceess ceeessnnn ceesescescesss [=26
MVS Operation ceeeececssstocsccccstaccccasssaccnnscs 7-27
Intercomm Interregion SVC--&MRSVC Cerecscans 7-29
Intercomm Link Pack Feature .ceeeeeccsscsscanncncs . 7-30

Preparation of the Operating Systemceveees 7-33
Preparation of the Link Pack Module (LPM) 7-33
Preparation of Intercomm Region (IR)ecee0. 7=34
User Routines in the Link Pack Areaceeeeces 7-35

Coding Conventions for User LPM Routines T-36
Entry Point Specifications for User
LPM Routines ..oseeeescscccccsscccannnsas cease 7-37
Accessing LPM Modules in Batch Mode ceesesssesss =38
INTERCOMM FACILITIES .veeveecacs ctecsesssasssasesaane 8-1
Introduction ciieeevcececensanss Ceieecttercasscnscens 8-1
Terminal Simulator Facility .eeieecevecesccccensaanes 8-1
Terminal Input Data Set(s) .vceuveen citessnan cees 8-2
Input Parameter Data Set ...ecieeseccssaccsaccsns 8-3
Input Operationsvcececscennes cesenans PP 8-3
Output Operationsc... crettetesansnanan caee 8-4
Local 3270 Message Preparation and Processing .. 8-4
Simulator Closedown ceeteieeseretnanans 8-5
Abend Intercept Routines-—SPIEEXIT STAEEXIT seeeeee 8-5
SPIEEXIT cveeoecocccscasncs P 8-6
User SPIESNAP Exlt--SPSNEXIT cttetcrsanan ciescon 8-6
STAEEXIT .eececoscoosscsassssssasascsassssssasoass 8-6
Indicative Dump Option ceaaas ctssesseesassass 8-7
User Snap Exit-=SNAPEXIT .civevescssessacannsass 8-9
System DCBS ..eve.s teceesasssssas tedersisecsttnnsann 8-10
Spinoff SNAPS cectesoccccssotcessasscosssscsassaacos 8-10

Page

Implementation ..eececescscesccscscsscsscssssess 8=11

User SPINOFF Snap Exit--SPINEXIT cccccccocccccses 8-12
Fast SNAP Facility ceeecececcccsccccoscscsosssossssccns 8-13
1 Restrictions .eeeeeecccocecssscsoocssscsocnnnnss 8-13
2 PrerequisSites ceeeecececccecscsccccscccsssssncncss 8-13
3 Operation secececccesssoessscesscesscssssonssens 8=1U
y Printing the Fast Snap--IMDPRDMP .¢ceeoecccceess 8=14
System Accounting and Measurement (SAM) Facility ... 8-15

L] L] L] L] . L] L]
L]
NN —

Q0 0o 0o 0O 0o OO Co OO OO GO Co OO OO OO OCo OO o o
.
=S O OWOWWOOOOWMODLOOOOM-II~33I0 >

o1 Specifying System Resource Usage Categories 8-15
.8.2 Specifying User Accumulators .ceeeeccccccccccsss 8-18
.8.3 SAM User Exit Routines--USRSAMNN .ceevececececese 8=18
8.4 Implementation ceeeececeecsccessccossscossccassees 8=19
.8.5 Reports from System Accounting and Measurement . 8-20
. System Tuning StatisticS ceeeceecccecccecscosccoscccccnns 8-23
9.1 Reports from System Tuning Statisties .ceeeceeee 8-23
.9.2 Implementation eeeeseesccscessceccosccosesscnsess 8=23
.10 Log Input Facility ceceeceeccscccscosccssescocssesass 8=24
.11 Test Mode Operation .eeveeesecessecssescescesssescnsseas 8=26

Chapter 9 LOGGING, SYSTEM RESTART, MESSAGE RECOVERYcccce. 9-1
9.1 Introduction ceeeeececcesccccoscossssscsccossscccconss 9-1
9.2 -. System Failure and ReCOVEry .ccececessssccoccccscscns 9-1
9.3 Message Restart Concepts ceecececsceccccccsccsscssnns 9-2
9.3.1 Mandatory and Desirable Conditions ..ceeececccsce 9-2
9.3.2 User Responsibility in Restart ..cceeecccccccoes 9-2
9.4 System LOZEINE ceeeeecsceccossssssscccssssssssoonnase 9-3
9.4,1 Logging User Exit--USERLOGE «.ececeocccocsconces 9-7
9.5 System CheckpointS eeceececsoccscssosccccsssccccsscas 9-8
9.5.1 Checkpointing User Exit--USRCHKPT +.eceeceoccnas 9-9
9.6 Restart/ReCOVEry .eeeeeeeccccossssssccsossssssscncse 9=11
9.6.1 The Restart Process ..cceeescecsccesscssscocsscee 9=11
9.6.2 Message Accounting cceeeceeccccecccccscosccccccnnsns 9-12
9.6.3 Message Restart LOZIiC cieeecccccccccccccccccccss 9-12
9.6.4 Message Restart User Exit--USRESTRT .¢ceeeeeeees 9-=14
9.7 Implementation seeceeeeecssscsscossssccccssssscsccess 9=15
9.7.1 Concatenation of Disk Log Files for Restart 9-19
9.8 Serial Restart .eceeeecceccssoccscccssscssscosssensss 9=20
9.8.1 Serial Restart User Exit--USRSEREX ¢¢ceceeeeecess 9=21
Chapter 10 SYSTEM SECURITY IMPLEMENTATION .cececccccocccccccccse 10-1
10.1 Introduction .cceeeeccccccccccccscssccsssssscscnssns 10-1
10.2 Basic Security Processing Options ..eeececcccccses 10-2
10.2.1 Security Processing LOZIiC cecececccccssccscccscas 10-2
10.3 Sign-on/Sign-off Security .ccccecececcrsccocccccsse 10-5
10.3. Using a Sign-on/Sign-off Terminal ...cceceeceseee 10-5

. Sign-on/Sign-off ProcessSing .cceececscscccsccces 10-6

SYCTTBL MaCPO PaPameteP ©0 0 0000000000000 00000000 10-7
User Exits for Sign-on/Sign-off Security 10-7

3.1
3.2
303 SPALIST MaCPO Parameter 00 0000000000000 00000000 10-6
3.4
3.5
u Transaction Security 0000 0ces0s000000000000000000000 10-8

xi

Page

1 Using Transaction Security .ceceeeescesceccssasne 10-9
.2 SPALIST Macro Parameter ..cceseecccessccscccnsnsns 10-9
3 SYCTTBL Macro Parametercecessessccsssssesss 10=10
Coding the Station Table .¢eeveevesssessossesnsseces 10=-10
o1 Structure of the Station Table with Security

Processingccceceencnscenccnssessssnsssaee 10=10

10.5.2 GENSEC Macro ...csoeecessscessssccssssosccsssssces 10=11
10.5.3 SECVERBS Macro and STATION Macro/VERBS

Parameter ...iceveevsecsssccsssossocncessecsss 10=11
10.5.4 STATION Macro/UNIVER and OPER Parameters 10=14
10.5.5 Other STATION Macro Parameters in PMISTATB 10-14
10.5.6 Definition of Range of Verbs per Terminal for

Transaction Security ...ceveeescsescsssesesese 10=15
10.5.7 Loading Operator Codes on Disk for Station

Security Option ceeeecesscsssscosssacccssssees 10=-17
10.6 Implementation of User-Written Security Routines . 10-18
10.6.1 Coding Security Subroutines ..ieesveeesceesseess 10-18
10.6.2 SPALIST Macro Parameter ..ccceececsessscssssesss 10-19
10.6.3 SYCTTBL Macro Parameter ...cieceessssssscsssssss 10-19
10.6.4 Security Table cieesceessccesssesssesssscssssees 10-19
10.6.5 Linkedit RequirementS ...eceeesscesesescssscocsss 10=-20

- 107 Multiregion Intercomm Considerationseceveee.. 10-20

Chapter 11 SYSTEM TUNING TECHNIQUES 9 0 0 000 00 0000 PP OO PO OSEDON OGS DS O 11_1

11.1 Introduction cteeeececsocscavsessrsocossossoscascascns 11-1
11.2 System Tuning and Performance Evaluation 11-1
11.2.1 System Tuning FacllitiesS ..eeeveevsncessonscanse 11=2
11.2.2 System Performance Evaluation and Statisties

Reports sieeceiceescnescoossssosesosssscsossnasncss 11=-2
11.2.3 System Statistics Displays ceeeeececscecccecoasne 11=3
1.3 Tracing a Message on the LOZ ceesvevssceccccsccacss 11=3
11.4 Factors Affecting System Performancecceeeees 11-6
11.4.1 Subsystem Program LOZIiC seecesscecssccssscnssons 11-7
11.4.2 Subsystem Residency and Scheduling Parameters .. 11-7
11.4.3 Subpool Space and Scheduling Criteria ..eeeeeee. 11-9
11.4.4 Subystem Queuing Parameters .cceeeeeecsccccsssaes 11=12
11.4.5 Front End Parameters .ceeeececssscescenccssecsses 11=13
11.4.6 Data Set Allocation ceevececescccsssscsccassssneas 11=13
11.4.7 System Log Specifications .eeeeecececsccossceess 11-14
11.4.8 Additional Execution Considerations ..eeeeecesees 11=14
11.4.9 Fast Supervisor GETMAIN and FREEMAIN QUICKCELL . 11-15
11.5 The Fine Tuner CommandS ...sscecessssssnssssssnsss 11=15
11.6 Response Time Considerationsc.icveevceecocssee 11=16
11.6.1 Execution Considerations .eeeicecesssececeonnsse 11217
11.6.2 Transmission Considerations .eeeeeeceececcsseees 11=18
11.6.3 Queue and Log Processing sveeeesecescceesccosass 11=18
11.6.4 Dispatching Priority and Subsystem

Considerations seeeeeeseccccceosssssssccnsasses 11=18
11.6.5 Main Storage Usage, Statistics, and Dump

Processing Considerationsceceseeececessses 11-19
MVS Tming Recommendations ® 00 0 0000000000000t es 0 0 11-19
11.8 Debugging and Tracing Facilities ..e.cceeccecceese 11-23

xii

Chapter‘ 12 OFF-LINE UTILITIES ® 0 0. 000 000 0000000000000 00000000000

12.1
12.2
12.3

-
n
.

(o X0 TSI — 0 — g i i — i S = e I VY]
.
—

e © o © o o o
e © o © o o
. ® o

Fw -

.
.
TLWWLWWWWMND -
Y

PP PPN DD NN
Ll
-—

P N U N U NP St DI QU W ¥

12.10.1
12.10.2
12.11
12.12
12.13

Appendix
Appendix
Appendix
Appendix
D.1

D.2
D.3

Introduction cieeeseccscccscsscccscscsscscsscsssccssse
Log Processing Programs ..ccccceeccccccccscscscccscscs
Intercomm Log Display (LOGPRINT) seceeessccccccans
Description and Function of Control Records
(SYSIN) teeseescossessosssnsenssonsascnscnnsns
Log Analysis Program (LOGANAL) ...ececceccccsnncccs
Traffic HiStograms ..ececeeeceseceescsssssassass
Response Time Reports .ceeeececcccccccccscscscsosse
Installation of LOGANAL ..ccececesscscocssconnns
LOGANAL Generation Parameters ..cceeecececcocccoscs
Changing LOGANAL Generation Parameters
Generating the LOGVRBTB .e.ceeessne
Creating the LOGANAL Load Moduleecesesees
Execution of LOGANAL ..cecceesccccccsccccccssasne
The File Load Program (PMIEXLD) .e.eeececocconnocns
Partial File Load ccecoeecccocccssccsscccccsccns
BDAM File Creation (CREATEGF) seeeecsecsscnsssoess
OPSCAN -- Scan for Program Operation Codes ..ecc..
PRT1403 -- Print OQutput Utility Batch Reports
LIBCOMPR -- Symbolic Library Compare ..ceecessesse
Utility Programs to Create Input Test Data
CREATSIM Program ..eceeeseessccscscssossssssoosss
SIMCRTA Utility Program .eceeeececcsssssssssssss
Create Keyed BDAM File (KEYCREAT) .eeeececoconcces
ICOMFEQOF - Recover from Missing End of File
CHANGER--Produce Change Deck from Two PDS Members.

INTERCOMM TABLE SUMMARY ..ceieeccccssnnnnonnnas ceses
INTERCOMM MESSAGE HEADER ..ce0ev... cesens
USER CODING OF THE SCT OVERLAY INDEX «.veecececncsns

INTERCOMM USER EXITS teeeeeeccccscoscaosascscsoonsansss
Introduction covens
Coding Conventions .eceecsecescescsoscsscssscsscsass
List of User EXitS seecececscccccccsosssosccosccacsss

INDEX © 00000000000 00000000000000000000006000600000000060000000600000,

xiii

Page

12-1
12-1
12-1
12-1

12-3

12-8

12-8
12-11
12-16
12-16
12-18
12-18
12-19
12-19
12-24
12-28
12-30
12-32
12-33
12-34
12-35
12-35
12-38
12-39
12-40
12-42

LIST OF ILLUSTRATIONS

Figure Page
2-1 Intercomm JCL Procedures ...ceeeceeccscceocscocsccocans 2-6
2-2 JCL Procedure Parameter SUMMNArY .eececcesooooososccsess 2-8
2-3 Intercomm Global TableS ceeeeecocssscsesascessanccness 2-23
2-4 INTGLOBE teeeeeacececssosscssosncasonnssssosasssscsoccsss 2-24
2-5 SETGLOBE +ivseoseescoscoccnscoocooscoscsssossnnnse cenee 2-26
2-6 Intercomm Tables with User COPY Members ..cececececess 2-28
3-1 Front End/Back End Communication via Message Queues .. 3-4
3-2 Released BTVRBTB .scoevscccsscscoasoosscscosocsocosssansas 3-8
3-3 The System Control Componentsc.ceececoeccccsccass 3-26
3-4 Creating the System Parameter Area and SCT ..ccceceeee 3=27
3-5 INTSCT Coding of Intercomm SubSyStems ...eeeececsscocs 3-28
3-6 Sample Coding of INTSCT with an Overlay Structure 3-30
3-7 Intercomm-Supplied SubSytemS .iceeesscscecscoscosnoscs 3=32
3-8 Sample Linkedit Control Cards for Overlay Region A

SUDSYSEEMS 4eveesescocssescosescssossscsssscssssnsns 3-38
3-9 REENTSBS Release Versions seeeeeescescescesscscescanee 3-48

3-10 PL/1 Subsystem Interface Options .eeeeeececscserocsane 3-50
3-11 Dynamically Loaded PL/1 SubsSysStemsceseeceasccosas 3-50
3=12 Illustration of Nested CALLOVLY Coding Conventions ... 3-57

3-13 Using CALLOVLY in an Assembler Language Interface
for a High-Level Language Program ...ccoecescesscace 3-57

Figure Page

fq IJKTRACE - Csect/Module Name Correspondence Table 4-6
42 Sample IJKTRACE LiSting seeeeecscesssocessssosccsssscnss L7
5-1 Obtaining a Save Area via the STORAGE Macro ...ccieese 5-5
5-2 Example of Core-Use StatiStiCS seveeceicesssscccssssnnns 5-14
5-3 Sample Thread Resource DUmD cececsceccsssssnscsscsanss 5-24
5-4 Sample POOLl DUMP svevenesncsnasssssasssssansoasacnseocs 5-28
6-1 File Handler ComponentsS ..ceseeessccsccccsccsccscncans 6-19
6=2 File Handler Service Routine Parameter Summary 6-36
6-3 IXFDSCTA Options secesvececesesonsassscsonsssssasnssoes 6-42
6-4 Sample User-Supplied DCB ...isseesnscccssscsccnsnsnces 6-4y
6-5 File Handler Statistics Report ...cceecececescsscsccscs 6-45
6-6 DISAM Data Base StructuUre ...eececesesccesscsccssssass 0=53
T7-1 Using LKDEP Procedure to Generate Intercomm Load

Module ...ieeveevennasaans Ceestiecetestsaceerransanaans 7-3
T7=-2 Typical Live Execution JCL .cecececccosccocacosocasocnse 7-15
7-3 LINEGRP, BLINE Sequence and JCL for Remote Terminals . 7-17
T-4 BLINE, BTERM Sequence and JCL for Local Terminals T-17
7-5 Link Pack Module Working in Conjunction with Several

Intercomm RegiONS seeeseessssscacsasscccccssasscnnss T7-30
T7-6 Applicable Intercomm Components for LPSPA/LPINTFC

MECIrO soeencsssssensssssssscaccassascccnnssassccncns T7-32
=7 Relinkediting Intercomm Region for Link Pack Feature . 7-35
7-8 Frequent Uses of System Parameter Area and SPA

Extension in User LPM RoUtIiNeS ..eeeeccececcesaccscee 7=-37

xvi

Figure
8-1

8-2

8-4
8-5
8-6
8-7
8-8
8-9

9-1

10-1

10-2

11-1

12-1
12-2
12-3
12-4
12-5
12-6
12-7

Areas Displayed by Indicative DUmMpP .eecicececcccccccocs
Listing of PMIDCB (as released) ..eecececscccscascscns
Sample JCL for Spinoff SNapsS ceeeceecccsssssccccocssss
Resource Usage Categories .ieeeecceecscccsccscccnscasce
SAM Report Execution PARM ValueS ..cceeecscssscccscnce
System Accounting and Measurement Report Sample
Sample Report from System Tuning Statistices ..ccveceees
Test Mode Input Card Formats .ccceeceoceccccccccsccese

Sample Test Mode JCL 0000000000000 00 0000000000V SIOETCE

INTERLOG Entries 000 000000000000 00000 0000000000 COLOSLOS

Checkpoint Data 0 0000000000000 00000000000000000000000

Security Processing LOZiC ceeeeeeccccssocsoscacesssconns

Summary and Use of SECVERBS and BTVERB Macros ...eec..
Tracing Messages on INTERLOG ..eccevescccncccossocsccse

Sample Output Page from LOGPRINT Utility ceeeeescscsces
JCL for LOGPRINT Execution .ceceeecccecccssssccncncces
Sample Histogram for a Terminal .ceeeeeeccscccccscsnas
Sample Response Time AnalySiS .eeeeesceccssscsssncocss
Sample JCL for Execution of LOGANAL ...eeeeecceccoccces
JCL to Create PMIEXLD coeveeeececcccocsceocsaccasccnnnes

Sample File TAble (PMIFILET) tueveessccccoccoscaccocccs

xvii

10-4

10-13

11-5

12-2
12-3
12-9
12-13
12-23
12-24

12-25

Figure Page
12-8 JCL for File Load Program Executioneceeeeecease 12-26

12-9 Conventions for Disk-Resident Tables for the
Utilities 000 0000000 s 0000000 COCOEEOCEOEEOEOICOCEOOECOCECOCEECOEEOEEO®TOT QOB e 12-27

12-10 Example of CREATEGF JCL and Control Cards ..cccececee 12-32
12-11 JCL to Create Load Module for PRT1403 Utility .eeesse 12-33
12-12 JCL to Execute PRT1403 Utility Load Moduleo0eee 12=33
12-13 Sample JCL to Execute LIBCOMPR ..ccecevececoccvccones 12-34
12-14 SIMCRTA Linkedit and JCL ciceeeescecesacsssacnanasana 12-38
12-15 KEYCREAT Execution JCL ..ieecccecveccosssccescascnane 12-39

12-16 IOMFEQOF Execution JCL seececssascsccssscssssassensan 12-41

C-1 User-Coded Subsystem Control Table Index Structure .. C-3

xviii

Chapter 1

THE INTERCOMM ENVIRONMENT

1.1 INTRODUCTION

The Intercomm on-line teleprocessing monitor may be utilized on
the System 360/370 (and compatible) family of computers (including
303x, 43xx, 308x, etc.) and executes under the control of the Operating
System (MFT or MVT) or System/370 Virtual Storage system (VS1 or MVS).
With any one of the operating systems, any number of concurrent
independent jobs may be submitted and executed while the Intercomm
system is operating.

Intercomm operates as a Jjob in a multiprogramming, multitasking,
time-dependent environment. Any number of applications may Dbe
concurrently executed under the control of the Intercomm monitor; any
number of terminals, types of input, application programs, and file
access methods may be used.

Application programs executing under Intercomm may be written in
any of the System 360/370 compiler languages: Assembler Language,
COBOL, PL/1, or FORTRAN. The wuser can also convert from a batch
processing to an on-line environment without having to totally rewrite
application programs.

Intercomm is a table-driven system; that is, operating
specifications are described to the system in the form of tables.
Thus, Intercomm components are individual routines coded in generalized
form where applicable, utilizing table entries for execution
requirements. The application programmer is generally not concerned
with these table entries, but is responsible only for the problem
solving logic. All message routing, time-sharing, message mix, and
communication functions within Intercomm are, in general, transparent
to the application programmer.

The prerequisite publication to this document, Intercomm Concepts
and Facilities, describes the general system logic of an Intercomm
environment. In this section a brief review is provided of the major

system components, region organization, modes of execution, and
user-specified tables.

An Intercomm system consists of user-coded application subsystems
(message processing programs) and the following Intercomm components:

] Front End Teleprocessing Interface

System programs responsible for all operation of the
telecommunications network.

® Subsystem Controller

System programs responsible for all scheduling, loading and
activating of message processing subsystems.

1-1

Chapter 1

The Intercomm Environment

Queue Management
System programs controlling queuing and retrieval of messages
waiting for processing or transmission.

File Handler

System programs exercising centralized control over all
Operating System data management functions.

Dispatcher
The multithreading control routine that schedules use of the

CPU among concurrently executing tasks.

Resource Management
Optional system programs provided to ensure efficient main

storage management and control over system resources in the
event of program failure.

Utility Programs
System programs provided to simplify design and implementation
of application programs and message processing logic.

System Control Routines

Optional system programs providing logging (Jjournaling),
restart/recovery, system control transactions, a comprehensive
dynamically controlled security environment, debugging and
tuning aids, program error interception, system reliability,
ete.

1.2 FRONT END

This component of Intercomm controls all teleprocessing functions
of the system. An on-line installation may optionally utilize one or
more of the following Teleprocessing Interface components:

The Intercomm BTAM Front End, a conditionally assembled,
table-driven series of programs providing efficient interface
to a wide variety of terminals through IBM's Basic
Telecommunicatons Access Method and Graphics Access Method.

The Intercomm TCAM Interface to a Message Control Program
operating 1in a separate region where all 1line control
functions are performed according to macro-generated
specifications for 1IBM's Telecommunications Access Method.
The Extended TCAM support provides interface to TCAM process
and destination queues via the BTAM Front End.

The Intercomm VTAM Front End, communicating with a VTAM

control region and interfacing with both SNA and non-SNA
devices.

1-2

Chapter 1 The Intercomm Environment

@ A user-supplied interface to nonsupported devices implemented
by the Generalized Front End Interface of the BTAM Front End.

1.3 SUBSYSTEM CONTROLLER

The Subsystem Controller interacts with the Teleprocessing
Interface via the queue management routines to control all message
processing within the on-line system. It directs incoming messages to
the proper application programs, schedules and 1loads nonresident
subsystems as required.

The Subsystem Controller optimizes dynamic loading of subsystems
and/or program swapping (overlay management) to increase throughput, and

diagnoses application program errors to provide an uninterrupted on-line
operation.

Subsystem Controller processing is governed by user-varied tables

specifying the message routing structure and variable processing factors
which can be adjusted to maximize throughput.

1.4 QUEUE MANAGEMENT ROUTINES

Message queues are the prime interface between the Front End (TP
Device Control) and Back End (Message Processing Control) components of
Intercomm, Input messages are queued for processing by subsystem;
output messages are queued for transmission by logical unit, terminal,
line, or user-specified discipline. Messages may be queued in main
storage and/or on disk at the user's option. Disk queues are
wraparound, reuseable BDAM data sets. A queue is a logical entity; one
physical data set may be shared for several queues. The queue
management routines are service routines wutilized by both system
programs and application subsystems.

1.5 FILE HANDLER

By processing all on-line files through a single module, Intercomm
eliminates duplication of I/O routines, control blocks and buffers in
application programs. It also eliminates the highly wasteful opening
and closing of data sets for each message processed--files are opened
only once per day (or shift). In concert with the Dispatcher, tasks
that access files are maximally overlapped with other tasks (processing
threads) requiring CPU time.

1-3

Chapter 1 Thg Intercomm Environment

All data set organizations (sequential, direct, indexed) and
processing techniques (by logical record, by physical block, keyed
access, random access) are available to programs written in any language.
Comprehensive diagnosties for on-line security and I/0 error analysis
are provided, as well as write-protection of master files.

Exclusive control of individual records or blocks within files,
recommended where simultaneous updating could occur, is also provided as
one of the File Handler's functions, and, via an exclusive control
time-out, those records held beyond a specified time 1limit may be
released from exclusive control. '

1.6 DISPATCHER

The Intercomm Front End Teleprocessing Interface, the Subsystem
Controller and the File Handler create multiple independent threads
(parallel program paths for parallel message processing) using the
Dispatcher, which allocates and overlaps CPU time among any number of
concurrent work requests, and establishes any number of concurrent
real-time clocks. This is achieved within a single Operating System
task, thus obviating the need for a multitasking operating system and
formal dynamic program linkage through the Supervisor. The Dispatcher
also assists in overlay management and dynamic program management under
direction of the Subsystem Controller.

1.7 RESOURCE MANAGEMENT

The Resource Management facilitlies of Intercomm provide efficient
storage management techniques, unless specifically bypassed by the
user. Additionally, a storage cushion feature is available to serve as
a protection against a temporary shortage of main storage. The cushion
(of user-selected size) is an area gotten from subpool zero at startup
and held, but not used, until a request for dynamic storage cannot be
satisfied. At that point, the cushion is returned to subpool zero and
used to satisfy storage requests for messages currently in progress. No
new message processing 1is started until reduced storage demands, as
messages are completed and transmitted, allow the cushion to be
reacquired by the monitor. The impact of a nonecritical shortage of
dynamic storage is therefore avoided. Resource Management options are
described below and may be used singly or in combination with each other.

1-4

Chapter 1 The Intercomm Environment

The resource auditing and purging option provides a chain of
control blocks built for every active program thread. These blocks
correspond on a one-to-one basis with resources acquired by the program.
Resources may be areas of storage, files, or any facility subject to
ownership. Purging is accomplished by freeing unreleased resources,
represented by the control block chain, for a program thread when the
thread normally or abnormally completes. A thread resource dump (TDUMP)
is provided as an audit utility to print out control block chains,
showing which thread is in control of what unreleased resources, through
which module the resources were obtained and in what order acquisition
occurred.

As an adjunct to audit/purge or as an independent option, the
creation of main storage pools, which section a contiguous area of
storage into specified block sizes, is offered with Resource Management.
Storage pools are generated by a macro which defines the size and number
of pools, and the number of blocks within each pool to be generated to
fit wuser requirements. The pool option not only manages storage
allocation to eliminate fragmentation problems but furthermore, through
indexed access to the pools, provides a significant increase in the speed
with which storage may be obtained and freed, owing to the elimination
of GETMAIN and FREEMAIN SVCs.

The third option consists of two distinet sets of core-use
statisties: global and detail. Inclusion of either set may be made
without reference to the other. The global statistics present such
information as the number of requests for storage and requests to free
storage, the average storage request length, and the number of requests
filled from the pools. Detail statistics consist of the breakdown of
storage requests into size ranges. The primary purpose of the detail
statisties report is to provide sufficient statistics from actual system
usage so that an effective selection of the number and sizes of pool
blocks may be made at an installation.

1.8 UTILITY PROGRAMS

In addition to the File Handler, a number of on-line utility
functions are provided to ease programming of application subsystems and
to centralize control of such functions. The interface is via standard
call logic in the subsystem. These facilities include:

® Message Mapping Utilities--device-independent message editing,
formatting, and output routing

Store/Fetch--temporary data string storage and retrieval

@ Dynamic Data Queuing--transient queues of data strings, file
records, or messages

® Page Browsing--collections of output messages for paging
access from a CRT device

1-5

Chapter 1 The Intercomm Environment

L Dynamic File Allocation--allocate and/or access data sets not
defined explicitly via JCL.

Additionally, the EDIT, OUTPUT, DISPLAY and CHANGE Utilities
provide alternate means of message and file record processing. EDIT
strips the incoming message of TP control characters and provides for
complete field-by-field editing of the input message. It also performs
keyword parameter analysis. OUTPUT supplies device-independent output
capabilities to application programmers. DISPLAY allows a remote
operator to display an individual file record (for BDAM or ISAM files)
in a fixed character format on his terminal. CHANGE allows the
operator to modify selected fields in a file record obtained by DISPLAY.

1.9 REGION ORGANIZATION

At execution time, the Intercomm region (or partition) consists
of system programs, tables, and message-processing subsystems.

@® Resident Intercomm routines
These routines are required constantly for Intercomm
functions and must be resident. Residing in this required
area is the Intercomm nucleus, that is, such routines as the
Subsystem Controller and Dispatcher.

@ Resident tables
Certain tables are necessarily resident in that they specify
actual control functions of Intercomm. For example, the
System Parameter Area (SPA) describes systemwide
characteristics. Resident tables share the Intercomm nucleus
with resident routines.

@® Resident subsystems
Frequently used subsystems and subroutines should remain in
main storage. Whether a program is resident is a factor in
good planning and can provide for both maximizing system
throughput and minimizing individual transaction response
time.

® Nonresident subsystems; dynamically loadable
Nonresident subsystems and subroutines can be defined as
dynamically loadable into main storage. These programs are
loaded on an as-required basis. Reuseable subsystems remain
resident until prescribed message processing limits are
reached or message traffic ceases, and nonreuseable
subsystems are reloaded for every message processed.

1-6

Chapter 1 The Intercomm Environment

@® Nonresident subsystems; planned overlay structure

The Intercomm region may contaln one or more overlay regions:
Overlay A,B,C,D. The first region therein, Overlay A, has
special characteristies in that groups of subsystems are
loaded to process messages concurrently. Overlays B,C,D are
utilized for single-thread, noncritical message-processing
subsystems. The sequence of overlay load is based on message
traffic and scheduling criteria.

® Nonresident service routines
Service routines that may be nonresident are those not called
frequently. When required, they are 1loaded 1into the
transient overlay area of the Intercomm region. If an overlay
structure is not defined, all Intercomm service routines must
be resident in the Intercomm region, or in the Intercomm
portion of the Link Pack Area.

@ Nonresident table entries
Infrequently used table specifications, for example, message
formats for the Message Mapping and Output Utilities, can be
contained on disk and loaded when needed.

® Dynamic Subpool Area
This 1is the areas of main storage that are obtained
dynamically (as needed) for loading Intercomm or user
routines or tables. The subpool area is dynamic in that the
composition varies and areas are assigned, or released and
made available for reuse, as soon as the monitor determines
that the area is no longer needed.

1.9.1 Dynamic Program Loading

Nonresident subsystems and subroutines are 1loaded into the
dynamic sSubpool area during ongoing execution of the Intercomm
partition/region via the dynamic load faeility which interfaces with an
asynchronous loader task. Programs are expeditiously loaded on demand,
according to arrival sequence of incoming message traffiec. A loaded
subsystem remains resident until a maximum of messages is processed
(limit specified by the Subsystem Control Table), or until message
traffic ceases.

Once loaded, any subsystem defined as reuseable or reentrant is
left resident in the dynamic area and rescheduled as needed, as long as
the storage 1t occupies is not required for a subsequent subsystem load
during an unscheduled 1interval. A nonreuseable subsystem will be
reloaded for every message. Within this framework any

reuseable/reentrant subsystem processes more than one message, 1f
queued.

1-7

Chapter 1 The Intercomm Environment

A BLDL, or load list, area may optionally be requested for each
dynamically loaded program. Although load list specification 1increases

the size of the resident Intercomm tables, it provides for faster
loading and is recommended for frequently used programs.

The predefined maximum amount of storage useable for concurrently
loadable subsystems can be varied while Intercomm 1s operational via a
system control command. The load module used for a dynamically loaded
program may be reloaded via a system control command to allow
replacement of that program during Intercomm execution. Dynamic
Linkedit, an optional feature, resolves external references between

loaded and resident programs at startup and when a replacement program
copy is loaded by command.

1.9.2 Overlay Program Loading

Loading of subsystems may be controlled by the Intercomm Overlay
Management scheduling facility, in which case subsystems are linkedited
as overlay region segments and loaded according to a preplanned
structure and sequence. As with dynamically loadable subsystems, the
sequence of subsystem load is dictated by message traffic.

1.9.3 Asynchronous Overlay Loader

The Intercomm Overlay Loader 1s an asynchronous multiprogramming
interface between Intercomm and the OS Overlay Supervisor that allows
Intercomm to coordinate the loading of programs asynchronously with the
execution of other Intercomm threads. This prevents Intercomm from
being placed in a wait state by the Overlay Supervisor, while still
allowing full use of overlay facilities.

When multiple messages for subsystems in more than one overlay
area require concurrent loading of multiple regions, they are
automatically queued by being dispatched on one of the communications
Event Control Blocks (ECB) between the two tasks. This technique
permits resident subsystems and those active (already loaded) overlay
areas to continue processing.

The Intercomm Overlay Loader allows greater versatility than an
independent loader--due to the power of the 0S Overlay Supervisor, and
at the same time provides full processing overlap.

The Operating System (MVT,MFT) must have thc ATTACH and IDENTIFY

options (standard features in VS1 and MVS) to utilize this Intercomm
facility.

Chapter 1 The Intercomm Environment

1.10 MODES OF EXECUTION

Mode of execution in the Intercomm environment pertains to
operation with or without on-line terminals and to operation with or
without consideration for previous execution ("cold" vs. "warm"
start). Further, reference may be made in this document to operation
in the production environment or testing environment. The Intercomm
mode of execution is determined by parameters specified via JCL to
indicate whether or not terminals are operational or whether or not
restart functions are to be performed. The actual application
subsystems executed to process messages are unaffected by the
production or testing status of the system.

Intercomm operates in Test Mode in three ways: via message
processing in a batch mode; or via time-oriented simulation of
terminals whereby disk data sets of input messages exist for each
terminal simulated; or with a combination of 1live and simulated
terminals. These three types of test facilities are provided without
any changes to the user application program(s) being tested.

Batch Test Mode allows for input of transaction data at system
startup time through SYSIN. Those transactions are then queued and
passed into the system at the rate of an extremely high volume
environment, with multithreading taking place in the application
programs almost immediately, just as if the messages had come from
on-line terminals. The Batch Mode testing facility allows for pseudo
high volume testing, but in no way represents a projected processing
capability based on random message arrival rates from a simulated
network.

A second type of testing facility is provided with the BTAM
"terminal simulator". Separate message queues are established on
direct access sequential data sets for each simulated terminal.
Intercomm retrieves messages from "terminal queues" based on a unique
time value for each pseudo terminal. The terminal simulator allows the
user to simulate a "live" Intercomm environment by defining a network
of these pseudo terminals. This network could represent the eventual
network a user expects to install, or already has in use. Note that
although definition of a BTAM terminal network is required for the
simulator, input and output processing of messages is essentially the
same no matter which type of Front End (BTAM, TCAM or VTAM) is used for
the live Intercomm system. In addition, the user may request a printed
display of how 3270 terminal messages (formatted and unformatted) will
appear in live mode.

The third type of testing facility allows the user to operate
with all the terminals of his present on-line system and to simulate
those terminals which are not presently operating or which represent
the eventual projected network. This facility allows the testing of
application programs with a combination of both 1live terminals and
pseudo terminals. This combined network can then be operated under
control of Intercomm. This feature merely expands the capabilities of
the Intercomm Front End.

1-9

Chapter 1 The Intercomm Environment

Additionally, Intercomm provides a Multiregion mode of execution,
wherein there is one "control" region (partition) containing the Front
End teleprocessing interface and system control routines, and one or
more "satellite" regions containing only Back End facilities and user
application processing programs. Optionally, high-volume application
subsystems may execute in the control region. One of the satellite
regions may be used only for 1live testing of application programs.
Thus, the separation of application subsystems into several regions
provides file or data base access centralization, additional security
control, and system integrity and storage protection, without impacting
the terminal user or response time.

1.1 INTERCOMM TABLES

Intercomm is a generalized on-line system and, as such, requires
operating specifications for each particular installation. This
information is provided to the system in the form of tables which are
coded using Intercomm macros. An application programmer is usually not
involved in defining the Intercomm tables, except for the application
program requirements. Tables are coded for each of the following
Intercomm funections, by which the user specifies his wunique
requirements:

@® Line Control
-- network configuration
—- transaction validation
-- terminal queues

@ Message Processing Control
-~ application subsystem specifications
-~ subsystem queues

® System Control
-- storage pool specifications
-- logging requirements
-- checkpoint/restart/recovery specifications
-~ debugging options
-- statistics and tuning facilities

o Application Program Services and Utilities

Thus, Intercomm 1is a table-driven system. Line control
information, that is, the number of logical units or terminals and
their exact hardware characteristics, is provided to the system,
facilitating such operations as LOGON control, polling and addressing,
process and destination queuing, and rerouting of messages.

Chapter 1 The Intercomm Environment

Specifications for message processing control functions are
tabular: the type of applications the user has, their scheduling,
whether an application program is capable of processing several
messages concurrently and, if so, the maximum number of messages to be
handled concurrently.

System control functions are table-driven; tables provide
specifications for which logging entries are required, the frequency of
checkpoint and information to be checkpointed, the particular files to
be updated, and specifications relating to restart requirements and
file integrity. 1In addition, the application program services, such as
Message Mapping, operate according to user-specified table entries and
definitions.

Major functions in Intercomm are controlled by the following
tables:

® System Global Tables (SETENV, SETGLOBE)
Global tables used to control conditional assembly of many
Intercomm system routines, thus tailoring code requirements
to the individual installation.

@ Front End Verb Table (BTVRBTB)
A table 1listing all wvalid four-character transaction
identifiers (verbs) and relating them to the subsystem used
for message processing. There 1is one entry per transaction
or message type.

@® Front End Network Configuration Tables
Tables describing the terminal network hardware operating
characteristices, queuing specifications, logging/restart
requirements, and relating individual devices to
five-character station identifications.

[Station Table and Device Table

Tables describing terminal device-dependent characteristics
to the Back End utilities.

@® System Parameter Area (SPA)
A table describing systemwide operating characteristics.
This table may be extended to include a user area with
installation-defined parameters or tables, accessible to all
subsystemns.

® Subsystem Control Table (SCT)
A table listing the characteristics (reentrancy, language,
entry point, etc.), queue specifications (main storage and/or
disk queues), scheduling (resident or 1loadable, concurrent
message processing limits, ete.) and logging/restart
specifications for application subsystems. There 1is one
entry per subsystem.

1-11

Chapter 1 The Intercomm Environment

® Data Set Control Table (DSCT)
A table automatically generated by the File Handler
describing on-line data sets. Information in the table is
derived from JCL and File Attribute Record (FAR) statements
at execution time.

® Intercomm Storage Pools

A table of Intercomm-managed storage resource pool blocks, in
ascending order by block size. The pools may be resident in
the Intercomm linkedit, or dynamically 1loaded at system
startup.

@ Message Mapping Definitions
Sets of external and symbolic (Dsect) maps, along with tables
of logical terminal definitions, referenced by application
subsystems when invoking the Message Mapping Utilities to
edit and format messages and data strings. The definitions
are made via MMU macros and stored in prescribed files.

9@ Edit Control Table (ECT)
A table describing input message editing specifications for
transactions edited by the Edit Utility. There is one entry
per transaction. Entries are optionally disk-resident.

® Output Format Table (OFT)
A table describing output message formatting specifications
for messages formatted by the Output Utility. There is one

entry per output format. Entries are optionally
disk-resident.

Thus, the Intercomm system components are individual routines,
coded in a generalized form, where applicable. Each system component
receives detailed specification for its program functions via table
entries defined via global SET symbols, coding of Intercomm system
macros, or DC or parameter statements. Table entries may describe a
hardware configuration (for example, the communications network) or
software specification (for example, EDIT control functions). By
adjusting variable table entries, the wuser effectively tailors
Intercomm routines to his installation without modifying any program
logic. Appendix A summarizes all table entries.

This document provides processing features and table entries for
many of the system components, Others are described in manuals
defining installation for the Front End, System Control Commands, and
various Intercomm system and application program facilities.

Chapter 2

THE INTERCOMM OPERATIONAL SYSTEM

2.1 INSTALLATION OVERVIEW

This chapter describes the major requirements for successful
installation, standardization and maintenance of the Intercomm
teleprocessing system, as follows:

Intercomm Libraries and Naming Conventions

Intercomm JCL Procedures

System Installation and Maintenance Responsibilities
System Standards

System Control Functions and Tables

0066

The 1installation of a basic Intercomm system consists of
allocation and cataloging of standard Intercomm libraries, loading the
Intercomm release tape to disk via standard OS/VS utilities, copying
selected Intercomm JCL procedures to an installation's procedure
library, customizing system global tables, and then executing various
preparatory steps prior to performing a linkedit and execution of the
system. This first installation phase ensures the proper functioning
of the system with respect to message processing control functions.
Thus, once installation is complete, testing of new application
subsystems may begin immediately, independent of the hardware delivery
schedule or utilization schedule for existing terminals.

Front End installation consists of table specifications and
assembly of the appropriate 1line and terminal control programs to
satisfy the specific requirements of a particular hardware
configuration and the teleprocessing access method(s) used.

Instructions for installing the system accompany the release
tape, as the system generation procedures may vary from time to time
with changes in the system programs, quantity of data to be distributed,
and customer equipment to be used (see Installation Guide).

2.2 LIBRARIES

At installation time, the Intercomm system is copied from tape to
disk into libraries allocated and cataloged for this specific use.

A library is an Operating System partitioned data set (PDS)
consisting of a directory and individual members. Each 1library is
identified by a 4- to 8-character name. A source library is named
SYMxxxxx where xxxxx is 1 to 5 characters to complete a unique name.
An object library is named OBJxxxxx. A load library is named MODxxxxx.

A systemwide high-level qualifier for the library data sets may
be defined at installation time. Intercomm JCL procedures provide for
override of the system default (INT) via a P parameter.

2-1

Chapter 2 The Intercomm Operational System

The Intercomm system is released on three libraries:

® SYMREL--system macros, COPY members and Dsects, source
programs, tables and Job Control Procedures.

® MODREL--system load modules

& SYMUCL-~Intercomm User Group contributed programs (see User
Contributed Program Description).

These 1libraries are not to be used for user programs or user
modifications to Intercomm modules, as new Intercomm releases are
effected by complete replacement of these libraries.

The following libraries must be created at installation time by
the user:

LIB-- to hold user-modified versions of Intercomm global tables defined
via SET statements:

® SYMLIB--updated system source members
® MODLIB--load modules

NOTE : these libraries are used by the ASMF Facility to hold
Intercomm members updated by SMs (periodic system
modifications); therefore, they should not contain
user-modified Intercomm modules.

MDF— to hold map group definitions for the Intercomm Message Mapping
Utilities:

< SYMMDF --source map definitions
o MODMDF --1o0ad module versions of maps

USR-~ to contain 1linkedit control decks, installation JCL, user
programs, user-modified versions of, or additions to, Intercomm
system tables, or user modifications to Intercomm modules:

® SYMUSR--modified source modules
9 MODUSR--1cad modules

NOTE: SYMUSR is intended as the common 1link across Intercomm
system releases in that it should contain user versions
of system tables (or COPY members to be inserted in
system tables; see Section 2.7), change decks for user
modification of Intercomm system modules (in addition to
the changed modules), Intercomm linkedit modifications
(to order Csects under VS1/MVS, and to add user modules),
etc. All changes to Intercomm system modules and tables
must Dbe reexamined for applicability and sequence
numbering whenever SMs are applied or a new release is
installed.

2-2

Chapter 2 The Intercomm Operational System

REF-- a dummy data set (one track) to set the largest block size for a
SYSLIB concatenation stream (see Section 2.2.1):

® SYMREF--for block size determination
This is the minimal configuration of the Intercomm libraries.

If desired, all user programs may be placed into the common USR
libraries, or ‘'"private" libraries may be created for individual
programmers or groups:

- SYMxxx--private source programs

® MODxxx--private load modules

For testing purposes, a set of "scratch" libraries may be created,
to be scratched and recreated periodically to eliminate unneeded modules
and recover space used during updating:

® SYMSCR--Test source programs
® MODSCR--Test load modules

NOTE : Several Job Control Procedures producing executable load
modules specify data set MODSCR (see LKEDE, LKEDT).

The Intercomm JCL procedures are so arranged that, whenever a
search must be made in a library for a member (such as a macro name,
source code to be copied or updated, or modules to be included in a
linkedit), a concatenation is used to cause a progressive search to be
made for the member in

o The specified private library
® The system modification USR library
@ The system update LIB library
@ The system release REL library
O

Operating System libraries, such as MACLIB, COBLIB, TELCMLIB,
etc. (where appropriate)

The search for a member ends with the first library (in the above
sequence) containing the member name in its directory, even if another
library also contains the named member. Thus, the user of a private
library can modify any system component for his own use without
affecting the user of any different private library. An installation
may choose to modify or add a component to the system USR library, and
it will automatically become available to all users. Components
modified by SMs will be taken from the systeﬁ—ﬁpdate library, while
those not modified/updated by the user will be taken from the library
supplied by Intercomm, and components of the Operating System will be
taken from the appropriate operating system libraries.

2-3

Chapter 2 The Intercomm Operational System

NOTE: If executing under MVS, it may be necessary to modify
Intercomm procedures which execute an assembly so that
SYS1.AMODGEN is concatenated after SYS1.MACLIB in the ASM
step, in order to make system macros and Dsects available
for assembly of Intercomm modules.

2.2.1 Source Library Concatenation Sequence

Due to the existence of macros on SYS1.MACLIB that have the same
name as Intercomm macros, the Intercomm SYMxxx libraries must be placed
before SYS1.MACLIB. When the block size of SYS1.MACLIB is larger than
the Intercomm SYMxxx libraries, placing it after the SYMxxxs can cause
I/0 errors 1n reading macros, COPY code, etc. There are three ways
around the problem:

1. Reblock SYS1.MACLIB to Intercomm Source Libraries block size.
2. Reblock Intercomm source libraries to SYS1.MACLIB block size.
3. Tell the Assembler what the largest block size on SYSLIB is.
Method 1 can propagate the problem to other assemblies. Method 2
is workable but still requires a reblock, and all libraries must have
the same block size. Method 3 is the one that is provided by Intercomm
installation for all Intercomm JCL procedures using the Assembler

(ASMPC, ASMPCL, LIBEASM, LIBELINK, etc.):

//SYSLIB DD DSN=SYMREF,DISP=SHR

// DD DSN=SYM&Q,DISP=SHR

// DD DSN=SYM&U,DISP=SHR

// DD DSN=SYMLIB,DISP=SHR

// DD DSN=SYMREL,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR
where:

SYMREF is a dummy PDS with the correct largest block size,

SYM&Q is the private library (specified via Q parameter),
SYM&U defaults to SYMUSR.

NOTE : SYS1.MACLIB must be concatenated after all SYMxxx
libraries.

2-4

Chapter 2 The Intercomm Operational System

2.3 JCL PROCEDURES

To simplify the execution of assemblies, linkage editing, and
utilities in an Intercomm environment, a number of Job Control
Procedures are supplied with the Intercomm system as members on SYMREL.
These procedures provide a straightforward, uniform means to:

® Add and update source programs on source program libraries.

® Assemble or compile programs from source program libraries,
producing either object modules (assembler or compiler
output) or load modules (linkage editor output) on
appropriate libraries.

Print and punch source programs and object decks.
Patch load modules on load module libraries.

® Linkedit any combination of object and 1load modules to
produce executable programs.

Note: for MVS systems, programs must not be linkedited as
RENT (reentrant) unless they really are reentrant. The
Intercomm load modules on MODREL are not 1linked as either
reentrant or reusable.

® Execute general utility programs.

Figure 2-1 is a list of procedure names and the general function
performed by each procedure. The Intercomm System Manager should
evaluate this 1list carefully to determine which Intercomm procedures
should be utilized as a standard for the installation. Many of these
procedures are used in the Intercomm installation JCL and for specific
feature installation as described in this and other Intercomm manuals.

Chapter 2

COBUPC
COBUPCL
COBUPCLD
COMPRESS
COPY
DEFSYM
FORTLINK
INTASMF
LIBCOBDL
LIBE
LIBEASM
LIBECOB
LIBECOBL
LIBELINK
LKEDE
LKEDO
LKEDP
LKEDPL1

LKEDT

The Intercomm Operational System

Assembler source--produce object module

Assembler source--(produce object module or no output)
Assembler source--produce load module

Assemble a macro--(produce object module or no output)
COBOL-F source--(produce object module or no output)

COBOL-F source--produce load module

ANS COBOL source--(proddce object module or no output)

ANS COBOL source--produce load module (with NCAL option)

ANS COBOL source--produce dynamic load module (link INTLOAD)
compress a PDS
copy PDS or member

see Message Mapping Utilities

compile and link FORTRAN module

see ASMF Users Guide

update ANS COBOL--produce dynamic load module (link INTLOAD)
update a source member

update Assembler source--produce object module

update ANS COBOL source--produce object module

update ANS COBOL source--produce load module (NCAL option)
update Assembler source--produce load module

obJect & load module(s)--produce executable load module
object & load module(s)--produce executable load module

load module(s)--produce executable load module

PL/1 object or load modules--produce executable load module

load module(s)--produce executable Test Mode module

Figure 2-1. Intercomm JCL Procedures (Page 1 of 2)

2-6

Chapter 2 The Intercomm Operational System

f==========T:===:===::=::===:=:==:===:====:===============:=============
Name Function
MODLIB create load library
OBJLIB create object library
OPSCN Assembler source program scan (OPSCAN utility)
PATCH patch load module(s) '
PLIXPC PL/1-optimizer--produce object module
PLIXPCL PL/1-optimizer--produce load module
PL1LOC PL/1-F source--produce object module
PL1LPC PL/1-F source--(produce object or no output)
PL1LPCL PL/1-F source--produce load module
PMIPCH punch source or object deck
PMIPRT print source.member listing
SYMGEN see Message Mapping Utilities
SYMLIB create source library

Figure 2-1. Intercomm JCL Procedures (Page 2 of 2)

Unit name SYSDA is used wherever direct access space allocation
is required.

Listings of individual members may be obtained by using the
following JCL:

//PROCLIB DD DSN=INT.SYMREL,DISP=SHR
// EXEC PMIPRT,Q=REL,NAME=procname

A Job Control Procedure is invoked by coding the procedure name
in an EXEC statement, along with appropriate keyword symbolic parameters
to supply the library and member names.

Figure 2-2 summarizes the parameters specified for each Intercomm
procedure.

Chapter 2

Except for some of the utilities, all procedures below also have

The Intercomm Operational System

symbolic parameters Q, U and P, with Intercomm-supplied default
values Q=XYZ, U=USR, P=INT. Bracketed parameters below are
optional.
Procedure Parameters J.Comments/Other Parms
Ht it ittt it -t i |
ASMOC NAME= OMOD= D=)
ASMPC NAME= SYSGO=)
ASMPCL NAME= LMOD=
ASMPCM NAME= (SYSGO=)
COBPC NAME=
COBPCL NAME= LMOD=
COBUPC NAME=
COBUPCL NAME= LMOD=
COBUPCLD | NAME= LMOD= Dynamic Linkedit not used
COMPRESS DSN= (s=)
CcoPY INDSN= OUTDSN=
FORTLINK | NAME= LMOD= (s=) (s1=)
LIBCOBDL NAME= LMOD= Dynamic Linkedit not used
LIBE
LIBEASM NAME= OMOD= [D:}
LIBECOB NAME= OMOD= (D=
LIBECOBL | NAME= LMOD=
LIBELINK NAME= LMOD=
LKEDE tOMOD= LMOD= (p=) OMOD optional if INCLUDE
LKEDO OMOD= LMOD= statement in input stream
LKEDP LMOD=
LKEDPL1 LMOD= INPUT=) (ovLyY=) (PL1=)
LKEDT LMOD= D= i
MODLIB VOLSER= D=
OBJLIB VOLSER= D= (BLKSIZE=)
OPSCN NAME=
PATCH (T=)
PLIXPC NAME= (PARM2=)
PLIXPCL NAME= LMOD= (PARM2=
PL1LOC NAME= OMOD= { PARM2=
PL1LPC NAME= (PARM2:=
PL1LPCL NAME= LMOD= kPARMZ:J
PMIPCH NAME= S=) [T:}
PMIPRT NAME= %S=J (T=
SYMLIB VOLSER= D=
Figure 2-2. JCL Procedure Parameter Summary
Note: for the following procedures the default Q value is other than

XYz

LKEDPL1 - (null); MODLIB,OBJLIB,SYMLIB - SCR; OPSCN - REL.

2-8

Chapter 2 The Intercomm Operational System

The keyword symbolic parameters used are as follows:

Q

NAME

OMOD

LMOD

Common to all Intercomm procedures, this parameter defines the
characters completing various library names used in the procedure.
For example, if Q=TST is coded for a procedure which uses both
symbolic and load module libraries, the names SYMTST and MODTST are
generated by the procedure. One to five alphanumeric characters
may be specified. The default is XYZ.

Common to all Intercomm source update, compile, assembly, and
linkedit procedures, this parameter defines the characters
completing the library name of the data set placed after the Q data
set in a SYSLIB concatenation stream. One to five alphanumeric

. characters may be specified. The default is USR.

Common to all Intercomm Procedures, this parameter specifies a
library name common prefix or high-level qualifier. For example,
if P=INTERCOM, and Q=TESTS is coded for a procedure using a source
library, the name INTERCOM.SYMTESTS is generated by the procedure.
One to eight alphanumeric characters may be specified, the first of
which must be alphabetic. If multiple qualifiers are used, then
the parameter value must be in quotes, that is, P='A.B', and more
than eight characters may be coded. The default is INT.

For those procedures which use a symbolic library, this parameter
is coded to specify the name of a particular member (source
program) to be assembled, printed, ete. It may be omitted if an
override SYSIN DD statement is present in the JCL. The default is
INVALIDNAME,

For those procedures using an object module library, this parameter
is coded to specify a particular name for the input or output
object module. The default is GO.

For those procedures using a load module library, this parameter
specifies a particular name for the linkage editor output module.
It may be omitted if a NAME statement is present in the linkedit
input control stream. The default is GO.

For utility procedures (compressing, printing, punching) requiring
control statement input, this parameter specifies the prefix of the
PROCLIB containing the control statements. For example, S=SYS1

specifies the system procedure library SYS1.PROCLIB. The default
is INT.

For certain procedures (printing, punching, patching) applicable to
more than one type of library, T=SYM, OBJ, or MOD may be specified
to indicate the type of library. The default is SYM.

2-9

Chapter 2 The Intercomm Operational System

SYSGO

VOLSER

PARM2

PLA1

OVLY

INPUT

Indicates the disposition of the output library data set as follows:
for procedures which can optionally create a temporary data set,
D=MOD must be coded to specify this processing option; when library
creation procedures are used to add or replace members, D=MOD, OLD,
or SHR may be coded. The default is OLD.

For assemblies only, to provide the name of a temporary partitioned
data set which will receive an output object module from the
assembly. The data set 1is deleted at end of Jjob. If not
specified, no object output is produced. If a qualified data set
name, or a temporary name (starting with &%), is used, enclose the
name in quotes. The default is NULLFILE.

For 1library creation procedures requiring specification of the
volume serial number on which the library is to reside. One to six
alphanumeric characters may be specified. The default is INTO0O01.

For PL/I procedures, this allows specification of additional
compiler parameter (PARM='....') information without changing the
parameter default values specified in the procedure (which would

cause a reversion to installation SYSGENed defaults). Specify as
PARM2=',parm(,...)".

For the LKEDPL1 procedure to 1linkedit a dynamically loaded PL/I
subsystem and/or subroutine, this provides the module name to be
used in the linkedit step (LKED1) execution to resolve all external
PL/I references (needed when Intercomm's dynamic linkedit not used).

For LKEDPL1, denotes whether the resulting load module is to be an
overlay structure (default is ',0VLY'), If OVLY= (no value), then
an overlay structure is not created.

For LKEDPL1, specifies the prefix of the lowest level name of the
installation load library used to resolve external PL/I subroutine
references via a LKED1.SYSIN statement such as INCLUDE PL1LIB(name).
The default is MOD. Thus if the defaults are used for the P, INPUT
and Q parameters, the PL/I subroutine 1library data set would be
INT.MODXYZ.

The following parameters are explained under examples of the

applicable procedures:

BLKSIZE, DSN, INDSN, OUTDSN.

<

C

Chapter 2 The Intercomm Operational System

2.3.1

Step Names

The following naming conventions apply to multistep procedures:

Step Name | Function
=SS S-S - =CS=SC-CoCo==C- oo oS CSCCoCo=C-gC-oCCSC-CoCoSCSCSSoCDCIooCoECD=SD===s==S=ScScocS==9
LIB source update
ASM assembly
COB COBOL compile
LKED linkedit
PL1L PL/I-F compile
PLI PL/I-optimizer compile

2.3.2 JCL Procedures for Source Updates, Compiles, Assemblies, Linkedits

//

//

//

//

EXEC ASMOC,Q=xxx,NAME=source-member ,0MOD=ob ject -member(,D=disp)

Assemble the source program on SYMxxx, placing the object module
on OBJxxx using the OMOD name. If the OBJxxx data set is created
and used in subsequent steps of the same job, then it is deleted
at the end of the job. D=MOD must also be coded to specify this
option.

EXEC ASMOC,Q=xxx,0MOD=0b ject-member
(Source program deck)

Assemble the input stream program (using 1library SYMxxx for
macro, etc., definitions) and store the obJject module on OBJxxx
using the OMOD name.

EXEC ASMPC,Q=xxx,NAME=source-member(, SYSGO='output-data-set')

Assemble the named source program. No object output is produced
unless SYSGO='output-data-set' is coded. If a cataloged
sequential data set is named, the obJect module is added at the
end of the data set. Otherwise a temporary sequential data set
is created and used in subsequent steps of the same Jjob, then is
deleted at the end of the job. A "temporary" data set name may
be specified, but '&&LOADSET' should not be used.

EXEC ASMPC,Q=xxx

//SYSGO DD SYSCQUT=B

(source program deck)

In this example, an input stream source deck is being assembled,
and the obJject output is to be punched instead of being written
to a temporary data set. The Q=xxx parameter still defines a
library to be used for macro definitions, COPY members, etc.

Chapter 2 The Intercomm Operational System

//

//

//

//

//

//

//

//

EXEC ASMPC,Q=xxx,NAME=source-member,SYSGO="'1library(member)"’

In this example, the object program is added to or replaces an

existing member of the cataloged partitioned data set (library),
which must have 80-byte logical records.

EXEC ASMPCL,Q=xxx,NAME=source-member ,LMOD=1oad-module-name

Assemble and 1linkedit the named source member from SYMxxx,
creating or replacing the named load module on MODxxx. This
statement may be followed by an input stream source deck, in
which case the NAME parameter may be omitted. If linkage editor
control input is required, 1t must follow a //LKED.SYSIN DD *®
statement. If the condition code from the assembly step is
greater than 4, the linkedit step is bypassed.

EXEC COBPC,Q=xxx, NAME=COBOL-source-member

Analogous to ASMPC, for COBOL-F compilation.

EXEC COBPCL,Q=xxx,NAME=COBOL-source-member,LMOD=1oad-module-name
Analogous to ASMPCL, for COBOL-F compilation and linkedit.

EXEC COBUPC,Q=xxx,NAME=COBOL-source-member

Analogous to COBPC, for ANS COBOL compilation.

EXEC COBUPCL,Q=xxx, NAME=COBOL-source-member ,LMOD=1cad-module-name

Analogous to COBPCL, for ANS COBOL compilation and linkedit of
resident, overlay, or dynamically loaded (if Dynamle Linkedit
used) programs.

EXEC COBUPCLD,Q=xxx,NAME=COBOL-source-member ,LMOD=1oad-module-name

Analogous to COBUPCL, for ANS COBOL compilation and linkedit for
a dynamically loaded program and including all needed COBOL load
modules from SYS1,COBLIB. If Dynamic Linkedit is used (see
Chapter 3), then use COBUPCL. Linkage editor control cards
should be added to LKED,SYSIN for the subsystem load module name,
and for INTLOAD, For example:

// EXEC COBUPCLD,Q=USR, NAME=COBPROG,LMOD=COBPROG
//LKED,SYSIN DD *®

INCLUDE SYSLIB(COBPROG,INTLOAD)

ENTRY COBPROG

NAME COBPROG(R)

EXEC FORTLINK,Q=xxx,NAME=source-member,LMOD=1ocad-module-name
(,S=PDSprefix,S1=PDSname)

where S and S1 default to SYS1.FORTLIB (the library containing
IEYFORT, the Fortran compliler and Fortran subroutines for the

linkedit). This procedure executes a compile and linkedit of a
Fortran module.

2-12

C

Chapter 2 The Intercomm Operational System

//

//

//

//

EXEC LIBCOBDL,Q=xxx, NAME=COBOL-source-member ,LMOD=10ad-module-name

Analogous to LIBECOBL, for ANS COBOL source member update,

compilation, and 1linkedit for a dynamically loaded program
including all needed COBOL load modules, when Dynamic Linkedit not
used.

EXEC LIBE,Q=xxx
(control statements and data for program IEBUPDTE)

Execute the IBM utility program IEBUPDTE to change symbolie
library SYMxxx. This program is described in the IBM Utilities
manual, and permits an individual source member to be changed,
added, or replaced. The member named in the utility control
statement is searched for in the named 1library and the system
update (LIB) and release (REL) libraries, so that it is possible
to update a source program onto a private library without first
copying the program from one library to the other.

Control statement and data examples:

// EXEC LIBE,Q=USR
./ ~ CHANGE NAME=PROG1
* THIS IS A REPLACEMENT FOR THE STATEMENT NUMBERED 00459370

// EXEC LIBE,Q=USR

./ REPL NAME=PROG2,LIST=ALL

o/ NUMBER NEW1=10000, INCR=1000
(replacement deck for PROG2)

EXEC LIBEASM,Q:xxx,NAME:source-member,0MOD=object-module[,D=disp)
(control statements and data for program IEBUPDTE)

Update and assemble the source program, producing an object module
on the named 1library. The control input is normally an add,
replace, or change for the member to be assembled. If the update
is not successful (any IEBUPDTE diagnostic giving a nonzero return
code), the assembly is not performed.

If data set OBJxxx is not cataloged, a temporary data set is
created and used in subsequent steps of the same Jjob, then is
deleted at the end of the Jjob. D=MOD must also be coded to
specify this option.

%XEC LIB%COB,Q=xxx,NAME:COBOL-source-member,OMOD:object-module
,D=disp

Analogous to LIBEASM, for ANS COBOL source member update and
compilation.

Chapter 2 The Intercomm Operational System

//

//

//

//

//

EXEC LIBECOBL,Q=xxx, NAME=COBOL -source-member ,LMOD=1o0ad-module

Analogous to LIBELINK, for ANS COBOL source member update,
compilation and 1linkedit of resident, overlay or dynamically
loaded (if Dynamic Linkedit used, see Chapter 3) programs.

EXEC LIBELINK,Q=xxx,NAME=source-member ,LMOD=10ad-module-name
(control statements and data for program IEBUPDTE)

Update, assemble, and linkedit the source program, creating or
replacing the named load module. If the update 1is not
successful, the assembly and linkedit are not performed. If the
assembly is not successful (return code greater than U4), the
linkedit 18 not performed. Any linkage editor control input must
be preceded by the statement //LKED.SYSIN DD ¥,

EXEC LKEDE,Q=xxx,LMOD:load-module-name[,OMOD:object-module—nameJ

Linkedit a program for subsequent execution, storing the 1load
module on library MODSCR. If this library is not cataloged, it
may be created and used in subsequent steps of the same job, then
will be deleted at the end of the Job; specify D=MOD in this case
(the default is SHR). Linkage editor control input may follow
this statement; if no control input is provided, then OMOD=ob ject-

module must be coded to specify an object module on OBJxxx as
input.

Control statement examples:

INCLUDE OBJLIB(omod1,omod2,...) include object modules
INCLUDE SYSLIB(lmod2,lmod3,...) include load modules
INCLUWE ddname(...) data set defined on added

DD statement

Multiple load modules may be processed in one execution of the
linkage editor by interspersing linkage editor NAME control
statements with input control statements. The LMOD parameter is
not required in this case. If object module library OBJxxx was
created in the same job by an assembly or compilation procedure
(see ASMOC, COBOC, LIBEASM), then, if OMOD parameter 1is not
specified, precede any control input by: //SYSLIN DD ¥

EXEC LKEDO,Q:xxx,LNDD:load-module—name[,0MOD=object-modu1e-name)
Linkedit one or more object and/or load modules, placing the load
module on 1library MODxxx. Refer to procedure LKEDE for the
remainder of the description of this procedure. Override the
SYSLMOD DD statement if MODxxx does not exist.

EXEC LKEDP,Q=xxx,LMOD=1oad-module-name

This procedure is analogous to procedure LKEDO, but no object

module data sets are defined or made available for inclusion.

2-14

Chapter 2 The Intercomm Operational System

//

NOTE :

//

EXEC LKEDT,Q=xxx,LMOD=1load-module-name

Analogous to procedure LKEDE, but with no object module data sets
defined. The load module is placed in MODSCR.

Procedures LKEDT and LKEDP define concatenations of private
library, USR, LIB, and REL for the call library SYSLIB; in
addition, procedures LKEDE and LKEDT specify the system COBOL and
telecommunications libraries (SYS1.COBLIB and SYS1.TELCMLIB), so
that included or called Operating System modules will be available
to the linkage editor. For LKEDE and LKEDO, Q specifies only the
object library suffix; the SYSLIB concatenation sequence starts
with USR (U parameter).

EXEC LKEDPL1,Q=xxx,LMOD=1load-module-name,INPUT=1ibrary-type,
PL1=1library-name,OVLY=

This procedure will linkedit PL/I programs including all required
PL/I 1library subroutines, and then perform a final 1linkedit to
include all necessary Intercomm modules. This is necessary, as
during the final linkedit the automatic library mechanism must be
disabled, while during the initial 1linkedit (when PL/I 1library
routines are included) it must be enabled.

‘There are two steps, LKED1 (the PL/I library step) and LKED2 (the

Intercomm step). During LKED1, PL/I programs are included from
either a load or object 1library (or both if additional user
libraries are specified) via the INPUT (INPUT=0BJ for object, MOD
is default) parameter and using the ddname PL1LIB. In the LKED2
step, Intercomm modules are included from SYSLIB and the PL/I
program(s) from the library defined by the ddname PL1. To include
the modules from the first step simply code INCLUDE PL1(PL1). The
OVLY parameter, if coded, will nullify the overlay option in the
second linkedit.

//
/7%

/%

//LKED1.SYSIN DD #

//LKED2.SYSIN DD #

EXEC LKEDPL1,Q=LIB,LMOD=INTERCOM,OVLY=
OVERLAY NULLIFIED, INPUT=MOD DEFAULT USED

INCLWE PL1LIB(PROG1)
INCLUDE PL1LIB(PROG2,PROG3)

INCLUDE SYSLIB(Intercomm-modules,...)
INCLUDE PL1(PL1)

//

EXEC PLIXPC,Q=xxx,NAME=PL1-source-name(,PARM2="',options!')

Compile a PL/I-optimizer program, as in PL1LPC. If the source is
in-line, NAME need not be specified. PARM2 is as in PL1LPC.

Chapter 2 The Intercomm Operational System

// EXEC PLIXPCL,Q=xxx,NAME=PL1-source-name,LMOD=1oad-module-name
[,PARMZ:',options'j

Compile a PL/I-optimizer program and store the load module
(without the PL/I library subroutine modules referenced) under
the name specified in LMOD (GO used if LMOD absent); for
resident, overlay, or dynamically loaded (when Dynamic Linkedit
used) programs. NAME need not be specified if source is
in-line. PARM2 is as in PL1LPC.

// EXEC PL1LOC,Q=xxx,NAME=PL1-source-name,0OMOD=0b ject-module
(,PARM2="',0ptions')

Compile a PL/I-F program and generate an object module stored in
OBJxxx under the name specified for OMOD (GO used if OMOD

omitted). NAME need not be specified if the source is in-line.
PARM2 is as in PL1LPC.

// EXEC PL1LPC,Q=xxx,NAME=PL1-source—name[,PARMZ:',options']

Compile a PL/I-F program from SYMxxx. If the source is in-line,
NAME need not be specified. If additional PARM options are
required, code PARM2=',options' (for example, PARM2=',LIST').

// EXEC PL1LPCL,Q=xxx,NAME=PL1-source-name,LMOD=1oad-module-name
[,PARMZ:',options'j

Compile a PL/I-F program and store the load module (without the
PL/I 1library subroutine modules referenced) under the name
specified in LMOD (GO wused if LMOD absent); for resident,
overlay, or dynamically loaded (when Dynamiec Linkedit wused)
programs. NAME need not be specified if source is in-line.
PARM2 is as in PL1LPC,

2.3.3 JCL Procedures for Utility Executions

The following procedures can be used to perform common utility
operations (data set copy, data set member print/punch/patch/scan,
library creation). The IBM Utilities manual describes the functions of
each program in detail. Some of the procedures must be modified by the
user to specify appropriate volumes for a given installation. The P
and Q override parameters may be used (except where noted), but the U
override parameter does not apply.

// EXEC COMPRESS,DSN='data-set~name'(,S=Proclib~prefixname)

Compress an individual 1library (using utility program
IEBCOPY), and release any excess space available in the data
set after compressing. Control statement input for this
procedure is contained in the released member COMPSYS which
must be put on the PROCLIB specified by the additional
parameter S=prefix. If the system procedure library is used,
specify S=SY¥S1 (the defaultsis INT).
2-1

C

Chapter 2) The Intercomm Operational System

//

//

//

//

//

EXEC COPY, INDSN="'INT.SYMCHG',OUTDSN="'INT.SYMLIB'
COPY INDD=SYSUT1, QUTDD=SYSUT2
SELECT MEMBER=((PROGX,,R))

In this example, a member of a private source library
(SYMCHG) is copied into SYMLIB. By supplying additional DD
statements and control statements, more than one operation
may be done in a single step.

Note: the COMPRESS and COPY procedures do not use the Q and P
parameters.

EXEC PMIPCH,Q=xxx,NAME=source-member

Punch the named member of library SYMxxx.
EXEC PMIPCH,Q=xxx,NAME=o0bject-module,T=0BJ
Punch the named member of library OBJxxx.
EXEC PMIPRT,Q=xxx,NAME=source-member

Print the named member of library SYMxxx.

NOTE : PMIPCH and PMIPRT use the IBM utility program IEBPTPCH;
control statements for these procedures are contained in
the released members PMIPCH1 and PMIPRT1 which must be
put on the PROCLIB specified by the additional parameter
S=prefix. If the system procedure 1library is used,
specify S=SYS1 (the default is INT).

EXEC PATCH,Q=xxx(,T=library-type)
(control statements for program IMASPZAP)

Print and/or change selected data in load modules or object
modules, using the IBM utility program IMASPZAP (described fully
in the IBM Service Aids manual).

Object modules may be ABSDUMPed and the desired data located
before changes are made. If the IMASPZAP program was not
included in the operating system 1link 1library, a JOBLIB or
STEPLIB DD statement is required. A STEPLIB DD statement may be
added to the procedure if necessary. T defaults to MOD.

Control statement examples for IMASPZAP:

DUMP (T) member (csect)
NAME member (csect)
VER hex-location hex-data,hex-data,..... cos
REP hex-location hex-data,hex-data,.ceecc..

Chapter 2 The Intercomm Operational System

//

//

//

//

EXEC OPSCN,Q=xxx, NAME=source-member

This procedure executes the Intercomm-supplied utility OPSCAN
which scans an Assembler source library member (or sequential data
set) and selects all statements having a recognizable operation

code field other than standard instructionms. The selected
statements may be directed to a printer, and will include all
macro instructions (Intercomm and Assembler), CALLs, COPY
references, conditional assembly statements, entry points,

external references, and control sections, as well as other
significant details.

Standard instructions are comment statements, machine operation
codes (including privileged operations, SPM, TS, and floating-point
feature instructions), selected extended mnemonic operation codes

(BNE, BH, B, etc.) and selected Assembler operation codes (DC,
EQU, CNOP, USING, EJECT, etc.)

The operation code scan accommodates free-form statements as
specified for the 0S/VS Assembler Language. Continuation lines of
the selected statements are also printed.

EXEC SYMLIB,Q=xxx,VOLSER=serial

Create and catalog a source library named SYMxxx, to be allocated
on the specified volume. Space parameters supplied with the
procedure allocate 10 directory blocks and one cylinder initially,
with two additional cylinders obtained (up to fifteen times) each
time the data set becomes filled. DCB information is copied from
data set SYMLIB, which must be cataloged and mounted when this step
is run. The D parameter defaults to NEW, the Q parameter to SCR.

EXEC MODLIB,Q=xxx,VOLSER=serial

Analogous to procedure SYMLIB, for creating and cataloging 1load
module library MODxxx. Q defaults to SCR and D to NEW,

EXEC OBJLIB,Q=xxx,VOLSER=serial[,BLKSIZE:block-sizeJ

Analogous to procedure SYMLIB, for creating and cataloging object
module library OBJxxx. An empty member named GO 1is created to
ensure proper functioning of the linkage edit steps of Intercomm-
supplied JCL procedures. DCB information 1s specified in the
procedure. A block size of U400 is the default, as larger blocks
cannot be read by all linkage editors. The D parameter defaults
to NEW, and Q to SCR.

Intercomm utilities for log (Jjournal) printing and analysis, data

set creation and loading, BTAM simulator input creation, source member
compares, etc, are described elsewhere 1in this and other Intercomm
manuals. Additionally, system cross-reference and maintenance utilities
are described in the ASMF Users Guide.

2-18

Chapter 2 The Intercomm Operational System

2.4 SYSTEM INSTALLATION AND MAINTENANCE RESPONSIBILITIES

In any on-line system environment, it is necessary to develop a
distribution of responsibility to installation personnel involved with
the ongoing operation of the system. Three different user categories of
Intercomm personnel are required:

® The System Manager(s) - System programmers responsible for
coordination of all system specifications, system program
maintenance, and operating procedures.

® The Application Group(s) - Project leaders and programmers
responsible for design and implementation of application
subsystems.

® Central Location Operations Staff - Responsible for the actual
scheduling and operation of the central CPU.

Many responsibilities overlap in these functional areas. An
installation must be flexible and above all establish orderly
communications methods between the user personnel. Each Intercomm
installation must develop its own distribution of responsibilities for
its personnel depending on the scope of the on-line system.
Requirements obviously vary from a staff of three to hundreds of
associated programmers, analysts, system programmers, operators,
management, etc.

In general, the responsibility for maintaining the Intercomm
System lies in the areas of:

1. Intercomm System Program Maintenance via the ASMF Facility
2. Table Maintenance

3. Execution Load Module Maintenance

4, Procedures for Testing and Live Execution

5. System Tuning

6. Problem Reporting

7. Backup and Recovery Procedures

The following list represents a suggested set of guidelines in

assignment of responsibilities for each category of installation
personnel,

Chapter 2 The Intercomm Operational System

2.5.1 The Intercomm System Manager(s)

® General liaison with SDA

-~ Documentation updates and new editions
~- Microfiche listings and updates of Intercomm source modules

-- Early Warnings - monthly publication of outstanding
problem reports and solutions
-- Technical Information Bulletins - non-product problem

resolution suggestions
—- SM (system modification) maintenance of Intercomm system
-- New release distribution
-- Problem reporting, tracking, and resolution

o Initial system installation

@ Production system generation and maintenance

Definition of network configuration to Intercomm

-- Definition of subsystems (applications) to Intercomm
Ongoing system tuning as production environment changes
Application and testing of official and experimental SMs
-- Dump analysis and problem solution

® Maintenance of Intercomm libraries and tables (may include
modifications to Intercomm and/or user exit routines for
startup, restart, closedown, etc.)

@ Control and coordination of terminal test sessions
-- Add new application modules to linkedit
-- Add new table entries to system tables
~- Relinkedit Intercomm test system
-- Distribute test session output (snaps, dumps, log, ete.)

® Coordination of 1live ({production) system with application
project leaders and operations personnel
-- Installation standards maintenance
Update live system with tested modules and tables
-- Develop operational procedures as required
-- Create and maintain a "run book" for operations personnel
-— System expansion planning

® Analysis of system messages, log and statistics reports from
live system for system tuning and problem reporting

@ Development of procedures for system backup and restart

o Intercomm ediication coordination for system and applications
staff

2-20

C

Chapter 2 The Intercomm Operational System

2.5.2 The Application Group(s)

Maintenance of existing (live) application programs

Development, coding, and comprehensive testing of new
applications

® Assign specific identifiers following standards provided by
the System Manager(s) for: verbs (transaction identifiers),
subsystem codes and entry point names, mappling names, and
other required table specifications

@ Communicate to System Manager(s) when table maintenance is
required for testing: new verbs, new subsystems (program
modules), new utility table entries, etc.

® Comunicate to System Manager(s) when a new module is to be

added to the 1live system (requires a linkedit of production
module)

2.5.3 Central Location Operations

® Start system selection of options (for example, JCL
considerations) under direction of System Manager(s)

@ Notify System Manager(s) immediately in the event of hardware
or software failure and prepare "trouble" report stating cause
of failure and corrective action.

9 Close down system at direction of System Manager(s)

® Start log printing and analysis procedures, or any related
off-line jobs to be executed after closedown or failure

@ Restart system after failure at direction of System Manager(s)

® Periodically back up disk packs containing system libraries

2.6 STANDARDS

In planning an orderly Intercomm installation, the System
Manager(s) and Application Group(s) may wish to standardize certain
conventions for Intercomm 1libraries, programs and identifiers for
Intercomm transactions and associated table specifications.

Intercomm library naming conventions are described in full in
this chapter; program naming conventions must be controlled by the
System Manager(s) to avoid duplications. Additionally, control must be
exercised over file DD statement and data set names, terminal names,
Store/Fetch and DDQ key names, etc.

2-21

Chapter 2 The Intercomm Operational System

Several different applications may be operating under the control
of Intercomm and each of these applications may consist of several
different transactions. For example, an order entry application may
have different transactions for shipment, receipts, back order
processing, stock status, ete.

A transaction under Intercomm has the following components:

@ Input message from terminal

® Processing program(s) (subsystems and subroutines)

@® Output message to terminal

® Data file(s) and/or data base access

The following basic identifiers are required in the Intercomm
system to control (direct) the processing of that transaction:

1. Input message verb (transaction code)
2. Subsystem code and associated program entry point name

3. Message Mapping Utility map group definitions existing as
members in this utility's related files and referenced by
application subsystems.

4, File DD statement(s) and data set names.

The System Manager(s) may define standards for coding verbs,
subsystem codes, program names, MMU map group names, and file names (if
applicable). Assume an installation has four application areas: A, B,
C, D. The System Manager(s) might define the following standards for
basic identifiers:

::::::::::::::::::::::F:::::::====:::::::::::::1!:::::::::::: =S=====Z=Z=Z=Z=Z=Z=19
Application
Identifier A B C D
b S i] ~ i PR S} E:::::::::::: oS ==C-IZS===Z==S 9
Verdb
(4 characters) AAxx BBxx CCxx DDxx
Subsystem Code Alx } B{x } c{x } D{x }
(2 1-byte values) {nnn} {nnn} {nnn} {nnn}
Program Entry AAxxxxXXX BBxxxxxx CCXXXXXX DDxxxxxx
Point name
(8 characters)
Map Group Name MGAAxxx MGBBxxx MGCCxxx MGDDxxx
(1 to 7 characters)
where x is any character and nnn is any number (from O to 255) selected
by the application project leader.

2-22

Chapter 2 The Intercomm Operational System

2.7 SYSTEM CONTROL FUNCTIONS AND TABLES

System Control Functions comprise those areas of table
specification and related program 1logic which control the general
operation of the Intercomm environment. The System Parameter List
(SPA), discussed in Chapter 3, '"Message Management," includes
specification of many control variables affecting Intercomm execution.
In general, these variables consist of time-delay values (indicating
such things as checkpoint intervals, statisties intervals, etc.),
control values (such as subsystem dispatching, security, message
logging and message volume thresholds, etec.) and indicators controlling
program logic (mode of operation, subtasking, etec.).

Intercomm Dispatcher routines are discussed in Chapter 4. Other
system features connected with Intercomm installation, linkedit and
execution are described in Chapters 3, 7 and 8. Implementation of the
Resource Management functions of Intercomm is discussed in Chapter 5.
The File Handler is described in Chapter 6. Edit and Output
specifications are described in Chapter 3 and the Utilities Users
Guide. Logging and restart/recovery specifications are discussed in
Chapters 9 and 12, security options in Chapter 10, and system tuning
recommendations in Chapter 11. Specifications for Front End interfaces
and for special features are described in the applicable manuals.

Figure 2-3 1lists the Intercomm global tables and corresponding
SET symbol tables which may be modified by the user as the various
Intercomm support features are utilized. Before a new installation, or
a reinstallation, of Intercomm, the SET tables must be moved from
SYMREL to SYMLIB and then modified according to expected user needs, or
the existing installation. For a new installation, it is primarily
necessary to modify SETGLOBE for the operating system in use, the type
of Front End to be used, and the types of file access to be used.
SETENV is described in the BTAM Terminal Support Guide and may
optionally be modified to suppress support for teleprocessing devices
which will not be installed. However, if a VTAM Front End is wused
exclusively, SETENV does not need to be modified as it applies
primarily to BTAM/TCAM Front Ends. The DDQ (see Dynamic Data Queuing
Facility and Log Analysis (see Chapter 12) tables provide recommended
default settings and need only be adjusted to conform to existing
installation specifications, or as the facilities are used in a
production environment.

R N s i it
I GLOBALS SETTINGS FUNCTION
INTGLOBE SETGLOBE Systemwide Support Requirements
ENVIRON SETENV Front End Support Requirements
DDQENV DDQENV DDQ Facility Requirements
LOGDCLGB LOGSETGB Log Analysis Utility Requirements

Figure 2-3. Intercomm Global Tables

2-23

Chapter 2 The Intercomm Operational System

2.7.1 System Global Tables (INTGLOBE, SETGLOBE)

The set of global specifications which control assembly of the
SPA and other system routines are the member INTGLOBE defining globals
indicating requirements for specific Intercomm features, and the member
SETGLOBE which provides user assigned values for the defined globals.
In general, these specifications pertain to the operating system,
interregion communication, resource management options, data base
management system interface requirements, File Handler options, EDIT
and OUTPUT options, Dispatcher specifications, ete.

Figures 2-4 and 2-5 illustrate the members INTGLOBE and SETGLOBE
as released. As these members vary from release to release, the user's
Intercomm Support Manager should examine a 1listing of these control
variables prior to effecting any change and subsequent reassembly of
the System Parameter List, and other system programs conditionally
assembled with these members. A global cross-reference program
(IAIMGOCR) is available to Intercomm users with Product Maintenance
agreements, to facilitate determination of which modules require
reassembly when a SETGLOBE setting is changed (see ASMF Users Guide).
A general 1list of affected system modules 1is provided in the
Installation Guide.

I L L O O O O O O O O T D T R R TR T T e 2 a2 2 2 T
INTGLOBE - GENERAL SYSTEM FEATURES:

GBLB &VSSYSTM ON IF RUNNING UNDER VS1 OR VS2

GBLB &SYS370 USE OF S/370 INSTRUCTION SET

GBLB &MVS VS2 RELEASE 2 OR MORE.

GBLB &VS2 SVS

GBLC &MRSVC INTERCOMM INTERREGION SVC (MRS, ESS, VS, MVS)

GBLA &FASTSVC FAST-SNAP SVC NUMBER

GBLC &INTSVC DATA BASE INTERREGION SVC X
FRONT-END CHARACTERISTICS: USED IN BTAM/VTAM MODULES

GBLB &BTAM BTAM (INC. GFE) CONFIGURATION

GBLB &VTAM VTAM CONFIGURATION

GBLB &TIMSTMP TIME-STAMP ON RESPONSES TO F.E. CMD X
RESOURCE MANAGEMENT:

GBLB &RM RESOURCE AUDITING

GBLB &RMSTATS RM STATISTICS GATHERING.

GBLB &RMACCT BUCKET ACCOUNTING SWITCH.

GBLB &RMPOOLS SUPPORT USER POOLS.

GBLB &RMINTEG RESOURCE MGMNT CORE INTEGRITY CHCK. X
DISPATCHER:

GBLA &NUMWQES NUMBER OF WORK QUEUE ELEMENTS X

Figure 2-4. INTGLOBE (Page 1 of 2)

Chapter 2

The Intercomm Operational System

GBLB
GBLA
GBLA
GBLB
GBLB
GBLB
GBLB
GBLB

GBLB
GBLB
GBLA

GBLB

GBLB
GBLB
GBLB
GBLB
GBLB
GBLB

GBLB

GBLC
GBLA
GBLC

GELB
GBLC
GBLC
GBLB
GBLC
GBLC
GBLA

GBELB
GBLC

GBLA
GBLA

39636 36 06 36 36 36 36 36 6 96 36 36 36 36 36 3 36 36 36 36 36 36 36 36 36 96 36 36 36 36 36 36 36 36 36 36 96 06 36 36 96 36 96 36 36 36 36 36 96 36 6 96 36 96 36 36 36 36 36 36 96 36 3 3 3¢ 3¢ % 3 %

FILE HANDLER:
&IAM
&RPTINTV
&FHSTATS
&ISAM
&AMIGOS
&VSAM
&DYNALOC
&VSISAM

EDIT UTILITY:
&DELCHNG
&EDERRS
&EDERMAX

&O0PTRPT

OUTPUT UTILITY:

&TCAM
&DDQBACK
&BROAD
&RPTBLE
&ALTRPT
&OUTEXIT
DL/I SUPPORT:
&DLI

TOTAL SUPPORT:
&TOTDESC
&TOTMOD
&TOTSVC

RJE FACILITY:
&RJEWTO
&RJECLSA
&RJECLSB
&AUTORDR
&RDRNAME
&RDRID
&NUMJOBS

MULTIREGION SUPPORT

&MULTREG

LOGINPUT FACILITY:

&GENTERM
&LOGINTM
&LGINRTD

IAM FILES USED

FILE STATISTICS REPORT INTERVAL
NUMBER OF DSCT STATISTICS BUCKETS
ISAM FILES USED

AMIGOS FILES USED

VSAM FILES USED

DYNAMIC-ALLOCATION ROUTINES DESIRED
ISAM/VSAM COMPATIBILITY REQUIRED

NO CORRECT/CHANGE FACILITY USED
NO MAXIMUM FOR EDIT ERRORS SENT
MAXIMUM NUMBER OF EDIT ERRORS
(USED ONLY IF &EDERRS=0)

SEND ERRORS FOR OPTIONAL PARMS

FRONT END IS BASIC TCAM ONLY
DYNAMIC DATA Q'S - AUTO INPUT
NO BROADCAST GROUPS

NO REPORTS TO TAPE

NO ALTERNATE REPORTS

NO USER OUTPUT EXIT

DL/1

TOTAL DATA BASE DESCRIPTOR
SETTING:1 IF ATTACHED, 2 IF SEP TOT REG
TOTAL INTERREGION SVC NUMBER

INTR RJE TO INFORM OP OF EACH JOB
OUTPUT CLASS TRANSFORMATION FOR CL A
OUTPUT CLASS TRANSFORMATION FOR CL B
ON IF RJE IS TO AUTO START A RDR
READER NAME TO BE USED

RJE RDR ID-('.S','.P2',ETC.)

JOB THRESHOLD FOR AUTO START

e

MULTI-REGION SUPPORT REQUESTED

DUMMY TERMINAL-ID
LOGINPUT DISPATCH INTERVAL
LOGINPUT REAL-TIME DIVISOR

Figure 2-4.

INTGLOBE (Page 2 of 2)

2-25

Chapter 2

&VSSYSTM SETB
&SYS370 SETB
&VS2 SETB
&MVS SETB
&MRSVC SETC
&FASTSVC SETA
&INTSVC SETIC
&VS2 SETB
&VSSYSTM SETB
&SYS370 SETB

&BTAM SETB
&VTAM SETB
&TIMSTMP SETB

&RM SETB
&RMSTATS SETB
&RMACCT SETB
&RMPOOLS SETB
&RMINTEG SETB
&RM SETB

&NUMWQES SETA

&RPTINTV SETA
&FHSTATS SETA
&ISAM SETB
&AMIGOS SETB
&TAM SETB
&1SAM SETB
&VSISAM SETB
&VSAM SETB
&VSAM SETB
&VSSYSTM SETB
&SYS370 SETB
&DYNALOC SETB

&DELCHNG SETB
&EDERRS SETB
&EDERMAX SETA
&0PTRPT SETB

The Intercomm Operational System

R R R R R AR RN AR AR RSN AR RN RN R RN RN RRHRHUNEHNY
SETGLOBE - GENERAL SYSTEM FEATURES:
1 DEFAULT TO VS
1 USE 370 INSTRUCTIONS
0 DEFAULT TO NOT VS2 (SVS)
1 DEFAULT TO MVS
'013! INTERCOMM INTERREGION SVC NOT USED
13 FAST-SNAP SVC NOT USED
1013 DATABASE INTERREGION SVC NOT USED
(&VS2 OR &MVS) .VS AND S/370
(&VSSYSTM OR &VS2) .GLOBAL INTER-
(&SYS370 OR &VSSYSTM) .DEPENDENCIES X
FRONT-END CHARACTERISTICS:
1 BTAM FRONT-END IS IN USE :
1 VTAM FRONT~END IS IN USE :
0 NO TIMSTAMPS ON F.E. CMD RESP X
RESOURCE MANAGEMENT:
1 RESOURCE MANAGEMENT
1 STATISTICS
1 ACCOUNTING
1 CORE POOLS
0 CORE POOL INTEGRITY CHECK
(&RM OR &RMINTEG) INTEG CHECK REQUIRES RCBS X
DISPATCHER:
120 NUMBER OF WORK QUEUE ELEMENTS X
FILE HANDLER:
600%*300 600 SECS = 10 mins
5 NUMBER OF DSCT STATISTICS BUCKETS
1 ISAM FILES USED
0 AMIGOS FILES NOT USED
0 DEFAULT - NO IAM SUPPORT
(&ISAM OR &AMIGOS OR &IAM) ISAM IF AMIGOS OR IAM
1 ISAM/VSAM COMPATIBILITY
1 VSAM FILES USED
(&VSAM OR &VSISAM) FORCE S/370 & VS
(&VSSYSTM OR &VSAM) IF VSAM OR VSISAM
(&SYS370 OR &VSSYSTM)
1 GENERATE DYNAMIC-ALLOCATION ROUTINESX
EDIT UTILITY:
1 NO CANCEL/CORRECT FACILITY
0 SEND NO MORE THAN &EDERMAX ERROR MSGS
5 MAXIMUM NUMBER OF ERRORS/MESSAGES
0 SUPPRESS ERROR MSG IF PARM IS OPTIONAL X

Figure 2-5. SETGLOBE (Page 1 of 2)

2-26

Chapter 2 The Intercomm Operational System

OUTPUT UTILITY:

&TCAM SETB 0 FRONT END IS NOT BASIC TCAM

&DDQBACK SETB 0 DEFAULT TO NO DDQ AUTO INPUT

&BROAD SETB O BROADCAST GROUPS IN USE

&RPTBLE SETB 0 REPORTS TO TAPE IN USE

&ALTRPT SETB 0 ALTERNATE REPORTS IN USE

&OUTEXIT SETB 1 NO USER OUTPUT EXIT X
DL/I SUPPORT:

&DLI SETB 0 DL/I NOT IN USE X
TOTAL SUPPORT:

&TOTDESC SETC 'XXXXXX' TOTAL DATA BASE DESCRIPTOR :

&TOTMOD SETA 1 SETTING: 1 IF ATTACHED, 2 IF SEP TOT REG |

&TOTSVC SETC 'NUL! NO INTERREGION COMM NECESSARY X
RJE FACILITY: ‘

&RJECLSA SETC 'M' DEFAULT TRANSFORMATION FOR CLASS A

&RJECLSB SETC 'N!' DEFAULT TRANSFORMATION FOR CLASS B |

&RJEWTO SETB 1 DEFAULT "

&RDRNAME SETC 'RJERDR' DEFAULT

&RDRID SETC '.S! DEFAULT

&NUMJOBS SETA 10 DEFAULT X
MULTIREGION SUPPORT:

&MULTREG SETB 1 MULTIREGION SUPPORT REQUESTED- . X
LOGINPUT FACILITY:

&GENTERM SETC '$$3$$%° M.S.G. OR LOGINPUT TID

&LOGINTM SETA 3 .3 SEC TO DISP LOGINPUT

&LGINRTD SETA 5 LOGINPUT REAL-TIME DIVISOR

(2 XXXt Y XX Y X2 Y XX YRR XX XSRS RSS2SR XY

Figure 2-5. SETGLOBE (Page 2 of 2)

2=27

Chapter 2 The Intercomm Operational System

2.7.2 System Control Tables

As described in Chapter 1, there are several tables which are J

required for the proper functioning of the Intercomm teleprocessing
monitor, Some of these tables must contain entries for Intercomm
system control and command processing routines. As listed in Figure
2-6, such tables are released with the Intercomm recommended entries
and contain a COPY statement to copy in a user-coded table of additional
installation-dependent entries at assembly time. The user COPY member
for the table should be stored on SYMUSR and may thus be carried to new
releases without affecting system requirements. The load module may
reside on MODUSR or MODLIB.

TABLE USER COPY MEMBER FUNCTION
BTVRBTB USRBTVRB Front End Verb Table

INTSPA USERSPA System Parameter Area
INTSCT USRSCTS Application Subsystems
REENTSBS USRSUBS System and User Subroutines
PMIVERBS USRVERBS Edit Facility Control Table

Figure 2-6. Intercomm Tables with User COPY Members

The tables listed in Figure 2-6 are all described in Chapter 3.
Entries may be deleted (if function not used) or modified for all tables
except REENTSBS, Subsystem codes for system verbs and subsystems

should not be modified, and are also listed in Chapter 3. ~r

Sample tables are provided on SYMREL for many tables, which may
be replaced or modified as necessary for a specific installation. Such
sample tables include:

© BTAMSCTS Front End Terminal Queues (BTAM/TCAM)

® FENETWRK Front End Network Definitions (BTAM)

® VISAMP Sample VTAM Front End Tables

® DDQDSTBL DDQ Facility Table

9 IXFDSCTn Data Set Control Table

® LOGCHARS MMU Device Processing Definitions

o MMUVTBL MMU Vector Table

e MRMCT Multiregion Communication Table

o NEWPOOLS Resource Management Pools Table

o PADDTBLE Edit Utility Pad Characters

PAGETBLE Page Facility Terminal Table

9 PMIBROAD Broadcast Terminal Table

9 PMIDEVTB Back End Device Characteristics Table

® PMIFILET File Tables (Change/Display Utility)

® PMIRDTOO Multiregion Description Table

® PMISTATB Back End Terminal Definitions

@ PTRNTBL Output Utility Editing Patterns

® RPT..... Output Utility System Reports (1-50)

These tables are further described in this manual or 1in the J

applicable facility manuals. See also Appendix A.

2-28

Chapter 3
MESSAGE MANAGEMENT

3.1 INTRODUCTION

This chapter defines table specifications for wuser-written
message processing application programs, which under Intercomm are

called subsystems. Based upon resource requirements and user-coded
table specifications, all subsystems in concurrent execution affect one
another's throughput and response time. Procedures to optimize system
performance are described, along with techniques for implementing
message processing control facilities.

In particular, this chapter documents the following subjects:
General message flow and cancellation processing
The Front End Verb Table
Back End table specifications for message utilities

Message processing facilities

¢ e © 0 @

The System Parameter Area

The Subsystem Control Table

Subsystem processing specifications

Subsystem residency considerations

Subsystem interfaces and linkedit considerations

Subroutine interfaces and linkedit considerations

e e ¢ o e @

Generalized subtasking

Time controlled message processing

In addition to other referenced documentation, this chapter is to
be used in conjunction with the following Intercomm manuals:

® Basic System Macros ® BTAM Terminal Support Guide
@® COBOL Programmers Guide ® Utilities Users Guide

© PL/1 Programmers Guide @® Message Mapping Utilities
® Assembler Language Programmers Guide

Chapter 3 Message Management

3.2 GENERAL MESSAGE FLOW

The Intercomm BTAM/VTAM or TCAM Front End interface acts as a
message handler between the terminal network and the Subsystem
Controller in the Intercomm Back End which controls processing by
application programs. The Front End receives messages from terminals,
formats message headers, validates transactions and routes them for
Front End command processing, or to the appropriate subsystem. Once a
response has been generated, the Front End will prefix, insert and/or
append terminal control characters, as required, queue the message for
the proper terminal, and transmit it to the destined device. Intercomm
facilities for editing and formatting messages are the Message Mapping
Utilities for mapping input and output messages, or the Edit Utility
for 1input messages and the Output Utility for output messages.
Additionally, a Change/Display Utility is provided for display and/or
update of user files, which itself interfaces with the Edit and Output
Utilities.

3.2.1 Input Messages

To allow the Intercomm Front End to process a message from a

terminal, all input messages received by Intercomm must follow the
standard Intercomm format:

verb$text@

verb
represents the transaction code. It must be one to four
alphameric characters, and is defined in the Verb Table used by
the Front End to wvalidate the incoming message. Once the

validity of a verb is established, a standard message header is
prefixed to the message text.

If the subsystem does not use Message Mapping Utilities, then the
Edit Utility may be used to preedit the message text to remove all
terminal/format-dependent characteristics. In all cases, the
input message is passed to the Back End via Queue Management
routines. Messages not edited prior to queuing for subsystem
processing may be edited prior to transferring control to the
subsystem (COBOL, PL/l), or on request from the subsystem
(Assembler Language). Alternatively, any subsystem may perform
its own editing, or use the MMU subroutine MAPIN.

indicates a separator character. This may be:
® A special graphic character (comma, etc.)

o A New Line character

@ A device-dependent carriage-return/line-feed character
(CR/LF)

3-2

<

Chapter 3 Message Management

This systemwide separator character 1is defined at Intercomm
installation time in the System Parameter List SPALIST macro, SEP
parameter. It must also be defined by the global &SEPCHAR for
the BTAM or TCAM Front End in the member SETENV,

text
indicates optional text data.

indicates End-of-Transmission (EOT, EOB, etec.). The particular
character will depend on the hardware characteristics of the
transmitting terminal.

The message may consist of only a verb with no text data
following. In this case, no separator character 1is necessary.
Alternate methods for providing the input verb are described in Section
3.3.4, "Locked Verb Facility," and in the BTAM Terminal Support Guide
for certain terminals where special keys can signify a verb request,
such as the 3270 AID key processing and the ATTN key on a 2T4l.

Support for AID processing is also provided via the TCAM and VTAM
interfaces.

When Intercomm is wunable to determine a verb (message routing)
for an input message, that message 1s discarded and the following
message is returned to the transmitting terminal:

NO VERB FOUND IN PREVIOUS MESSAGE STARTING xxxx

where xxxx is the first four characters received from the terminal.

3.2.2 Qutput Messages

Messages for transmission to the network, created by internal
Intercomm processing or by the various subsystems, are passed via
FESEND to the Front End and placed in terminal queues to await
transmission. Figure 3-1 1llustrates the relationship between the
Intercomm components and the message queues,

The Intercomm Front End utilizes the Queue Management Routines of
Intercomm to control all message queuing. If a terminal becomes
nonoperational before message transmission is complete, the Intercomm
Front End will either requeue the message or reroute it to an alternate
terminal (if specified). A system control command (TDWN) is availlable
to dynamically assign alternate devices. When an alternate device
assignment exists, all subsequent output messages for the down terminal

will be placed directly on the queue for the alternate terminal by the
Front End queuing routines.

3-3

Chapter 3 Message Management

Front Subsystem Back
End ' Core/Disk End
(Telepro- Queues ' (Message
cessing (Input) Processing
Interface) Interface
Programs)
Terminal
.‘___ Core/Disk
Queues
(Output)

oA !

. FESEND ‘ Application
Subsystems

Output +

Utility

Figure 3-1. Front End/Back End Communication via Message Queues

Chapter 3 Message Management -

(.,. All output messages must have message-ending characters
(EOT/EOB/ETX, or other value, as appropriate to the device) coded at
the end of the message. This character may be provided via:

@ Output/MMU message formatting utilities, based on coding of

the terminal's Back End DEVICE macro, EOT and/or EOB
parameters

® Coded by the subsystem before passing the message to the
Front End via FESEND (or FESENDC); see Programmers Guides.

o Added/replaced in the BTAM/TCAM Front End via the terminal's
BDEVICE macro, ENDCHAR and/or LAST parameters

-] Automatically suffixed, depending on device type, by the VTAM
Front End, if appropriate.

3.2.3 Message/Subsystem Cancellation Processing

The following subsections describe cancellation processing in
terms of message flow.

L ¢ 3.2.3.1 Message Cancellation User Exit--USRCANC

In certain situations, messages must be cancelled by the
Subsystem Controller to prevent slowdown or failure of the entire
system. The USRCANC routine, released as member PMICANC, is used to
inform the terminal operator of this situation. The released USRCANC
Csect may be modified to handle particular cases in a manner suitable
to specific subsystems.

The USRCANC user exit will be called by the Subsystem Controller
(SYCT400) when a message is cancelled for one of the following reasons:

® Program check or time-out (system return code is X'FF')

@ I/0 error (subsystem return code is X'12')

@ No core available to process message or other unrecoverable
error such as an output mapping error (subsystem return code

is X'08')

@ Subsystem stopped due to previous message cancellations
(return code not applicable)

The error condition return code is duplicated into the logged
message header, the address of which is in the fourth parameter passed
‘ to USRCANC (for all but the last reason).

3-5

Chapter 3 Message Management

Two types of calls can be issued by the Subsystem Controller to
the USRCANC routine. The first is exercised when the message 1is
cancelled due to an error condition. The second is issued if the
subsystem assigned to process the message is not allowed to process
further messages. This second condition arises only if a message has
previously been cancelled and the user has chosen to exercise the
SYCTTBL macro CANC parameter to stop the subsystem from further message
processing. -

3.2.3.2 Message Cancelled Condition

USRCANC is called with register 1 pointing to a parameter list
that contains the following four addresses:

1. Address of message which was being processed

2. Address of SPALIST

3. Address of the Subsystem Control Table entry for the
subsystem processing the message

4. Address of the logged message header (MSGHCON+l, that is,
MSGHRETN, contains the Subsystem Controller return code value)

The first address above may point to an invalid location (or be
zero) because the subsystem or MMU MAPIN processing may have freed the
area before control was passed to USRCANC. If the subsystem frees the
message area, then the message address in the parameter 1list must be
set to binary zero. If MMU frees the message, it will set the message
address to zero.

The released USRCANC routine generates and transmits an error
message to advise the operator at the sending terminal that the message
has been cancelled. This error message will indicate the reason for
cancellation. (See the cancellation reasons above.) For a message
cancelled condition, the USRCANC routine does not free the input
message or any other area. Standard linkage conventions must be used.

3.2.3.3 Subsystem Stopped Condition

If a message was previously cancelled and the user has coded
CANC=STOP on the associated SYCTTBL macro to cancel the subsystem, the
parameter 1list passed via register 1 to the USRCANC routine will
contain only the first three addresses listed above for the message
cancelled condition. Called in this manner, the released USRCANC
generates and transmits an error message to the sending terminal, then
frees the message area and zeros the address in the parameter 1list, and
finally returns a nonzero return code in register 15.

3-6

Chapter 3 - Message Management

If the user modifies USRCANC and desires the message to be
processed despite the CANC option, the return code must be F'-1' and

the message may not be freed by USRCANC. Standard linkage conventions
must be used.

3.3 THE FRONT END VERB TABLE

Incoming transactions from a teleprocessing device are identified
by a transaction code, which under Intercomm is called a verb. Verbs
are defined in the Front End Verb Table (BTVRBTB) via coding of a
BTVERB macro for each user transaction code, and each system control
command. Each BTVERB macro relates a verb to the subsystem which is to
process the transaction via user-coded subsystem identifiers, called
receiving subsystem codes. These codes are placed in the Intercomm
message header constructed for the 1incoming message, and are
subsequently used to search the subsystem table during message routing
processing. See Appendix B for a detailed description of the Intercomm
message header. Although the verbs must be unique, more than one verb

may be processed by a specific subsystem, by specifying the same
subsystem identifier codes.

3.3.1 Entries in The Verb Table

One BTVERB macro must be coded for each four-character verb to be
accepted by the system. The macro parameters specify the actual verb,
the receiving subsystem code of the message processing subsystem,
message editing requirements, etc. To signify the end of the table,
the last coded BTVERB macro must be followed by a PMISTOP macro. User
verbs should be coded in a copy member USRBTVRB which is copied into
the released BTVRBTB at assembly time, as illustrated in the BTVRBTB in
Figure 3-2, or may be coded after Intercomm verbs, but before the
PMISTOP. Intercomm verbs are called system commands and are all
described in System Control Commands.

Assembly of the Front End Verb Table also produces an index
(Csect BTVRBNDX) to BTVERB entries, providing a binary search
capability via the module BINSRCH. This facility allows verbs to be
grouped in any convenient order, such as by application area.

If more than 1000 BTVERB macros are defined, the global values
(released as 1000) in FEMACGBL must be reset to the higher number
desired to allow sorting of the greater number of verbs for the verb
index. Additionally, use of Assembler H and/or a larger region size
may be required for the assembly step of BTVRBTB.

Chapter 3

Message Management

BTVRBTB
*

CSECT

FRONT END

BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB

SYSTEM

BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB

VERB=TDWN
VERB=TPUP
VERB=STLN
VERB=SPLN
VERB=STLG
VERB=SPLG
VERB=STPL
VERB=SPPL
VERB=LOCK
VERB=UNLK
VERB=RLSE
VERB=FLSH
VERB=QHLD
VERB=QRLS
VERB=RVRS
VERB=STAT

COMMANDS

VERB=NRCD,SSC=J
VERB=IMCD,SSC=d

VERB=SECN
VERB=SECF

VERB=DSPL, SSC=H,EDIT=YES, CONV=18000
VERB=CHNG, SSC=H,EDIT=YES, CONV=18000
VERB=SWCH, SSC=B
VERB=SNBK, SSC=W

BTAM/TCAM/GFE STATUS

NORMAL CLOSEDOWN
IMMEDIATE CLOSEDOWN
CONTROL TERM. SECURITY ON
CONTROL TERM. SECURITY OFF
DISPLAY

CHANGE

MESSAGE SWITCHING

ECHO INPUT MESSAGE

VERB=LOAD, SSC=L,SSCH=L,CONV=36000 LOADSCT SUBSYSTEM

VERB=COPY, SSC=C,SSCH=C

COPY SUBSYSTEM - 3270'S

VERB=FHST,SSC=R,CONV=36000 FILE STATISTICS DISPLAY

GPSS VERBS

BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB

VERB=FILE, SSCH=G, SSC=P, CONV=36000
VERB=TALY, SSCH=G, SSC=P, CONV=18000
VERB=STRT, SSCH=G,SSC=P
VERB=STOP, SSCH=G, SSC=P
VERB=SNAP , SSCH=G, SSC=P, CONV=36000
VERB=ABND, SSCH=G, SSC=P, CONV=36000

VERB=LTRC,SSCH=G,SSC=P

MMU COMMAND

START/STOP LINE TRACE

BTVERB VERB=MMUC,SSCH=M,SSC=M, CONV=18000

Figure 3-2.

Released BTVRBTB (Page 1 of 2)

3-8

Chapter 3 Message Management

PAGE FACILITY COMMANDS

BTVERB VERB=PAGE, SSC=P,EDIT=YES, CONV=36000
BTVERB VERB=SAVE, SSC=P,EDIT=YES, CONV=36000

VTAM VERBS

BTVERB VERB=STLU
BTVERB VERB=SPLU
BTVERB VERB=RSLU
BTVERB VERB=VTCN

BTVERB VERB=VTST VIAM STATUS
FEUEIE U000 0600000000 00 0000 000 0606 0000 96 0600 0000 0600 00 06 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 06 00 06 0006 00 06 06 36 36 00 00 0000 2 36 00 06 06 36 30
* %

* ADD USER VERBS HERE VIA COPY *
% *
3698 06 06 36 98 6 36 38 38 6 3 36 36 36 36 36 36 36 36 36 36 6 36 36 36 36 36 3 36 36 36 3 36 96 36 3 36 3 3 36 3 3 36 36 36 3 36 36 3% 36 36 36 3 36 30 30 90 30 6 30 06 6 3¢ 36 30 2 3¢

COPY USRBTVRB

PMISTOP

END

Figure 3-2. Released BTVRBTB (Page 2 of 2)

The following illustrates a USRBTVRB (as released on SYMREL for use by
new installations):

E 4

MULTIREGION COMMANDS .

BTVERB VERB=COMM, SSC=K, CONV=18000
BTVERB VERB=LOKR , LOCKEXE=YES
BTVERB VERB=ULKR, LOCKEXE=YES

E 4

EXTENDED SECURITY COMMAND

BTVERB VERB=SECU, SSC=E

TITLE "APW CLASS WORKSHOP S/S VERBS'
BTVERB VERB=APW1, SSCH=A, SSC=1

BTVERB VERB=INQ1,SSCH=A,SSC=1
BTVERB VERB=UPT1, SSCH=A,SSC=1

BTVERB VERB=NEW1, SSCH=A, SSC=1
BTVERB VERB=APW2, SSCH=A, SSC=2
BTVERB VERB=INQ2, SSCH=A, SSC=2
BTVERB VERB=UPT2, SSCH=A,SSC=2

BTVERB VERB=NEW2, SSCH=4, SSC=2

3-9

Chapter 3 Message Management

3.3.2 Short Verbs

Intercomm provides a facility to allow verbs with a length of
one, two or three characters to be accepted, instead of only verbs of
the standard four-character length. These short verbs are padded on
the right with Xs before the verb is validated against the Verb Table.
The BTVERB entry for each short verb must contain the X padding.

3.3.3 Priority Verbs

Certain verbs may be specified as high-priority by coding
HPRTY=YES in the BTVERB macro. The input message header will then be
flagged so that the message will receive high-priority treatment on any
subsystem or Front End queue which specifies the priority-queuing
facility (via the PRYMSGS parameter of the SYCTTBL macro). Any messages
generated in the course of processing these high-priority input messages
will also receive high priority if message processing program logic is
such that input message headers are copied before altering to create
output message headers. The MSGHUSR byte in the input message header
is set to a character P to identify priority verbs; subsystems altering

or omitting this value will cause a message to lose its priority status
on transfer to another queue.

3.3.4 Locked Verb Facility

For certain terminals where prefixing a message with a verb may
be impractical, Intercomm provides a facility for locking the terminal
to a verb., The verb is automatically inserted by the Front End for each
message from the designated terminal. This may be accomplished by one
or more of the following:

@ Specifying LOCK=verb on the terminal descriptor
(BTERM/LCOMP/LUNIT) in the Front End Network Table.

@ Specifying AUTOLOK=YES on the verb descriptor (BTVERB)

® Issuing the LOCK system control command from another terminal
or a subsystem.

Subsequent unlocking of the terminal from a specific verb may be
accomplished dynamically by issuing the UNLK system control command.

When the LOCK parameter is specified via the terminal descriptor,
the terminal 1s automatically locked to the specified verb at startup;
therefore the first message input from the terminal does not need a
verb. That message, and all subsequent messages, will automatically
have the designated verb (and system separator) inserted between the
Intercomm message header and the message text before queuing. When
AUTOLOK is requested via the BTVERB macro, only the first message

3-10

Chapter 3 Message Management

requires a verb; subsequently the terminal is locked. Issuing the
LOCK/UNLK system control commands may be done before terminal input is
begun or to alter subsequent locked verb processing (status). The
latter case applies particularly to restarted messages; the processing
subsystem must issue an internal LOCK command if terminal locking is
required for subsequent input.

Certain verbs may be defined as lock-exempt; that is, even if the
terminal is locked to another verb, when the exempt verb is entered
from the terminal, it is to be processed instead of the locked verb.
This is designated by coding LOCKEXE=YES for the BTVERB macro, and is
the default for certain system control commands. The LOCKEXE and
AUTOLOK parameters of BTVERB are mutually exclusive. When executing
under Multiregion, LOCKEXE also exempts terminal/region locking.

3.3.5 Conversational Verbs

An installation may optionally define certain terminals as
conversational terminals and certain verbs as conversational verbs. If
a conversational verb arrives from a conversational terminal, the
terminal is quiesced (taken out of the polling list) and further input
is ignored until a message has been written back to the terminal. This
prevents a terminal from having more than one input message begin
processing at one time. A routine is scheduled on a time interval to
issue a time-out message to the terminal in the event that the subsystem
to which the verb was directed does not respond within the specified
time. The time 1limit for each verb is defined on the BTVERB macro.
The presence of a nonzero time limit indicates a conversational verb.
In normal operation, if a response does come back from the subsystem
before the specified interval expires, the scheduled routine is
cancelled. Conversational mode processing controls input messages
only. Response to a conversational verb from a conversational terminal
could be more than one output message.

This facility is implemented as follows:

1. Set the &CONVER global in SETENV to 1 if BTAM/TCAM used, and
reassemble the BTAM Front End modules.

2. Code CONV=YES for all terminal BTERM/LUNIT/LCOMP macros for
which this processing is desired.

3. Code the CONV parameter with the time-out value on the
conversational verb's BTVERB macro.

If this facility is wused in conjunction with the CONVERSE
facility (described in the Programmers Guides), the time interval on
the conversational verb should be slightly larger than the time
interval passed from the application program to CONVERSE. Use of the
CONVERSE facility is not recommended if message restart is used.

3-11

Chapter 3 Message Management

3.3.6 Separate Assemblies of Verb and Network Tables

Normally, the Front End Verb Table is coded with the Front End
Network Table as one module. In cases where frequent changes of
entries in the Front End Verb Table occur, or either table becomes very
large, it may be coded and assembled as a separate module. The Csect
and member name for the verb table must be BTVRBTB. Internal Csect or
entry point names, generated by the first occurrence of a macro
designating a major component, are used for accessing the Network
Table, which may have any Csect name if assembled separately. When
assembled separately, the load module name for the Network Table must
be specified on the Intercomm linkedit generation ICOMLINK macro via
the FETABLE parameter. The BTVRBTB is automatically included. In a
Multiregion environment, these tables are included only in the control
region. Sample Front End terminal tables are illustrated in the
BTAM/TCAM/VTAM Terminal Support Guides. '

3.4 BACK END TABLE SPECIFICATIONS FOR THE UTILITIES

The Intercomm utilities (Edit, Output, Change/Display, and the
Message Mapping Utilities) are documented in the Utilities Users Guide
and Message Mapping Utilities. This section describes specifications
for the utilities of a nonapplication-oriented nature, that is,
systemwide table specifications controlling the use of the utilities.
In a Multiregion environment, these tables are required in the control
region, and in each satellite region which uses the utilities and/or
Intercomm subsystems. These tables are also required in a simulated or
Test Mode Intercomm system. The following describes tables used by all
the utilities, plus additional tables unique to the individual utility.

3.4.1 Station Table

The Station Table is core-resident in a Csect named PMISTATB.
The table is created and maintained by the user. Individual entries in
the table are created by use of the STATION macro (one for each device
defined in the Front End Network Table). The end of the table is
indicated by four bytes of hexadecimal 'FF', generated by the PMISTOP
macro. Assembly of the Station Table produces a binary search index by
terminal names (Csect STATINDX). The location in core of the PMISTATB
Csect is pointed to by a V-type address constant in the field SPASTATB
of the System Parameter Area. The member PMISTATB on SYMREL contains a
sample Station Table which may be updated or replaced by the system
manager to define the network configuration for the utilities.

The Station Table effectively creates five-character logical
names for each terminal in the system, and relates that terminal to the
device characteristics defined in the Device Table. General device
characteristies for an individual terminal may be overridden by coding
a DVMODIFY macro after the PMISTOP in the Station Table, and specifying
the label of that DVMODIFY via the corresponding STATION macro.

' 3-12

Chapter 3 Message Management

The Station Table structure is as follows:

PMISTATB CSECT
STATION . . .
STATION . . .
STATION . . .
STATION . . .
STATION . . .

PMISTOP
END

To add a new terminal to the system, the Station Table must be
modified by adding a STATION macro entry before the PMISTOP macro. The
Station Table is accessed by all the utilities, and for additional
internal Intercomm functions, and therefore is required in all
regions. If more than 1000 STATION macros are coded, the global table
FEMACGBL must be modified as described for the BTVRBTB in Section 3.3.17.

3.4.,2 Device Table

Created and maintained by the user, the Device Table is resident
in a Csect named PMIDEVIB. Individual entries (one per terminal type)
are created by use of the DEVICE macro (specifying message editing and
formatting control characteristics of each device type). The end of
the table is indicated by four bytes of hexadecimal 'FF', generated by
the PMISTOP macro. The location in core of the PMIDEVIB Csect is
pointed to by a V-type address constant in the field SPADEVTB of the
System Parameter Area.

The member PMIDEVTB on SYMREL contains a sample Device Table
which may be updated or replaced by the system manager to define the
installation device types. A user-assigned device type (DEVICE macro,
TYPE parameter) is referenced by the STATION macro, IOCODE parameter.
The Device Table structure is as follows:

PMIDEVTB CSECT
DEVICE . . .
DEVICE . . .
DEVICE . . .
DEVICE . . .
PMISTOP
END

Chapter 3 Message Management

To add a new device type to the table, code the necessary DEVICE
macro before the PMISTOP, then reassemble and relinkedit. The Device

Table is accessed by all the utilities, and also by internal Intercomm
functions, and therefore is required in all regions.

3.4.3 Broadcast Table

The Broadcast Table is core-resident in a Csect named BROADCST
and linkedited with the member name PMIBROAD. The table is created and
maintained by the user. Each entry in the Broadcast Table represents
one broadcast group. The end of this table is indicated by four bytes
of hexadecimal 'FF', generated by the PMISTOP macro.

The member PMIBROAD on SYMREL contains a sample Broadcast Group
Table which may be updated or replaced by the system manager. The
Broadcast Group "TOALL" is used by the optional modules USRSTART and
USRCLOSE to send a message to all terminals in the group at startup and
closedown time.

The Broadcast Table is defined by the BCGROUP macro. The
broadcast group name (five bytes) is followed by a specification of the
terminals within the group. A message destined for a broadcast group
(MSGHTID in the header) will cause a message to be passed to the Front
End for each terminal in the group. Therefore, all terminals in a
broadcast group must be of the same device type. The Broadcast Table

is accessed by the Output Utility, Message Mapping Utilities, and the
Intercomm Front End.

In the following sample Broadcast Table (released as member
PMIBROAD), one broadcast group is defined:

BROADCAST CSECT
BCGROUP GROUP=TOALL,TERMS=(CNTO01,TEST1)
PMISTOP
END

An optional routine, BROADRTN, will assist in smoothing the
storage requirement peaks when processing broadcast messages. If
included, BROADRTN will generate one message at a time with a small
time delay before generating the next message. If BROADRTN is used,
the module must be in the resident portion of Intercomm, and in the
same region as the Qutput Utility.

Chapter 3 Message Management

3.4.4 Message Mapping Utilities Requirements

The Message Mapping Utilities provide input message editing and
output data formatting capabilities to Intercomm subsystems through
callable subroutines. MMU allows a unified specification of input and
output formatting requirements, and provides simplified format (screen
template) generation and data insertion. It can be used instead of the
Edit and Output Utilities.

MMU includes all processing options of the Edit and Output
Utilities, in addition to control and attribute character insertion.
MYU also provides a means of generating symbolic versions of message
data areas which can be copied into the application source module for
ease of definition and reference.

Tables required by MMU include the Device Table and Station Table
and, optionally, the Broadcast Table. General device characteristics
may be overridden for an individual terminal via the DVMODIFY macro
coded in the Station Table after the PMISTOP. Additional design and
implementation considerations for MMU are documented in Message Mapping
Utilities.

3.4.5 Edit Utility Requirements

The Edit Control Table (ECT) contains all information necessary
to perform editing of a message by the Edit Utility. The Edit Control
Table is a variable-length table created and maintained by the user, as
described in the Utilities User Guide.

The table resides in core, in a separate Csect labeled VERBTBL.
The member PMIVERBS on SYMREL contains required ECT entries for the
Intercomm verbs which require Edit Utility processing. User table
entries may be added to this member via COPY member USRVERBS, or an
entirely new VERBTBL Csect may be created. In either case, care must
be taken to ensure that each new entry has been thoroughly tested prior
to execution in production mode. Disk-resident table entry references
are coded within the core-resident table. Each disk-resident entry is
assembled and linkedited individually, for loading to the VRBOOO data
set via the File Load Utility (PMIEXLD). A DD statement for VRB0OOO
must be included with execution JCL, if disk-resident entries are used.

The Intercomm system manager must define the systemwide field
separator character used by the Edit Utility in scanning a message text
for field delimiters. This same character is used by the Intercomm
Front End to separate the verb from other message text. The SETENV
global specification for &SEPCHAR in a BTAM/TCAM Front End must
correspond to coding of the SEP parameter of the SPALIST macro to
ensure consistent operation.

Chapter 3 Message Management

User-coded edit subroutines may be added, but must be coded in
Assembler Language. If used, the system manager must code the SPALIST
macro EDITRTN parameter to indicate the highest-numbered edit routine
in use. Coding specifications are in the Utilities Users Guide.

In addition to controlling the table specifications for the Edit
Utility and ensuring their wvalidity in the production environment, the
system manager may control optional edit features via conditional
assembly. The globals listed below control conditional assembly of the
member PMIEDIT, The globals are defined in the member INTGLOBE and
specified in the member SETGLOBE.

Global Default
Definition Specification
(INTGLOBE) Option Defined L (SETGLOBE)
M~ S S S S S S SIS 4 T
&EDERRS &EDERRS code specifies that the maximum SETB 0O
&EDERMAX | number of error messages per input verb is SETA §

limited by &EDERMAX. To suppress this
feature, use &EDERRS SETB 1.

&OPTRPT &OPTRPT code specifies that error messages r SETB 0

for non-required fields are not generated.
To get error messages use &0PTRPT SETB 1.
__ | e e
&DELCHNG | &DELCHNG code controls the CANCEL/CORRECT SETB 1
feature for keyword input. To activate
this feature, use &DELCHNG SETB 0.

The Edit Control Program (PMIEDIT) must be a resident module, but
the edit subroutines (Intercomm or user-supplied) may be resident,
linkedited as part of an Overlay Region A subsystem group to be
resident only when the subsystem which requires their use is loaded, or
linkedited within the Intercomm Transient Subroutine Overlay Region.
Certain constraints apply in this 1latter case with respect to
situations where one subroutine calls another; all called subroutines
must be linkedited in the same load segment as the calling subroutine.

Chapter 3 Message Management

3.4.6 OQutput Utility Requirements

The Output Utility (PMIOUTPT) is defined by three Subsystem
Control Table entries in the member INTSCT. This allows routing of
messages to the Output Utility via three subsystem codes and
corresponding subsystem queues. Subsystem U is for standard full

messages; V is only for segmented messages, and N is for messages to
the control terminal.

If segmented messages are processed by the Output Utility, (that
is, a series of messages destined for the same terminal, identified by
message header VMI=X'51', X'52', X'5C', or X'53' for each segment of
the message text) the System Manager must be aware of three parameters
on the SPALIST macro controlling message processing:

® DTIMS, which is the delay time between attempts to check the
availability of the terminal to assign it to a "segmented
message in progress" condition by the PMIDVASN module.

® NTIMS, which is the maximum number of attempts that are to be
made to assign a terminal to a '"segmented message in
progress" condition when a terminal is already busy with
other segmented message processing.

@® TIMS, which is the time value (multiplied by two minutes)
which specifies allowable time between processing of the
VMI=X'51' and VMI=X'53' messages; that 1is, the duration
allowed for device assignment to a "segmented message in
progress" condition. If a time-out occurs, an error message

is routed to the destination terminal indicating SEGMENTED
MESSAGE TIMEOUT.

The following globals (defined in INTGLOBE and specified in
SETGLOBE) control conditional assembly options of the Output Utility.

Chapter 3

Message Management

=== ========Z=3 ========:::::==============::::::::::::::::::::i i
Global Option Defined Default
FE=S=-S - oo - - o C oo goC- S-S o oC oo oo oS-SS =SS oSS CoSooCS oo CCoSCCISCSCSCCSCoD=DS=DD=DXTD=D=Z=Z=-======Z
&TCAM Basic TCAM Front End (SETB to 1 to SETB 0
activate this facility)
b e e e]
&DDQBACK DDQ Automatic Subsystem Input (SETB to 1 to SETB 0
activate this faecility)
___ -
&BROAD Broadecast Groups in use (SETB to 1 to SETB 0
suppress this facility)
&RPTBLE Batch Report Table Facility (SETB to 1 to SETB 0
suppress this facility)
____________ e]
&ALTRPT Alternate Format Table Facility in use (SETB SETB 0
to 1 to suppress this facility)
&QUTEXIT User Output Exit USROTEDT not used (SETB SETB 1
to 0 to activate this facility)
3.4.6.1 Adding Output Format Table Entries

User-generated Output Format Table (OFT) entries may be added to

the Intercomm system as either core-resident or disk-resident.
user entry is identified by the name RPTOnnnn,

to 9999.

range 0051
Individual ¢
separately.
nor include

Numbers 1-50 are reserved for Int

able entries (REPORTs) must be assembled and

Each

where nnnn 1is in the

ercomm use.
linkedited

These table entries must not use the Csect name PMIRCNTB

a PMISTOP macro. Generation of OFTs is descr

Utilities Users Guide.

ibed in the

Two members are contained on SYMREL to facilitate linkedit of OFT

entries for
(Csect name

the core-resident table: (1)
PMIRCNTB); and (2)

PMIRCNTB--Table Heading
PMIRCEND--Table End (PMISTOP macro).

In an Intercomm linkedit generated by the ICOMLINK macro, these members

bracket the common system OFT entries RPTOO043 and RPTOO0US which

should be resident.

if desired.

See also installation of system command verb

REPORTs, as described in System Control Commands.

Other Intercomm OFT entries may be made resident,

s requiring

¢

Chapter 3 Message Management

The following linkedit control statements are used to construct
the core-resident OFT (entries do not have to be in numeric sequence):

INCLUDE SYSLIB(PMIRCNTB) BEFORE ALL RESIDENT REPORTS
INCLUDE SYSLIB(RPTO0043)
INCLUDE SYSLIB(RPTOO045)
INCLUDE SYSLIB(RPTOOOnn)

INCLUDE SYSLIB(RPTOnnnn)
INCLUDE SYSLIB(PMIRCEND) AFTER ALL RESIDENT REPORTS

Disk-resident OFT entries have no entry in the core-resident
table. They are loaded to the BDAM data set RCT000 via the File Load
Utility (PMIEXLD) for access at execution time. A DD statement for
RCTO00 must be present in the Intercomm execution JCL. Many Intercomm
error and statistical messages are produced via OFT numbers 1-50
released as member names RPT00001 to RPTO0050 on SYMREL. These table
entries are loaded to RCTO00 at system installation time. The block
size of RCTO00 must be a minimum of 1500 to accommodate Intercomm OFTs.

3.4.6.2 Error Messages from the Output Utility

Error messages reflecting problems encountered during message
processing by the Output Utility are generated and queued for
subsequent processing via the Output Utility. The messages are
formatted according to OFT entries which may be disk-resident. Each
error message is prefixed with identifying information:

SEQ NO (Monitor Message Number of message in error)
SSC (Sending Subsystem Code)

RSC (Receiving Subsystem Code: U, N or V)

TID (Destination Terminal of message in error)

Each error message explicitly defines the reason for rejecting
the message being processed, for example:

THE FROM IS GREATER THAN THE TO FIELD.
REPORT NUMBER NOT IN MESSAGE.
RCTnnnn IS INVALID. NOT FOUND. (OFT entry missing for nnnn)

See Messages and Codes for a precise listing of Output Utility
error messages.

Chapter 3 Message Management

3.4.6.3 Output User Exit--USROTEDT

An optional user-coded exit, USROTEDT, is available in PMIOUTPT.
Before logging a message and sending it to the Front End, the Output
Utility " issues a conditional call (CALLIF) ¢to USROTEDT, if such a
routine has been written and included. USROTEDT is also called by
FESEND 1if the subsystem calls FESEND (FESENDC) directly. In a
Multiregion environment, if PMIOUTPT i1s included in a satellite region,
USROTEDT should be included only in the control region (called by
FESEND). This will prevent it from being called twice. Standard
linkage conventions are to be used.

The parameter list passed to USROTEDT via register 1 contains:
1. Address of message
2. Address of System Parameter Area

3. Address of a fullword in which the user-written routine must
place a return code.

Any return code other than 0 will cause PMIOUTPT or FESEND to
stop the message from being queued for the Front End. If the user
wishes to create an entirely new message area, an area of storage may
be obtained (via the STORAGE macro) and a new message may be created
consisting of header and text. Do not free the storage area occupied
by the old message. Change the address of the message in the parameter
list to reflect the address of the new message.

To generate the code to call USROTEDT, make sure the global

&OUTEXIT was not set to 1 in SETGLOBE when FESEND and PMIQUTPT were
assembled for Intercomm installation.

3.4.6.4 Output User Exit--USROUTCK

USROUTCK is a user-coded user exit conditionally called (via
CALLIF) by PMIOUTPT. 1Its purpose is to allow the user to determine if
PMIOUTPT is to process the unformatted message, based on
installation-dependent criteria. If the message is to be cancelled,
USROUTCK must free it before returning to PMIOUTPT. In this case, the
user exit is responsible for notifying the terminal that the message
was cancelled, if a response 1is expected.

At entry to USROUTCK, register 8 points to the input message
(header). 1If PMIOUTPT is not to process the message, a nonzero return
code must be returned by USROUTCK to PMIOUTPT in register 15;
otherwise, a zero return code is required, indicating PMIOUTPT is to
process and/or forward the message to FESEND. If the message 1is
cancelled, PMIOUTPT returns immediately to the Subsystem Controller
with a zero return code. Standard linkage conventions are to be used.

3-20

Chapter 3 Message Management

3.4.7 Change/Display Utility Requirements

The Subsystem Control Table entry for the Change/Display Utility
is provided in the released member INTSCT. The SCT defines the CHANGE
module as a vresident subsystem. The user may redefine the
Change/Display entry as a dynamically loaded subsystem. Other modules
referenced by CHANGE include DISPLAY, FORMAT, CRUNCH and PTRNTBLE. The
UTILITY parameter of the ICOMLINK macro is used to generate the include
statements.

All file (format) description records (FDRs) for the
Change/Display Utility are disk-resident (ddname DES000) table entries
loaded via the File Load Utility (PMIEXLD). See the Utilities Users
Guide for coding specifications, a description of application subsystem
interface to the CHANGE utility, and the required user-coded CHNGTB
table. The DD statement for DES000 must be specified in the Intercomm
execution JCL 1if Change/Display is used. The released PMIVERBS
contains required ECT entries for the CHNG and DSPL verbs for this
utility.

User files accessed via the utility are defined via the GENFTBLE
macro in the Intercomm File Table (PMIFILET). Additional
considerations are:

@ There must be an entry in the File Table for each Intercomm
disk-resident table data set (RCT000, VRBO0O, DES000, etc.)
as well as files accessed via Change/Display.

@ The entry in the File Table defines the block size for data
set access which must be greater than or equal to the
physical block size of the user file data block on disk., If
the optional module PMICKFTB is included, these block sizes
are verified at startup and dynamically corrected if required.

@ The last entry must be followed by a PMISTOP macro.

Following is a sample PMIFILET:

PMIFILET CSECT
ENTRY PMIFILTB
PMIFILTB EQU *
GENFTBLE FNAME=RCT000,BLKSIZE=1500, TYPE=BDAM
GENFTBLE FNAME=DES000,BLKSIZE=750, TYPE=BDAM
GENFTBLE FNAME=VRB00O,BLKSIZE=750,TYPE=BDAM
* BLKSIZE FOR DES000,RCT000,VRBOO0O CORRESPOND TO INTERCOMM RELEASE
% SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE ENTRIES.
: ADD USER FILE DESCRIPTIONS HERE.

GENFTBLE FNAME=USERFILE,BLKSIZE=xxxx,TYPE=ISAM,DESNUM=7
PMISTOP
END

3-21

Chapter 3 Message Management

3.5 MESSAGE PROCESSING FACILITIES

The following subsections describe other Intercomm facilities for
queuing and processing messages.

3.5.1 Message Switching

The standard terminal-requested message switching facility is
activated by the SWCH system control command which uses a subsystem for
the switching and allows messages to be switched to one or more
receiving terminals, as well as to Broadcast Groups.

The Intercomm Front End also provides a Fast Message Switch
facility, as it recognizes input messages which contain, in place of
the normal verb, the five-character name of the single terminal to
which the message should be forwarded. For example, terminal NYCO1l
sends a message to terminal BOSO7 in the following format:

B0S07,THIS IS A SWITCHED MESSAGE

The message would be routed, completely within the Front End, to
terminal BOSO7. The receiving terminal name is replaced by the sending
terminal name so that the origin of the message is known. The message
sent to BOSO7 would be:

NYCO1,THIS IS A SWITCHED MESSAGE

As with the standard message switching facility, no reformatting
of the message is done. Messages should therefore be switched only to
terminals which have hardware characteristics compatible with the

sending terminal. For example, a multiline message from a terminal
which uses NL (new 1line) characters should not be switched to a
terminal which requires CR/LF (carriage return, line feed) characters.

If the receiving terminal is not active, or is not currently able

to receive an output message, the message remains queued until it can
be transmitted.

3.5.2 Multimessage Queuing via the Dynamic Data Queuing Facility

The Front End Data Queuing feature operates in conjunction with
the Intercomm Dynamic Data Queuing Facility. It enables an application
to send to the Front End a dynamic data queue (DDQ) that contains
messages to be transmitted to a terminal. Thus, instead of sending one
message at a time and having each message queued for Front End
transmission, and then dequeued by the Front End, an entire group of
messages may be placed on a DDQ and treated as one message.

3-22

Chapter 3 Message Management

For implementation of the data queuing feature, refer to the
applicable application programmer guides and the Dynamic Data Queuing
Facility for further details. 1In addition to the Dynamic Data Queuing
Facility, the Front End Control Message Facility (see below) must be
installed in order to use the Front End Data Queuing feature.

The Dynamic Data Queuing Facility is alsc used for easy, orderly
retrieval of segmented input messages, and may be used for queuing of
output messages to the Change/Display or Output Utilities.

3.5.3 Front End Control Message Facility

This facility allows application subsystems to generate and
transmit control messages to the Front End. Three types are currently
defined. A control message (FE(M) may be either a feedback-request, a
release-request, or a DDQ-identifier for a group of messages collected
on a DDQ. For implementation, the module FECMMOD must be included in
the Intercomm linkedit.

Feedback-requests, when sent to a terminal, cause the Front End
to send a message, containing user-specified text, to a user-specified
subsystem. This message, which is sent when all messages in front of
the feedback-request message have been transmitted to the terminal, can
be used, for example, to determine when a report has actually been
printed. The feedback facility also allows synchronization of message
transmission with subsystem processing. A subsystem may issue a
feedback FECM which signals the Front End to notify the issuing
subsystem or another subsystem when a certain output message has been
transmitted to a destination terminal. RLSE system control commands
may be intermingled with multiple screens being forwarded to a CRT to
force a previous screen to be overlaid.

DDQ-identifier control messages designate a DDQ containing
messages to be sent to the terminal. These messages, which must be
preformatted (VMI=X'67' or X'57'), are read from the DDQ and sent to
the terminal. The DDQ, subject to user specification, may be either
freed or retained. By retaining the DDQ, the messages may be
broadcast; therefore it is a convenient facility to send canned reports
or other data. The DDQ may also contain FEMMs for other DDQs, or for
feedback, mixed in with real output messages (only at the end of the
DDQ, if VTAM). DDQ FE(Ms require dedicated queues for the receiving
terminals.

Release-requests, when sent to a terminal, override normal CRT
processing logic, which requires a one-for-one correspondence between
input and output messages. When the release FE(M is processed by the
Front End, it causes the next message queued for the CRT terminal to be
transmitted immediately, rather than waiting for input from the
operator. Under a VTAM Front End, certain protocols (HDFF) may
preclude immediate transmission of the next message; see SNA Terminal
Support Guide.

3-23

Chapter 3 : Message Management

3.5.4 Page Facility

The Page Facility provides a browsing capability for CRT output
messages that have been collected on a disk data set, rather than being
queued for the terminal. A subsystem may request MMU to pass messages
to the Page Facility which were formatted by MAPOUT processing, or the
subsystem may call the Page Facility directly with messages to be
formatted later by the Change/Display Utility and/or the Output Utility.

The first message of the series is always returned directly to
the terminal. The terminal operator subsequently uses Page Facility
commands to browse and ultimately save or discard the collected
messages. Further details are described in Page Facility.

3.5.5 Intermediate Message Data Storage

Two facilities are provided for storage of data by a message
processing thread between input messages when an 1interactive
conversation is in progress. These are the Store/Fetch Facility (see
the manual of that name), and the CONVERSE facility described in the
applicable Programmers Guide. The former provides for storage and
retrieval of saved data as data strings in core or on disk. The saved
data may consist of tables, counters, message data, or file data, as
the strings may be of any length. The CONVERSE facility is used to
save and restore the dynamic working storage of reentrant higher-level
language subsystems between input messages, that is, while waiting for
a response to the last output message. Installation and programming
considerations for these facilities are described in the referenced
manuals.

3.6 THE SYSTEM PARAMETER AREA (SPA)

The System Parameter Area consists of systemwide variables and
system component addresses controlling all message processing
functions. These elements are defined in the member INTSPA which
contains the following:

Qo SPA CSECT--the System Parameter List, defined by the
SPALIST macro.

o USERSPA: This is an optional user extension to the
System Parameter List, with user-defined variables and
addresses, coded as a separate source module in SYMUSR.

@ SPAEXT: This is the Intercomm extension to the System
Parameter List. SPAEXT Csect is also generated by the
SPALIST macro, using the EXTONLY=BOTH parameter.

Figure 3-4 illustrates typical JCL which may be used to create
INTSPA, or the released member on SYMREL may be modified to user
requirements and placed on SYMLIB or SYMUSR.

3-24

Chapter 3 Message Management

3.6.1 System Parameter List (SPA Csect)

The System Parameter List is a fixed area of 500 bytes in
length. It contains addresses, control information and statisties for
the entire Intercomm system. When building the SPA Csect, the System
Parameter List is generated by coding the SPALIST macro.

3.6.2 User Extension to the System Parameter List (USERSPA)

The variable-length USERSPA allows definition of user fields or
table areas common to all user subsystems. Since all subsystems are
passed the address of the SPA as an entry parameter, application
subsystems may not alter values within the System Parameter Area.
Users must instead add user fields to the SPA Csect via USERSPA. User
additions to the System Parameter Area are coded as a separate source
module named USERSPA. When the SPALIST macro is assembled, the source
module USERSPA will automatically be copied into the System Parameter
Area, at a displacement of 500 bytes from the beginning of the SPA
(plus X'1lF4'), and labeled SPAUSER. The maximum length allowed for
USERSPA is 4095 minus 500, or 3595 bytes.

USERSPA should be correctly referenced by application
subsystems. For application programmers' use in defining this user
extension, source statement library members should be provided in the
appropriate language available for copying into the program.

3.6.3 Intercomm Extension to the System Parameter List (SPAEXT Csect)

The SPAEXT Csect is variable in length to allow for continued

flexibility in adding systemwide control variables to the System
Parameter List.

3.6.4 Separate Assembly of the SPA and the SPAEXT Csects

The number of VCONs required by the addition of USERSPA and/or
edit routines may necessitate separate assembly of the SPA Csect and
the Intercomm extension to the System Parameter List. The SPALIST
macro must be assembled twice, once to generate the SPA Csect and once
to generate the SPAEXT Csect. With the exception of the EXTONLY=YES
parameter, denoting generation of the SPAEXT, coding of the SPALIST
macro parameters must, in both cases, be identical. Currently,
approximately 300 VCONs are generated by the combined SPA and SPAEXT
Csects, along with VCONs for the Edit Utility routines EDIT0001-0020.

3-25

Chapter 3 Message Management

3.7 THE SUBSYSTEM CONTROL TABLE (SCT)

Each subsystem is defined to Intercomm by an entry in the
Subsystem Control Table, generated via the SYCTTBL macro coded in the
member INTSCT which contains the following:

@ SCT Csect containing:

—- The Subsystem Control Table (SCT)--individual table entries
defining subsystem characteristics and message processing

scheduling parameters, defined via the SYCTTBL macro.

-- The Subsystem Control Table Overlay and Binary Search
Indices, generated via the GENINDEX macro.

-— The SCT Extension--automatically generated SYCTTBL
extensions for defining dynamically loadable subsystems.

® DYNREQ1 Csect--automatically generated SCT addition for
reentrant COBOL subsystems.

Figure 3-3 illustrates the relationship of the SPA, the SCT, and
the Overlay Index.

SYSTEM SUBSYSTEM
PARAMETER LIST CONTROL TABLE
INTSPA INTSCT
SCT CSECT:
SYSTEM RESIDENT AND
PARAMETER DYNAMICALLY
LIST LOADABLE
(SPA CSECT) SUBSYSTEM
--------------- SCT OQVERLAY INDEX SCT'S

USERSPA / ______________

(OPTIONAL) HEADER PORTION 1ST OVERLAY

__________________________________ J/V' GROUP
SCT'S

1ST OVERLAY GROUP [P|--——==—==—=——o
INTERCOW SPA ____________________ 2ND OVERLAY
EXTENSION GROUP

(SPAEXT CSECT) 2ND OVERLAY GROUP SCT'S
NTH OVERLAY GROUP NTH OVERLAY

GROUP

SCT'S

Figure 3-3. The System Control Components

3-26

C

Chapter 3 Message Management

The SYCTTBL macro defines the following for each subsystem:

@® Subsystem residency (overlay region, VS execution group,
dynamically loadable, or resident)

] Subsystem characteristics (subsystem code, program language,
reentrancy, entry point name, subpool requirements, etc.)

- Processing specifications (immediate or threshold, queues,
queue overflow, priority, concurrent message processing
limits, scheduling, etc.)

o Control parameters (time-out 1limit, snaps/WTIOs required,
cancellation criteria, security, restart, etc.)

If more than 1000 SYCTTBL macros are defined in INTSCT, the global
values (released as 1000) in FEMACGBL must be reset to the higher number
desired to allow sorting of the greater number of subsystems for the
binary search index. Additionally, use of Assembler H and/or a larger
region size may be required for the assembly of INTSCT.

Figure 3-5 illustrates the released member INTSCT on SYMREL which
provides for most of the Intercomm subsystems and indicates where user
SCT entries may be inserted via a user-coded copy member USRSCTS. If
an overlay structure is not used, the order of SCT entries is immaterial
as the Binary Search Index is used by Intercomm to find a particular
entry. Figure 3-4 shows JCL to create a USRSCTS and assemble and link
the released version of INTSCT which copies USRSCTS.

//SPA EXEC LIBELINK,Q=USR, NAME=INTSPA,LMOD=INTSPA
./ AID NAME= INTSPA
* SYSTEM PARAMETER LIST
SPA CSECT
SPALIST A=A,EXTONLY=BOTH,CCNID=CNTO01,WTO=NO, X

other operands as desired

END
//*
//SCT EXEC LIBELINK,Q=USR,NAME=INTSCT,LMOD=INTSCT
//LIB.SYSIN DD *
./ ADD NAME=USRSCTS

* USER SUBSYSTEM CONTROL TABLE ENTRIES
SYCTTBL
SYCTTBL

//ASM.SYSIN DD DSN=INT.SYMREL(INTSCT), DISP=SHR

//

Figure 3-1. Creating the System Parameter Area and SCT
3-27

Chapter 3 Message Management

SCT CSECT
DC CL8'SCTENTRY' SCTS BEGIN HERE.

3698 98 96 36 36 96 36 38 96 38 96 38 3 98 96 96 96 96 36 36 96 26 36 96 38 36 96 38 36 96 38 36 96 3 6 9% 96 96 96 96 96 3 3 96 3% 96 9 96 96 96 96 96 96 96 3 96 36 36 96 36 36 9 3% 3 3% % %

* SCT DEFINITIONS (SYCTTBL'S) FOR INTERCOMM S/S *

696 98 96 36 36 36 26 36 98 3 3 98 96 96 96 96 96 96 36 36 96 36 36 96 38 36 3 3 96 3 3 98 38 96 36 96 36 36 96 96 06 38 96 96 96 36 36 96 6 96 96 36 96 96 6 96 3 3 96 3 3 06 3% 96 % %6 %

U SYCTTBL ECB=YES,WTO=NO,SUBH=000,SUBC=U,LANG=RBAL,TCTV=120, X
MNCL=14, DFLN=PMIQUE,BLRI=F,PCEN=10,NUMCL=10, X
SBSP=PMIOUTPT, RESTART=NO

v SYCTTBL ECB=YES,WT0=NO,SUBH=000,SUBC=V,LANG=RBAL, X
TCTV=120,MNCL=4, NUMCL=10, SBSP=PMIOUTPT , RESTART=NO

N SYCTTBL ECB=YES,WT0=NO,SUBH=000,SUBC=N, LANG=RBAL,TCTV=120, X
MNCL=1, DFLN=PMIQUE, BLRI=F,PCEN=10,NUMCL=10, X
SBSP=PMIOUTPT,RESTART=NO

J SYCTTBL ECB=YES,WTO=NO,SUBH=000,SUBC=J, LANG=RBAL, TCTV=0, X
MNCL=1, NUMCL=2, SBSP=PMICLDWN, PRTY=3,RESTART=NO

LL SYCTTBL ECB=YES,WTO=NO,SUBH=L,SUBC=L,LANG=RBAL, TCTV=120, X
MNCL=4,NUMCL=10, SBSP=LOADSCT, RESTART=NO

MM SYCTTBL ECB=YES,WTO=NO,SUBH=M,SUBC=M, LANG=RBAL, TCTV=120, X
MNCL=4, NUMCL=10, SBSP=MMUCOMM, RESTART=NO

GP SYCTTBL ECB=YES,WTO=NO,SUBH=G,SUBC=P,LANG=RBAL,TCTV=120, X
MNCL=14, NUMCL=10, SBSP=GPSS, LOG=NO, RESTART=NO

B SYCTTBL ECB=YES,WT0=NO,SUBH=000,SUBC=B,LANG=RBAL, TCTV=120, X
MNCL=2, NUMCL=2, SBSP=SWITCH,L0G=NO, RESTART=NO

P SYCTTBL ECB=YES,WTO=NO,SUBH=000,SUBC=P,LANG=RBAL,TCTV=120, X
MNCL=5, NUMCL=5, DFLN=PMIQUE,BLRI=F, PCEN=5, X
SBSP=PAGEMSG , RESTART=NO

W SYCTTBL ECB=YES,WTO=NO,SUBH=000,SUBC=W, LANG=RBAL, X
TCTV=120,MNCL=4, NUMCL= 10, SBSP=SENDBACK , RESTART=NO

R SYCTTBL ECB=YES,WT0=NO,SUBH=000,SUBC=R, LANG=RBAL, X
TCTV=120,MNCL=4, NUMCL=10, SBSP= IXFRPTIQ, RESTART=NO

H SYCTTBL ECB=YES,WTO=NO,SUBH=000,SUBC=H, LANG=RBAL, X

TCTV=120,MNCL=4, DFLN=PMIQUE, BLRI=F,PCEN=10,
NUMCL=14, SBSP=CHANGE, RESTART=NO

HH SYCTTBL ECB=YES,WTO=NO,SUBH=H,SUBC=H,LANG=RBAL, TCTV=120, X
MNCL=1, DFLN=PMIQUE, BLRI=F, PCEN=10, NUMCL=4, X
SBSP=CHANGE, RESTART =NO

cc SYCTTBL ECB=YES,WTO=NO,SUBH=C,SUBC=C,LANG=RBAL,TCTV=120, X

MNCL=4, NUMCL=10, SBSP=COPYSS,RESTART=NO
SEARIEIRIEI0I0 000000 0000 00 000000 00 00 0000 0000 0000 0000 00 00000000 000000 00 I I I I

* SCT DEFINITIONS (SYCTTBL'S) FOR USER SUB/SYSTEMS *
369698 30 98 96 36 36 38 6 38 96 3 36 36 36 36 96 3 96 36 96 36 36 36 96 6 36 96 36 96 36 36 96 38 96 3 96 96 36 36 36 96 6 3 36 36 96 36 96 36 96 6 96 96 96 36 36 6 36 96 96 96 3 % 3 % %
COPY USRSCTS
GENINDEX
PCENSCT
END

Figure 3-5. INTSCT Coding of Intercomm Subsytems

3-28

Chapter 3 Message Management

Opticnally, control of maximum thread concurrency for a group of
subsystems may be implemented by coding a RESOURCE macro prior to all
the SYCTTBL macros. The RESOURCE macro is used to provide a systemwide
limit on the number of threads that may concurrently access a specific
system resource, or is often used to control concurrent access to a
data base. It is referenced via the SYCTTBL macro RESOURC parameter.

3.7.17 Coding Subsystem Control Table (SCT) Entries

The SCT defines all subsystems executing under Intercomm. The
table entries coded via the SYCTTBL macro must be in the following
sequence:

1. Resident and dynamically loadable subsystem entries

2. Entries for subsystems in each Overlay Region A overlay
segment (OVLY parameter) or in each VS execution group (EXGRP
parameter) if used.

The OVLY parameter defines the subsystem's residency, and is
coded according to the following conventions:

@ OVLY=0--indicates a resident, or VS execution group, or
dynamically loadable subsystem. Default.

@ OVLY=1--indicates an Overlay Region B subsystem, to be
scheduled by MONOVLY (see Section 3.9.6).

® OVLY=2--indicates an Overlay Region C subsystem, to be
scheduled by MONOVLY.

@ OVLY=3--indicates an Overlay Region D subsystem, to be
scheduled by MONOVLY.

® OVLY=U4--indicates a subsystem within an Overlay Region A
subsystem group. It must be coded in ascending consecutive

order: the first number must be 4; the highest permissable
number is 62.

OVLY=62

Figure 3-6 illustrates a sample coding of SCTs, with resident and
Overlay A Intercomm-provided subsystems. More than one subsystem may
belong to the same Overlay A group. Each group is delimited by a
required label: SCTLRES--for resident (dynamically loadable)
subsystems; SCTLOVn--for Overlay A subsystem groups, where n is in the
range of 1 to 59 (corresponding to OVLY numbers 4-62).

3-29

Chapter 3

Message Management

SCT
*

SCT

SCTRES
B
W

SCTLRES
#

H

HH
SCTLOV1
#

U

v

N
SCTLOV2
#

Jd
SCTLOV3
#

LL

SCTLOV4
]

CC
SCTLOVS
*

GP

SCTLOV6

CSECT
DSECT DESCRIPTION
COPY SCTLISTC

CSECT
DC C'SCTENTRY' SCTS BEGIN HERE.
DS OF

SYCTTBL SUBC=B,SBSP=SWITCH,OVLY=0,NUMCL=4,LANG=RBAL,MNCL=2
SYCTTBL SUBC=W,SBSP=SENDBACK,OVLY=0,NUMCL=4, LANG=RBAL
EQU #*
OVERLAY A GROUP ONE
SYCTTBL SUBC=H, SBSP=CHANGE,OVLY=4,NUMCL=4, LANG=RBAL,MNCL=4, X
DFLN=PMIQUE,PCEN=10,BLRI=F

SYCTTBL SUBH=H,SUBC=H, SBSP=CHANGE,NUMCL=4,0VLY=4, X
LANG=RBAL,MNCL=1, DFLN=PMIQUE, PCEN=10, BLRI=F
EQU # END OF OVERLAY ONE
OVERLAY A GROUP TWO
SYCTTBL SUBC=U, SBSP=PMIOUTPT,OVLY=5,NUMCL=10, X
LANG=RBAL , MNCL=4 , DFLN=PMIQUE, PCEN=10, BLRI=F
SYCTTBL SUBC=V, SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X
LANG=RBAL, MNCL=1, DFLN=PMIQUE, PCEN=10, BLRI=F
SYCTTBL SUBC=N, SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X
LANG=RBAL ,MNCL=4, DFLN=PMIQUE, PCEN=10,BLRI=F
EQU * END OF OVERLAY TWO
OVERLAY A GROUP THREE
SYCTTBL SUBC=J, SBSP=PMICLDWN,OVLY=6,RESTART=NO,NUMCL=2, X
LANG=RBAL , PRTY=3,MNCL=1
EQU # END OF OVERLAY THREE

OVERLAY A GROUP FOUR
SYCTTBL SUBC=L,SUBH=L,SBSP=LOADSCT,NUMCL=4,0VLY=7,LANG=RBAL
EQu *

OVERLAY A GROUP FIVE

SYCTTBL SUBC=C,SUBH=C, SBSP=COPYSS,NUMCL=4,0VLY=8, LANG=RBAL, X
RESTART=NO

EQU * ,

OVERLAY A GROUP SIX

SYCTTBL SUBH=G,SUBC=P,SBSP=GPSS,LANG=RBAL,OVLY=9,NUMCL=4, X
RESTART=NO

EQU *

GENINDEX

PCENSCT

END

Figure 3-6. Sample Coding of INTSCT with an Overlay Structure

3-30

Chapter 3 Message Management

For VS users wishing to code VS execution groups, instead of
Overlay Region A subsystem groups, the OVLY parameter is coded as O,
and the EXGRP parameter is used as follows:

EXGRP=4--indicates a resident subsystem within a VS execution
group. It must be coded in ascending consecutive order: the
first number must be U4; the highest possible number is 62.

EXGRP=62

NOTE: If more than one subsystem code is used for the same
subsystem (accessed by multiple verbs), then the OVLY or
EXGRP parameter value must be the same on each SYCTTBL
pointing to that subsystem. Also, subsystem residency
must be the same (either resident, or overlay, or
dynamically loadable).

VS execution group scheduling is similar to Overlay Region A
scheduling except that, instead of the overlay supervisor, the VS
paging supervisor is used to invoke loading of the subsystem logic into
main storage. See also Chapter 7 on VS 1installation and page
preloading.

Figure 3-7 shows a listing of Intercomm-supplied subsystems and
reserved subsystem codes. If no specific value 1is 1listed for SSCH,
then it must be binary zeros (000--default). Additional subsystems for
special feature commands are described in System Control Commands.

3-31

Chapter 3 Message Management
Sz===s========ssssSss=s==ssSszss==szss====S==sssZ==-=sssssss=-ssZ-=====-======3
N function (ember Name) |
R i Closedown (CLOSDHN3: entry PMICLDWN) |
""""" H | Change/Display Utility (cuaNcE) |
R Single-thread Display--segmented messages (CHANGE) |
""""" B | Message switching between terminals (SWITCH) |
""""" W | Message echoing (SENDBACK) |
L | L |Loading dynamically linkedited modules (LOADSCT) |
¢ [| Copy processing for BIAM 3270 terminals (COPYSS) |
e [| 5252;;E'ESEBSQQ'EQS;;;E;;'ZéEéé;’""""""""""'J
"""" [P | Page Facility (PAGEMSG®)
""""" 5ff"';'EQQZQQSEQEI;;'EEﬁEéEé&é;’"'"""""""""""""'
""""" S | Basic Security processing (PMISIGN) |
""""" T | Fine Tuner processing (FINTUNER) |
""""" UN,V | Oubput Utility (eMIoUTPT) |
"""""" i"""'EQE;;SQE'B;SZQQQZQ;'255;;'ESSQ:’;EETJ"""""—"""l
""""" 2 | MROTPUT—satellite regioms only under MRS
__ -
K Multiregion commands--control region only (MRCONSS)
""""" E | Dumy subsysten for ESS processing ($$$$SECU) |
o e | Data Entry Facility (INTBETAD) |
a6 | Autogen (ISGEN)]
T R | File Handler Statistics (IXFRPTOT: entry IXFRPTIQ) |
T T F | vs page fix/unfix (eMremxsy
T T W T command processing (MMCOWD

Figure 3-7.

Intercomm-Supplied Subsystems

3-32

Chapter 3 Message Management

3.7.2 Coding Subsystem Control Table Indices (GENINDEX)

The SCT Indices consist of two elements: the SCT Overlay
Index--used for scheduling work for resident and dynamically loadable
subsystems, and for overlay or execution groups within the Subsystem
Control Table; and the SCT Binary Search Index--used for finding an
entry in the Subsystem Control Table. Each Overlay Index entry is
three words in length. There is one entry for resident and dynamically
loadable subsystem SCTs (OVLY=0), followed by one entry for each
overlay group.

As illustrated in Figure 3-3, the System Parameter Area points to
the SCT Overlay Index, which in turn is used to locate the individual
SCT groups.

As illustrated in Figure 3-5, the SCT Indices are generated at
assembly time by coding the GENINDEX macro after all the SYCTTBL
entries. However, if multiple overlay group 1indices for the same
Overlay A group are desired, or if no resident or dynamic load SCTs are
defined, the SCT Overlay Index must be hand-coded, as described in
Appendix C. In this case, the GENINDEX macro must be coded with the
parameter OVLYNDX=NO, and is placed after the user-coded Overlay Index.

3.7.3 Coding Overflow Disk Queue Allocations (PCENSCT)

As illustrated in Figure 3-5, the PCENSCT macro is coded prior to
the GENINDEX macro. This macro has no parameter and 1is coded only
once. Its function is deseribed in Section 3.8.1.

3.7.4 Adding a Subsystem

In addition to coding the SYCTTBL for a new subsystem, the entire
Subsystem Control Table structure may have to be reevaluated to
determine the impact of the new subsystem on response time, throughput,
and queue space for all subsystems. Also, other table entries may be
required in order to test the new subsystem or utilize it in the
production environment.

The Front End Verb Table must be updated with the new verb(s) for
the added subsystem. Locking, conversational, and other Front End
processing parameters may have to be considered, depending on the
terminal type(s) being wused. Other Intercomm facilities, such as
ICOMPOOLs, may be affected, and table or disk-resident entries for the
Intercomm utilities may be required.

3-33

Chapter 3 Message Management

3.7.5 Subsystem Control Table Verification (CKOVLYNO)

If included in the Intercomm linkedit, the routine CKOVLYNO will
be executed at system startup to verify the coding of the SCT Index and
individual SCTs. In particular, it checks to ensure that each group of
SCTs indicated by an SCT Overlay Index entry does in fact have the
SYCTTBL parameter OVLY coded correctly, and that the OVLY group numbers
are in ascending and consecutive order. If any table entries are
incorrect, startup execution terminates with a user abend code 98.

3.8 SUBSYSTEM PROCESSING SPECIFICATIONS

Subsystem response time and throughput are affected not only by
subsystem residency, but also by queue, scheduling and processing limit
specifications. These specifications are also defined via SYCTTBL
macro parameters for each subsystem.

3.8.1 Subsystem Queue Specifications

A subsystem queue is a list of messages awaiting processing by
the subsystem. These messages may be incoming transactions (from a
terminal), or passed from another subsystem. These queues are also
known as input queues, in contrast to output terminal queues of
messages awaiting transmission. Three types of queues may be defined:
core queues, high-priority core queues, and disk overflow queues.

At least one type of queue should be defined. The queuing method
is controlled by the BLRI parameter. Normally, a priority queue is
defined only if more than one verb is processed by the subsystem, and
certain verbs (such as those requiring little subsystem processing)
should be processed as soon as possible. A subsystem which is not
response time dependent or which is activated only periodiecally would
have 1little use for a core queue because a core queue ties up system
resources for holding the message in core. Disk queues are used for
overflow from the core queue(s) at high activity periods, or to hold
messages when no core queues are defined. The SYCTTBL AUXS parameter
is coded when no core or disk queues are defined.

The NUMCL parameter defines the number of elements in a core
queue and creates an entry in the internally generated PMICLZZZ Csect
which defines the core list (queues) for all subsystems operating under
Intercomm. The purpose of the core list is to contain the addresses of
all messages that are destined for a subsystem and are still in core.
When the core 1list 1is full, messages are written to overflow disk
queues that are accessed under the file name (JCL DD statement label)
specified by the SYCTTBL macro, DFLN parameter.

3-34

Chapter 3 Message Management

In addition to the normal core queue, a priority core queue may
be defined (by the PRYMSGS parameter of the SYCTTBL macro) for those
messages requiring priority processing for fast response time. If the
priority queue is full when adding a priority message to a subsystem's
queue, it will be added to the end of the normal queue (core or disk).
A priority message is recognized by Intercomm when a C'P' is in the
message header field MSGHUSR. The P is inserted during Front End verb
processing if the BTVERB parameter HPRTY=YES was coded, or if a
subsystem initializes MSGHUSR before queueing a message for another
subsystem.

The disk queues are contained on BDAM data sets which must be
preformatted with dummy records via the Intercomm utility CREATEGF (see
Chapter 12). If a disk queue data set is to be shared among several
subsystems (PCEN parameter in SYCTTBL), assignment of space is
allocated at system startup time by the module CALCRBN, which
calculates the appropriate percentage of the actual number of blocks
(RBNs) on the data set and rounds that down to the nearest multiple of
8; a minimum of eight RBNs are allocated. If the data set referenced
by DFLN 1is exhausted, an indicative message is issued and startup
abends with a user code U44. Queue and block size considerations
include message lengths and traffic for a given subsystem, as well as
achievement of minimal I/0 activity, since messages with lengths
greater than disk queue block size are spanned. A maximum of 50
different disk queue data sets may be defined for the combined
subsystems in the Subsystem Control Table. The PCENSCT macro, coded
after the GENINDEX macro, will print the accumulated percentages per
disk queue data set as part of the assembly of the SCTs; the output
should be checked whenever a SYCTTBL is added. Typical output
generated by the PCENSCT macro is illustrated below.

#%#% ACCUMULATED PERCENTAGES PER DISK QUEUE ###

##% QUEUE NAME PERCENTAGE ###
®, QUEUEN 40.0
L QUEUEA 100.0
L QUEUEC 100.0
*, QUEUEU 100.0
*, QUEUEH 80.0

3.8.2 Scheduling and Concurrent Processing Limits

SYCTTBL scheduling parameters are SCHED, ECB, and THRSH.
Processing limits are defined by the MNCL and RESOURC parameters, which
are also directly related to the residency and reentrancy of the
subsystem.

3-35

Chapter 3 Message Management

3.9 SUBSYSTEM RESIDENCY CONSIDERATIONS

The subsystem 1dentifier, or receiving codes in the Intercomm
message header (MSGHRSCH and MSGHRSC fields), 1is coded for the
subsystem in the SUBH and SUBC parameters of the SYCTTBL macro. Each
SYCTTBL must have a unique set of codes which are used by the Intercomm
subsystem queuing routines to identify the specific subsystem to
process a transaction. Once found, the transaction is queued for later
dispatch of the subsystem. Dispatch considerations are based not only
on systemwide parameters defined for the SPALIST macro, but also on
subsystem residency, reentrancy and processing specifications.

3.9.1 Subsystem Reentrancy

Reentrancy 1s defined to Intercomm by the LANG parameter of the
SYCTTBL macro. See the applicable Programmers Guide for criteria for
reentrant subsystems under Intercomm which may process more than one
transaction (message) at a time (more than one thread dispatched), if
permitted by scheduling parameters. High-level language subsystems
coded and defined to Intercomm as reentrant may not, however, be
linkedited as reentrant.

3.9.2 ° Resident Subsystems

Definition of a subsystem as resident, dynamically loadable, in
an Overlay Region A, or in a VS execution group, is a function of
reentrancy, message traffic, message volume and storage requirements.
For efficiency, those reentrant subsystems with high volume and/or
traffic should be made resident. Subsystems with sporadic or single
periods of volume processing could be made dynamically loadable, while
those with lower volume but more constant traffic could be defined for
an overlay or execution group.

In this discussion, volume represents the possible total number
of transactions to be processed during an execution of Intercomm, while
traffic represents the number to be processed within a specific time
span. Storage requirements for processing of a transaction include not

only)the program area, but also the dynamic working storage (pool
areas).

Subsystem residency 1s also affected by the processing time
required, file and data base access, message formatting, etec., and
response time criteria.

Because loading delays are avoided, resident subsystems
potentially provide the best response time. They are defined to
Intercomm in the OVLY=0 group, as described above. Throughput is
controlled by scheduling parameters and also depends on external
storage requirements and processing time. Resident subsystems are
linkedited with resident Intercomm modules.

3-36

Chapter 3 Message Management

3.9.3 Overlay A and Execution Group Subsystems

Depending on scheduling and concurrent processing limits defined
for each subsystem within the overlay structure, Intercomm controls the
Overlay A processing. An overlay group may consist of one or more
subsystems which may be grouped according to reentrancy, programming
language, processing time, resource requirements, traffic, volume,
ete. Scheduling and concurrent processing limits are relevant, as,
once work 1is dispatched for the group in Overlay A, another group
cannot be overlaid into the area until all the dispatched threads have
completed processing.

Intercomm controls VS execution group processing, depending on
scheduling and concurrent processing limits defined for each subsystem
within the VS execution group. An execution group may consist of one
or more subsystems which are grouped according to reentrancy,
programming language, processing time, resource requirements, traffic,
volume, etc. Scheduling and concurrent processing limits are relevant,
since once work is dispatched for one execution group no other
execution groups will be scheduled until the current group completes
its processing. This technique is useful in preventing excessive VS
paging overhead when real storage is at a premium; all nonzero EXGRP
subsystems are linked as resident in a contiguous group.

Those subsystems which are to be executed from Overlay Region A
must be linkedited according to the same structure depicted in Figure
3-6. In other words, all subsystems whose SYCTTBL macro OVLY parameter
is coded as 4 must be inserted in the same overlay segment, all OVLY=5
in the same segment, etc. These SYCTTBLs must have OVLY coded in
ascending, sequential order.

The following example illustrates a sample Subsystem Control
Table with two Overlay A groups defined. Linkedit control cards which
relate the OVLY parameter definitions to Overlay A INSERT statements
are illustrated in Figure 3-8.

* RESIDENT and DYNAMICALLY LOADABLE SUBSYSTEMS
SYCTTBL =—----
SYCTTBL -=---
* OVERLAY A GROUP 1
SYCTTBL SBSP=SUBSYSA,OVLY=4,---
SYCTTBL SBSP=SUBSYSB,OVLYzl,---
OVERLAY A GROUP 2
SYCTTBL SBSP=SUBSYSC,OVLY=5,~--

3-37

Chapter 3 Message Management

Within one overlay segment, a substructure may be defined for
subroutines called by, and linked with, a particular subsystem, as
illustrated by OVERLAY AB; SUBX and SUBY in Figure 3-8. The
subroutines may not give up control to the Dispatcher (no calls to the
File Handler, etc.}; if such logic is essential, the subsystem of the
called subroutine must be defined as single-thread processing.
Otherwise, calls in different message threads processed concurrently
for that subsystem will cause the overlay substructure to be "overlaid"
by mistake.

The appropriate control cards for eligible Overlay A Intercomm
routines may be generated via the ICOMLINK parameter OVLYSTR=YES which
also causes inclusion of LOADOVLY in the Intercomm 1linkedit. For
asynchronous overlay loading, also code ASYNCH=YES on ICOMLINK (causes
an include for ASYNCH), and code ASYNLDR=YES on the SPALIST macro.

//LKED,SYSIN DD b
INCLUDE .
. required Intercomm modules

INCLUDE SYSLIB&SUBSYSA?
INCLUDE SYSLIB(SUBSYSB

INCLUDE SYSLIB(SUBSYSC)
OVERLAY A

. Intercomm Overlay A modules
OVERLAY A !

INSERT SUBSYSA

INSERT SUBSYSB
OVERLAY A

INSERT SUBSYSC
OVERLAY AB

INSERT SUBX
OVERLAY AB

INSERT SUBY

Figure 3-8. Sample Linkedit Control Cards for Overlay Region A
Subsystems

3-38

Chapter 3 Message Management

3.9.4 Dynamically Loaded Subsystems

No special table entries are required for dynamically loadable
subsystems, other than the LOADNAM and REUSE parameters on the SYCTTBL
macro. If the BLDL parameter indicates YES, the Subsystem Controller
searches the STEPLIB or JOBLIB directory only once for the required
member location. Thereafter, 1loading 1is performed based upon an
internally generated list of actual file locations. The system control
command, LOAD, must be used to indicate a change in location. Each
dynamlcally loaded subsystem 1is linkedited independently of the main
Intercomm load module.

The subsystem load module consists of the subsystem itself and
any called modules (compiler-oriented routines not loaded dynamically
by compiler-oriented code) which are not standard Intercomm/user
subroutines accessible via REENTSBS. Assembler Language subsystems
should load Intercomm facility addresses from the SPA/SPAEXT before
calling an Intercomm routine, and use the MODCNTRL macro to access user
subroutines defined to Intercomm via REENTSBS (SUBMODS macro). Each
dynamically loaded subsystem module 1is then 1linkedited with the
Intercomm interface INTLOAD (unless dynamic 1linkedit is used; see
below). INTLOAD resolves references to resident Intercomm routines.
The LKEDP procedure may be used for the subsystem linkedit, as the
following illustrates:

//LINKSUBS EXEC LKEDP,Q=ABC,LMOD=DYNSUBX
//LKED.SYSIN DD *

ENTRY SUBSYSX

INCLUDE SYSLIB(SUBSYSX)

INCLUDE SYSLIB(INTLOAD)

NAME DYNSUBX(R)

The LOADNAM parameter of the SYCTTBL macro describing the
subsystem must then correspond to the LMOD parameter of the LKEDP
procedure (name of the module in the load library). If the subsystem
is defined under more than one SYCTTBL (accessed by multiple verbs),
linkedit with ALIAS names to make each definition unique, but do not
link as either reusable or reentrant. This will result in more than
one copy loaded in core, which cannot be avoided. The subsystem may,
however, be defined to Intercomm as reentrant, if coded as reentrant.

The 1library used for dynamically loaded subsystems must be

defined at execution time (STEPLIB or JOBLIB). Certain restrictions
apply if the Dynamic Linkedit facility is used (see below).

3-39

Chapter 3 Message Management

Use of dynamically loaded subsystems requires an INCLUDE of the
modules LOADSCT, DELOAD, and either ASYNCLDR (MVS, OS/MVT) or VS1LOAIDR
(VS1, OS/MFT) for the resident portion of Intercomm. Coding
DYNLOAD=YES (default) for the ICOMLINK macro automatically generates
these statements. LOADSCT is wused 1in conjunction with the LOAD
command. MAXLOAD is the SPALIST macro system control parameter used
with dynamically loaded subsystems.

3.9.5 Dynamic Linkedit Facility

The Intercomm Dynamic Linkedit facility 1is optionally used in
conjunction with dynamically loaded subsystems to allow these
subsystems to be linkedited with unresolved references to subroutines
and data areas. If these subroutines and data areas are present (and
resident) within the main Intercomm locad module, the Dynamic Linkedit
facility will resolve the references at startup time by "zapping" the
load module of each subsystem.

Using this facility, the INTLOAD interface module is no longer to
be 1linkedited with each dynamically 1locaded subsystem to resolve
references to Intercomm resident routines, =since they will be
automatically resolved by Intercomm.

The Dynamic Linkedit facility is a generalized approach which
permits a single copy of a compiler subroutine which is resident within
the main Intercomm load module to be used by any loaded subsystem,
rather than requiring a =separate copy along with each loaded
subsystem. Eliminating duplicate copies of subroutines in this manner
is particularly useful for COBOL or PL/I loaded subsystems, since a
single copy of all the standard 1library routines used by these
languages can be made resident within Intercomm (if not in the Link
Pack Area), and thus available to be used by all subsystems.

The Dynamic Linkedit facility is implemented by including the
module ICOMDYNL in the main Intercomm linkedit. ICOMDYNL can be placed
in the startup overlay. However, if the LOAD system control command is
implemented, it must be resident. Coding DYNLINK=YES (default) for the
ICOMLINK macro automatically generates the necessary statement. Also,
the ICOMCESD and ICOMVCON modules must be separately linkedited with
these names, and as nonreentrant, on one of the 1load libraries
specified via STEPLIB or JOBLIB for Intercomm execution.

Additionally, a work file must be provided to Intercomm using the
following format:

//DYNLWORK DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(1,1))

3-40

Chapter 3 Message Management

A listing of Dynamic Linkedit processing results, unresoclved External
References and WXTRNs will be produced by adding an optional DD
statement to execution JCL:

//DYNLPRNT DD SYSQUT=A

If the LOADSCT routine is used to reload a dynamically loaded
subsystem which has been relinkedited during Intercomm's execution,
LOADSCT will use the Dynamic Linkedit facility to rezap the subsystem.,

The following restrictions apply to the use of dynamic linkedit:

g Assembler Language address constants will not be resolved 1if
coded as "label+nn" where "nn" is nonzero and less than or
equal to 6UK.

® Called programs must be resident in the Intercomm root
segment for resolution to take place. This does not apply to
dynamically loaded subroutines.

® A VCON referencing a module in an overlay segment will not be
resolved. Thus, an Assembler Language program may use
CALLOVLY only if it obtalins the VCON of the called program
from the Intercomm root segment, that is, from the Systenm
Parameter Area.

® Load modules on the library which is to be dynamically
linkedited may not be executed by any other concurrent job.
Since VCONs can only be resolved to point to one region, the
load module is therefore executable only in that region.

@ All modules to be dynamically linkedited during a given
Intercomm execution must reside on one data set defined for
STEPLIB or, if no STEPLIB, then on JOBLIB. This library must
be contalned in one extent. A careful watch of this library
space is necessary to ensure that updates do not cause it to
exceed one extent. Frequent off-line compresses may be
necessary. This library may not be concatenated with others.

® However, if STEPLIB consists of concatenated data sets, the
library containing load modules to be dynamically linkedited
must be defined by a DD statement with the name DYNLLIB.
This library must be a single data set, and must also be
concatenated with STEPLIB for subsequent 1load processing.
Code DISP=SHR on both DD statements. This library may not
exceed one extent (see above) and may not be shared with any
other Intercomm region.

® A combination of loadable subsystems linkedited with INTLOAD
and dynamically linkedited loadable subsystems may be used.
However, the INTLOAD group may not be on the dynamic 1link
library, but must be on one of the other libraries
concatenated to STEPLIB/JOBLIB. The INTLOAD library may be
shared across regions.
3-41

Chapter 3 Message Management

o Compress of the dynamic link library may not be done while
Intercomm is executing.

Because the 1locad modules of dynamically loaded subsystems are
modified, they cannot reside on a library shared by another Intercomm
region. For efficiency, each dynamic load library should be on a
different disk pack. To convert a subsystem from dynamically
linkedited and loaded to resident or in the overlay region, the
subsystem must be recompiled and relinkedited prior to inserting it
into the Intercomm linkedit.

3.9.6 Subsystems Assigned to Overlay Region B, C or D

Some linkage editors limit the number of overlay regions that can
be defined in a 1linkedit. Due to the existence of Intercomm Regions
TRAN and SUB, not all of Overlay Regions B, C and D may be usable.

Overlay Regions B, C and/or D are used for subsystems which
require no guaranteed response time. The objective of their use is to
effectively remove some subsystems from contention for use of Overlay
Region A. Subsystems assigned to Overlay Region B, C or D have the
following characteristics:

-~ Input messages are queued by region, instead of by subsystem.

@® Subsystem execution is controlled by the Intercomm program
MONOVLY.

W Subsystem processing is always single-threaded.

o All subsystems in one overlay region should be coded in the
same language.

® A Subsystem Control Table entry (SYCTTBL) is defined for
MONOVLY, not the individual subsystem(s).

- An additional Verb Table 1s required for each overlay region.

There 1s one Subsystem Control Table entry for each of the
Overlay Regions B, C or D, in use. Each defines MONOVLY as the entry
point and the OVLY parameter is coded as 1, 2 or 3 for Overlay Region
B, C or D, respectively. For example:

OVLYB SYCTTBL SUBC=B,SUBH=B,0VLY=1,LANG=NBAL, X
SBSP=MONOVLY,NUMCL=2,DFLN=0VLYBQ

3-42

Chapter 3 Message Management

MONOVLY controls the loading of the appropriate subsystem into
the overlay region, based upon the order of messages retrieved from the

queue, and a table specification relating the message verb to the
subsystem entry point.

Subsystems assigned to Overlay B, C or D, and coded in different
languages, should have a Subsystem Control Table entry for an overlay
region for each programming language. For example:

COBOVLYB SYCTTBL SUBC=B,SUBH=C,OVLY=1,LANG=COB, X
SBSP=MONOVLY, NUMCL=2, -—--
BALOVLYC SYCTTBL SUBC=B,SUBH=A,OVLY=2,LANG=NBAL, X

SBSP=MONOVLY,NUMCL=2, ===

The Intercomm Enqueue/Dequeue facility (PMINQDEQ) is used to
force single-threading of the overlay region. Two restrictions exist
if more than one language is used per overlay region: the startup
module CKOVLYNO may not be used to perform Subsystem Control Table
checking; and the conversational control routine, CONVERSE, may not be
called by any subsystem assigned to the overlay region.

BTVERB entries in the Front End Verb Table (BTVRBTB) must use the

subsystem code assigned to the overlay region via the SYCTTBL macro.
An Overlay Region Verb Table is required for each overlay region. This
special verb table must have a Csect name of OVLYBTB for Region B,
OVLYCTB for Region C, and OVLYDTB for Region D. These Csects are coded
by the user, and must include an entry for each subsystem in the
particular overlay. Each table entry is twelve bytes in length, as
follows:

@ Bytes 1-4--the four-character verb associated with a
subsystem in the overlay region

® Byte 5--Verb Identifier/Edit Flag: X'00' = editing required;
X'01' to X'254' = user VMI value; X'FF' = no editing desired

® Byte 6--X'FF' indicates free the incoming message before
calling the subsystem, if desired, else code X'00'

® Bytes 7-8--unused
® Bytes 9-12--the subsystem entry point, coded as a VCON
A fullword of X'FF', generated by the PMISTOP macro, is required

at the end of the table. Following is a sample overlay region verb
table.

3-43

Chapter 3

Message Management

OVLYBTB CSECT

DC
DC
DC
DC
DC
DC
DC

C'EPKF',uX
C'EPKV',4X

PMISTOP
END

C'V250',4X'0"',V(EDITTEST)
C'EDKF',4X'0",V(EDITTEST)
C'EDPV',4X'0"',V(EDITTEST)
C'EDPL',4X'0",V(EDITTEST)
C'ED32',4X'0',V(EDITTEST)

'0',V(EDITTEST)
'0',V(EDITTEST)

As

illustrated below,

the Verb Identifier/Edit Flag controls

processing of incoming messages via the Edit Utility based upon a test
of the message header VMI field.

Message
Header

VMI

Verb ID/
Edit Flag
(Verb Table

344444 e A S

Action

No editing required. The message text verb
is used to locate the table entry defining
the subsystem to process the message.

Edit Utility is called prior to giving
control to the subsystem.

Editing i1s not required. The message
header VMI is matched with the Verb
Identifier to locate the table entry
defining the subsystem to process the
message.

%

3-4Y

Chapter 3 Message Management

The MONOVLY program checks the input verb or the VMI against the
table and calls the Edit Utility, if specified by the table entry. It
then brings the program into the overlay area and passes control to the
program. If the Overlay Region Verb Table is invalid, a message 1is
issued and a Snap 90 is taken; then the overlay monitor returns to the
Subsystem Controller with a return code of 4.

If asynchronous loading (ASYNLDR=YES in the System Parameter
Area, and the module ASYNCH is present) is being used, the module
LOADOVLY must be present. It is a necessary interface between MONOVLY
and the Loader Task ASYNCH. To generate the correct 1linkedit for
MONOVLY processing, the following must be coded for the ICOMLINK
Macro: MONOVLY=YES, ASYNCH=YES, OVLYSTR=YES and optionally TRANS=YES.

3.10 SUBSYSTEM INTERFACES AND LINKEDIT CONSIDERATIONS

There are no special considerations for coding or linking of
Assembler Language subsystems except that they should be reentrant and
use the Intercomm facilities described in the Assembler Language
Programmer's Guide. Macros supplied by Intercomm to aid in coding
Assembler Language programs and subroutines are described in Basic
System Macros. Considerations for higher-level language programs
supported by Intercomm are described below.

3.10.1 COBOL Subsystem Interfaces

Application subsystems may be coded in COBOL-F or VS or ANS
COBOL, and may also be compiled via the CAPEX Optimizer. However, all
COBOL subsystems must use the same compiler, because the ILBO
subroutines may not be compatible. An Intercomm facility allows COBOL
subsystems to operate in a reentrant mode, processing several messages
concurrently, as specified by the Subsystem Control Table entry for the
subsystem. Certain coding conventions must be followed, as described
in the Intercomm COBOL Programmers Guide.

The size of the Dynamic Working Storage in the Linkage Section of
a reentrant COBOL subsystem must agree with SYCTTBL macro values. The
COBOL Programmers Guide details coding techniques required when the
amount of storage freed is less than the amount of storage obtained for
the processing of a message. Two SYCTTBL parameters, GET and FREE, are
used to specify the amount of dynamic core to obtain on entry to, and
free on return from, a reentrant COBOL subsystem. The maximum request
for storage via the GET parameter is 64K, less 304 bytes.

3-45

Chapter 3 Message Management

The Reentrant Subroutine Table (REENTSBS) must be included for
execution of reentrant COBOL subsystems. This table represents a list
of Intercomm service routine addresses referenced by a COBOL program
parameter list for the reentrant subroutine interface module COBREENT.
User additions to this 1list may begin at decimal offset 104 and be
coded in a copy member USRSUBS. User-coded subroutines require an
entry in this member and COBREENT must be used to interface to a called
subroutine. Additionally, the supplied COBOL program COPY member
ICOMSBS must be updated to provide the names and index codes for the
added user subroutines.

Figure 3-9 illustrates the standard Intercomm-supplied Reentrant

Subroutine Table. REENTSBS must be reassembled and relinked every time
an entry is changed or added to USRSUBS.

3.10.2 COBOL Subsystem Linkedit Considerations

To execute COBOL subsystems under Intercomm, the interface
modules PREPROG, PMICOBOT, and COBPUT must be included in the Intercomm
linkedit (automatic if the ICOMLINK parameter COBOL=YES (default) is
coded). Depending on the version and compiler NORES options wused,
COBOL programs require certain COBOL routines (based on coding logic)
to be available from SYS1.COBLIB, either at 1linkedit time or at
execution time, These modules are ILBOSRV, ILBOBEG, ILBOCMM, and
ILBOMSG.

In addition, ILBOSTPO and ILBOSTP1 may be required if they are
not entry points within the ILBOSRV module. The modules have several
subroutines (indicated by a suffix code) which may or may not be
linkedited with them on SYS1.COBLIB, depending on the COBOL version
(release) used, and weak external reference specifications in routines
of that version. Normally, to cut down on the size of the COBOL load
module, an execution time library 1s required if all COBOL routine
external references are not resolved at linkedit time. This execution
time library provides COBOL subroutines for the COBOL program only when
needed, thus saving space in the user's region via LOADs and DELETEs.
For example, ILBOBEGO and ILBOCMMO will always be needed, whereas
ILBOMSGO only if an error occurs. If EXHIBIT or READY TRACE is coded,
adding an INCLUDE for 1ILBODSPO to the Intercomm linkedit may be
advisable.

To save space in the Intercomm region, COBOL subsystems should be
compiled with the same compiler, using the NORES, and NOTRUNC options.
For dynamically 1loaded COBOL subsystems defined to Intercomm as
reentrant (SYCTTBL-LANG=RCOB), use the REUS and NCAL linkedit options.
In addition, to save LOAD and DELETE time (if subroutine not in Link
Pack), the ICOMLINK parameter RECOBOL=YES (default) should be used to
generate INCLUDEs not only for Intercomm routines required for
reentrant COBOL (COBREENT, COBSTORF), but also for the most common
COBOL subroutines (ILBOSTPO, ILBOBEGO, ILBOCMMO, ILBOMSGO and
ILBOCOMO), and for the Intercomm/user subroutine table REENTSBS.

3-46

Chapter 3 Message Management

‘ If following the above recommendation is not possible, due to the
COBOL version in use, the user is advised to perform the following
steps:

1. Linkedit ILBOSRVO (PARM='REUS') into a special SRV library,
with INCLUDE statements for subroutines ILBOBEGO, ILBOCMMO and
ILBOMSGO, as follows:

INCLUDE SYSLIB(ILBOSRVO,ILBOBEGO,ILBOCMMO,ILBOMSGO)
ALIAS ILBOSR, ILBOSRVO, ILBOSRV1, ILBOST, ILBOSTPO, ILBOSTP1
NAME ILBOSRV(R)

2. Then concatenate that special SRV library ahead of the regular
COBOL 1library in the SYSLIB data sets for the linkedit of the
COBOL subsystem. '

3. Additional ALIAS names may be used for ILBOSR3, ILBOSRST,
ILBOBEG, ILBOCMM, ILBOCMM1, ILBOMSG, and ILBOCOM depending on
unresolved references in the COBOL subsystem linkedit.

4. The ENDJOB compiler option should be used to prevent 80A, 804
and 906 abends if the subroutine library is used.

NOTE: ANS Version 4 or CAPEX Optimizer routines might be on a

library other than SYS1.COBLIB. Research this point for
- proper compile and 1linkedit SYSLIB JCL when using
Intercomm procedures, and execution time STEPLIB JCL.

3-47

Chapter 3

Message Management

REENTSB1 CSECT

NEGATIVE OFFSETS ARE USED BY SPECIFYING AN OFFSET ENDING IN B'11',

WHICH IS INCREMENTED BY 1 AND COMPLEMENTED TO OBTAIN TRUE OFFSET

¥ BY COBREENT AND PMIPL1.

*
SUBMODS NAME=MAPFREE OFFSET -92,CODED AS 91
SUBMODS NAME=FECMRLSE OFFSET -88,CODED AS 87
SUBMODS NAME=FESEND OFFSET -84,CODED AS 83
SUBMODS NAME=FESENDC OFFSET -80,CODED AS 79
SUBMODS NAME=ALLOCATE OFFSET -76,CODED AS 75
SUBMODS NAME=ACCESS OFFSET -72,CODED AS 71
SUBMODS NAME=MAPURGE OFFSET -68,CODED AS 67
SUBMODS NAME=MAPCLR OFFSET -64,CODED AS 63
SUBMODS NAME=MAPEND OFFSET -60,CODED AS 59
SUBMODS NAME=MAPOUT OFFSET -56,CODED AS 55
SUBMODS NAME=MAPIN OFFSET -52,CODED AS 51
SUBMODS NAME=INTUNSTO OFFSET -U48,CODED AS 47
SUBMODS NAME=INTSTORE OFFSET -44,CODED AS 43
SUBMODS NAME=INTFETCH OFFSET -40,CODED AS 39
SUBMODS NAME=FE CMFDBK OFFSET -36,CODED AS 35
SUBMODS NAME=FECMDDQ OFFSET -32,CODED AS 31
SUBMODS NAME=QWRITEX OFFSET -28,CODED AS 27
SUBMODS NAME=QREADX OFFSET -24,CODED AS 23
SUBMODS NAME=QWRITE OFFSET -20,CODED AS 19
SUBMODS NAME=QREAD OFFSET -16,CODED AS 15
SUBMODS NAME=QCLOSE OFFSET -12,CODED AS 11
SUBMODS NAME=QOPEN OFFSET -8,CODED AS 7
SUBMODS NAME=QBUILD OFFSET -4,CODED AS 3
ENTRY REENTSBS

REENTSBS DS 0A ALLOW FOR NEGATIVE OFFSETS
DC A(REENTEND-REENTSBS-4) REQUIRED
SUBMODS NAME=SELECT CODE 4- FILE SELECT
SUBMODS NAME=-RELEASE CODE 8- FILE RELEASE
SUBMODS NAME=READ CODE 12- FILE READ
SUBMODS NAME=WRITE CODE 16- FILE WRITE
SUBMODS NAME=GET CODE 20- FILE GET
SUBMODS NAME=PUT CODE 24~ FILE PUT
SUBMODS NAME=RELEX CODE 28- RELEASE EXCL. CONTROL
SUBMODS NAME=FEOV CODE 32- FILE FEOQV
SUBMODS NAME=DISEL CODE 36- DISAM SELECT
SUBMODS NAME=DIREL CODE 40- DISAM RELEASE
SUBMODS NAME=DIREAD CODE 44- DISAM READ
SUBMODS NAME=DIWRITE CODE 48- DISAM WRITE

Figure 3-9. REENTSBS Release Version (Page 1 of 2)

3-48

Chapter 3 Message Management

SUBMODS NAME=DIGET CODE 52- DISAM GET

SUBMODS NAME=DIPUT CODE 56- DISAM PUT

SUBMODS NAME=DIDEL CODE 60- DISAM DELETE

SUBMODS NAME=DIRELEX CODE 64- DISAM RELEX

SUBMODS NAME=COBPUT CODE 68- COBOL MESSAGE SWITCHING
SUBMODS NAME=MSGCOL CODE T72- MESSAGE COLLECTION

SUBMODS NAME=COBSTORF CODE 76- COBOL STORFREE
SUBMODS NAME=CONVERSE CODE 80- CONVERSE

SUBMODS ~ NAME=DBINT CODE 84- DATA BASE REQUEST

SUBMODS ~NAME=LOGPUT CODE 88- LOGPUT

SUBMODS ~ NAME=PAGE CODE 92- PAGE ROUTINE

SUBMODS NAME=GETV CODE 96- VSAM GET

SUBMODS ~ NAME=PUTV CODE 100-VSAM PUT
3 238 03000 036 38 36 36 36 36 38 38 3036 36 36 38 36 36 36 3636 38 36 36 36 3 36 36 36 30 36 36 36 36 36 36 36 36 36 36 3 36 3 38 36 3 36 3 36 I3 I 36 36 36 3 3 3 3 3 3 3 M X
e INSERT USER SUBMODS MACROS ki

FE0E0E 000300000 0000000000000 30 90 90 90 90 30 0 26 30 96 36 06 06.96 96 96 36 0 20 26 30 30 36 00 90 00 90 96 36 30 30 0 20 00 00 00 00 90 90 90 90 K 90 90 90 36 900000 00 00 0
COPY USRSUBS
REENTEND EQU * REQUIRED AFTER LAST SUBMODS
ENTRY REENTEND
REENTSB1 CSECT
- END

Figure 3-9. REENTSBS Release Version (Page 2 of 2)

3.10.3 PL/1 Subsystem Interfaces

In the Intercomm environment, a PL/1 subsystem requires special
consideration for each allowable option. Specifications of the options
chosen are indicated for the subsystem in the PL1 and PL1LNK parameters
of the SYCTTBL macro. These options are as follows:

1. The PL/1-F compiler, specified via PL1=F, the default on the
SYCTTBL macro or the PL/1 optimizing compiler, specified via
PL1=0OPT on the SYCTTBL macro.

2. The linkage conventions used by Intercomm to construct the
parameter list may be either nonbased (character string) or
based (dummy arithmetic scalar) format for the first three
parameters in the list, as specified by the PL1LNK parameter
of the SYCTTBL macro.

An Intercomm module is required as the interface between
Intercomm and the PL/1 compiler in use, either PREPL1 or PREPLI, as
shown in Figure 3-10. Figure 3-11 illustrates the interface when the
subsystem is dynamically loaded.

PREPL1 is the interface for PL/1-F subsystems. Each thread of a
PL/1 subsystem is a separate instance of the PL/1 environment. For the
F compiler, PREPL1 issues SPIE and STAE to override PL/1's SPIE and
STAE during execution of the thread.

3-49

Chapter 3 Message Management

All storage allocation is performed in the wusual PL/1
fashion--abnormal termination, which does not raise the ERROR
condition, such as program checks, may leave storage allocated after
the thread terminates. Storage obtained by PL/1l, that is, automatic
variable, is not monitored by the Intercomm Resource Management
facility.

PL/1-F Subsystem using linkage

————— P convention defined by the SCT

(SYCTTBL macro PL1=F parameter)

Subsystem
Controller _
Optimized PL/1 subsystem using
———’l linkage convention defined by
the SCT (SYCTTBL macro PL1=0PT
parameter)
Figure 3-10. PL/1 Subsystem Interface Options
Subsystem Controller
PREPL1 PREPLI

| resident modules ¢

dynamically loaded ‘
PL1V modules PLIV
PL/1-F PL/1 Optimizer
Subsystem Subsystem

Figure 3-11. Dynamically Loaded PL/1 Subsystems

3-50

J

Chapter 3 Message Management

PREPLI is the interface module for PL/1 optimized subsystems. As
released, PREPLI specifies no options. PL/1 invocation options STAE,
SPIE and REPORT should be disabled for production. However, they may
be specified by changing the PREPLI macro coded within the member
PREPLI, then reassembling PREPLI. The Intercomm System Manager may
provide an alternate PREPLI module for testing, specifying some or all
of the above options. As with subsystems compiled by the F-compiler,
each thread is a separate instance of the PL/l1l environment. Since PL/1

STAE and SPIE can be suppressed by invocation options, Intercomm STAE
and SPIE will remain effective.

Another option available to optimizer users is preallocated ISA,
which allows PREPLI to allocate the ISA from Intercomm storage, based
on the specified size on the SPAC parameter of the SYCTTBL macro, and
to pass it to the subsystem. This makes clean abnormal thread
termination possible where the ERROR condition is not raised.

The subroutine interface program PMIPL1 must be used.. When
calling non-PL/1 subroutines, it will reformat the parameter 1list to
pass data addresses. Subroutines are referenced by specifying the
offset into the REENTSBS table as the first parameter. The offsets are
defined for PL/1 in the copy member PENTRY. If a subroutine not
currently represented in REENTSBS is called, both tables must be
updated. When coding user entries in REENTSBS, PMIPL1 assumes all
parameters are passed in character format (with the exception of
MSGCOL, PAGE and CONVERSE). This method can be bypassed when using the
optimizer.

For optimizing compiler users, PMIPL1 functions can be achieved
for Assembler Language subroutines by copying the member PLIENTRY into
the subsystem, or by declaring the subroutine, for example, COBPUT, as

DCL COBPUT ENTRY OPTIONS (ASM INTER)
and calling, in the usual PL/1 fashion:
CALL COBPUT (message, return-code)

Dynamically loaded PL/1 subsystems must be linkedited so that the
load module, specified by the SYCTTBL macro LOADNAM parameter, contains
the address table PL1V (for F subsystems) or PLIV (for Optimizer
subsystems). PL1V or PLIV must be specified as the load module entry
point via a linkage editor ENTRY statement.

Additional compiler-dependent linkedit considerations are:

@ PL/1(F)

The address table PL1V must be first in the module so that
the start of all pseudo-register vectors have the same
format. Also, PL1V must be included during the resident
linkedit before all PL/1 modules, so that the order of
pseudo-register vectors match those of the dynamically loaded
modules. IHESAPA and IHESIZE must be included in every
dynamically loaded subsy%;%ﬁ.

Chapter 3 Message Management

® PL/1 (Optimizer)

There are no special ordering requirements for either
dynamically loaded subsystems or the resident linkedit. This
gimplification is possible because the library does not use
pseudo-registers, as does the F implementation.

In the PL/1 subsystem, the procedure given control by Intercomm
must specify OPTIONS(MAIN,REENTRANT), or OPTIONS(MAIN), if
nonreentrant. OPTIONS(MAIN) is used to get the true subsystem entry
point in Csect IHEMAIN(F) or PLIMAIN(OPT). Since resident or overlay
subsystems use the SBSP parameter on the SYCTTBL macro for this
purpose, for them OPTIONS(MAIN) is not needed but will be accepted.

The subsystem should avoid unnecessary data conversion to keep
PL/1 library routines called by the subsystem to a minimum. If Dynamic
Linkedit is used, some or all of the PL/1 library subroutines may be
included in the resident portion of Intercomm, eliminating their
duplication in each dynamically loaded subsystem that references them.

PL/1 1library subroutines eligible for residency are those
normally included via automatic library call (control section name,
preceded by an asterisk in the link map listing). Either specify the
NCAL linkage editor option to remove all control sections, or prevent
automatic call of selected control sections (see below) via 1linkage
editor LIBRARY statements. Use of LIBRARY statements to exclude a
standard set of commonly used routines allows the automatiec library
call to include infrequently used modules when referenced, eliminating
special programmer effort once a set of resident routines have been
selected by examining typical linkedits.

3.10.4 PL/1 Subsystem Linkedit Considerations

PL/1 subsystems necessitate inclusion in the Intercomm 1linkedit
of the Intercomm Abend Intercept Routines SPIEEXIT and STAEEXIT, as
well as the PL/1 interface routines PMIPL1, COBPUT, PREPL1 and PREPLI,
as required. Additionally, the common subroutines IHEMAIN, IHESAPA,
IHELTTA, IHESADA, and IHESAFA should be resident. Coding PL1=F or OPT
on the ICOMLINK macro automatically generates the necessary include
statements for the above (except COBPUT).

When using the PL/1 optimizing compiler, the transient library
modules are loaded into dynamic storage as required. With a relatively
high message volume for Pl/1 subsystems, a high overhead can be
encountered while loading and deleting the transient library modules.
To ease this problem, load some of the most used modules at startup
time (via USRSTRT1), such as IBMBPGRA, IBMBPIIA and IBMBPITA, or make
them resident in the Intercomm linkedit.

3-52

Chapter 3 Message Management

The Optimizer uses three transient modules which are loaded and
deleted for each thread. They are IBMBPII, initialization; IBMBPIT,
termination; and either IBMBPGR, transient library storage management,
or IBMBPIR, resident library storage management with REPORT. To keep
them resident, thereby greatly improving response time, the USRSTRT1
user exit routine could also load them at startup and a USRCLSE1 user
exit routine could be written to delete them at closedown.

3.10.5 FORTRAN Subsystems

Application subsystems coded in the FORTRAN language are executed
under Intercomm in the same manner as nonreentrant COBOL subsystems.
They are single-threaded. Their SYCTTBL macros should specify
LANG=FORT and MNCL=1. They must be linkedited with compiler-dependent
subroutines; see the description of the FORTLINK procedure in Chapter 2.

3.1 SUBROUTINE INTERFACES AND LINKEDIT CONSIDERATIONS

The following subsection describes the use of user-coded
subroutines with user-coded subsystems and their residency and linkedit
considerations. For further details, see the applicable Programmers

Guide.

3.11.1 Resident Subroutines

Resident and Overlay A Assembler Language subsystems may call
resident Assembler subroutines wusing standard 1linkage conventions.
Dynamically loaded Assembler Language subsystems must either be
dynamically 1linkedited with the resident subroutines, or wuse the
MODCNIRL macro to access user subroutines previously defined via the
SUBMODS macro in REENTSBS; Intercomm routines may be accessed via VCONs
in the SPALIST.

Resident, Overlay A and dynamically loaded COBOL and PL/1
subsystems must wuse Intercomm interfaces to all noncompiler
subroutines. The 1interface routines are COBREENT and PMIPL1,
respectively. The user subroutines are defined to Intercomm via the
SUBMODS macro in the REENTSBS table. Copy code tables to define
subroutine codes to match entries in REENTSBS are ICOMSBS (COBOL) and
PENTRY (PL/1). PL/1-Optimizer subsystems may optionally call resident
Assembler Language subroutines directly by adding the name to the
PLIENTRY table included in the program; however, this option cannot be
used for dynamically loaded subsystems unless dynamically linkedited.

3-53

Chapter 3 Message Management

A maximum of 350 user SUBMODS entries using the NAME parameter
(resident), or LNAME and RES=LINKEDIT or RES=BOTH (default) parameters,
may be defined (due to an Assembler restriction on ESD entries). An
additional 49 are reserved for Intercomm service routine definitions.
However, additional entries may be defined using the LNAME and
RES=LOADMOD parameters of the SUBMODS macro. See also the PERMRES
parameter, as described in Basic System Macros.

Note the following language interface considerations:

® Reentrant COBOL subsystems must use the Intercomm interface
COBREENT to call subroutines, and may only call reentrant or
reusable COBOL and Assembler Language subroutines.

@ Reentrant COBOL subroutines may be called only by reentrant
COBOL subroutines and subsystems which wuse the COBREENT
interface.

9 PL/1 subroutines may not be called by Assembler or COBOL
subroutines or subsystems due to language differences in
parameter list construction.

@ Reentrant PL/1 subsystems must use the Intercomm interface
PMIPL1 to call PL/1 subroutines; COBOL subroutines may not be
called. See the discussion of Resident Subroutines (above)
for Assembler subroutine interface considerations.

® Nonreentrant COBOL and PL/1 subsystems may call only
nonreentrant or reusable subroutines and reentrant Assembler
subroutines. Nonreentrant Assembler subsystems and
subroutines may call reentrant Assembler subroutines if
standard linkage conventions are used.

3.11.2 Subroutines Linked with Dynamically Loaded Subsystems

Use of this convention is not recommended under Intercomm as it
impacts reentrancy and multithreading, in addition to adding to the
size of the load module.

3.11.3 Dynamically Loaded Subroutines

Intercomm subsystems have the ability to link to dynamically
loaded subroutines. For all languages, these subroutines must be
defined in REENTSBS using the SUBMODS macro. The loaded subroutines
will be dynamically linkedited at startup time to resolve any unresolved
VCONs and then loaded as required when accessed by a subsystem. A BLDL
list for each subroutine may optionally be maintained for efficiency.
Loaded subroutines will be automatically deleted from storage after a
user-specified period of inactivity. Optionally, a subroutine can be
loaded at startup and then made resident for the duration of the
Intercomm execution (see PERMRES parameter of the SUBMODS macro).

3-54

Chapter 3 Message Management

Subroutines may be dynamically loaded during testing and then
later be made resident or defined for the subroutine overlay region
with no changes to the application. New versions of dynamically loaded
subroutines can be obtained during Intercomm execution by use of the
LOAD system control command (except if made resident at startup).

Intercomm imposes no size restriction for these subroutines.
Dynamic subroutine loading is dependent upon storage availability.
Loading is overlapped through the use of subtasking. Subroutines which
issue INTENQ/DEQ or process file I1/0, which might cause a time-out,
should not be dynamically loadable, unless made resident at startup.

3.11.3.1 Application Programming Conventions

Language~dependent considerations for application subsystem
coding are as follows:

® Reentrant COBOL subsystems use COBREENT and REENTSBS in the
standard manner; dynamic load is transparent to the
application program. COBOL subroutines must be coded and
defined to Intercomm as reentrant.

® PL/1 subsystems must call PMIPL1 in the standard manner (the
ENTRY option of the Optimizer is not allowed for
dynamic-loaded subroutine reference); dynamic load 1is
transparent to the application program. Dynamically loaded
subroutines written in PL/1 require special linkedit
considerations. In order to maintain the PL/1 environment
constructed for the calling subsystem, the PL/1
initialization routines generated by the compiler must be
removed, and the subroutine entry point must be explicitly
sSpecified. This can be accomplished by the following
linkedit control cards for the subroutine (with the name
SUBROUT) :

REPLACE PLIMAIN

REPLACE PLISTART
INCLUDE SYSLIB(SUBROUT)
ENTRY SUBROUT

NAME SUBROUT(R)

® Assembler subsystems must issue a MODCNTRL macro to invoke
dynamic¢ subroutine load.

Nonreentrant COBOL and FORTRAN subsystems may not use the Dynamic

Load facility directly. The user may provide a reentrant interface
routine in Assembler Language for those subsystems.

3-55

Chapter 3 Message Management

3.11.3.2 Implementation

The macro SUBMODS is coded in REENTSBS and defines the name and
characteristies of the subroutine (deletion time, residency, etc.) and
may specify a BLDL list (see Basic System Macros). A separate Csect,
DYNLSUBS, is generated to contain control data for dynamically loaded
subroutines. The modules PMIDLOAD, DYNLLOAD, and REENTSBS must be
included in the Intercomm linkedit. Coding DYNLOAD=YES and DYNLINK=YES
on the ICOMLINK macro will generate the necessary INCLUDE statements.
See the description of dynamically loaded subsystems and the Dynamic
Linkedit facility for further installation details.

3.11.4 Transient Subroutine Overlay Region (TRAN)

The Intercomm Transient Subroutine Overlay Region allows rarely
used Intercomm and Assembler Language application subroutines (which
may give up control) to be linkedited as separate overlay segments in
an overlay region reserved for this purpose. This can significantly
reduce the resident storage requirements of such Intercomm and
application subroutines.

To be eligible for the transient area, a subroutine and its
callers must follow several rules:

@® All callers of the subroutine in the transient area must call
the transient area using the CALLOVLY macro.

-] The subroutine in the transient area must, in all cases,
return eventually to the calling program. It cannot branch
away forever into some other module. It must return.

d Usage of the transient area cannot be nested; that 1s, no
subroutine to be used in the transient area can CALLOVLY
another subroutine which 1is also in the transient area. It
can, however, CALL resident subroutines. (See Figure 3-12.)

- The subroutine in the transient area must be serially
reuseable or reentrant, and must follow standard 1linkage
conventions.

® The caller must be an Assembler Language program. If the
user wishes to use a high-level language and call a transient
subroutine, he must do the following:

1. Write a reentrant Assembler Language interface, using
standard linkage conventions, to issue the CALLOVLY for
the high-level program, and define it in REENTSBS.

2. Parameters to be passed to the subroutine in the
transient area must initially be passed to the Assembler
Language interface by the high-level language. (See
Figure 3-13.)

3-56

Chapter 3

Message Management

3. The high-level language caller of the Assembler Language

interface must be defined as reentrant,

that is, provide

save area chaining.

o The
its

subroutines.
[t 443t I 33 33 4 S 4+ S 4 S 4 S T S P F L S I A S E E S F S F E P F P T 4 S ¥+ * T F A F 5 43
Allowed T Not Allowed
e
CALLOVLY BSUB CALLOVLY BSUB
END END
- msws csecr | eses cseer |
CALL DSUB CALLOVLY CSUB
END END

subroutine in the transient area must invariably complete
processing within five minutes.
fixed by the Intercomm transient subroutine handler.
this time,

The time-out interval is
After

it will be subject to being overlaid by other

Figure 3-12.

Illustration of Nested CALLOVLY Coding Conventions

CSUBI

CALL 'OOBREENT' USING CSUBI-code, Parameter-A, Parameter-B
% REGISTER ONE CONTAINS THE COBOL PARAMETER LIST ADDRESS
CSECT
USING % 12
STM 14,12,12(13)
LR 12,15
LR 2,1
STORAGE ADDR=8(13),LEN=72,RENT=NO
L 3,8(13)
ST 13,4(3)
LR 13,3
LR 1,2
CALLOVLY CSUB, (1)
LR 1,13
L 13,4(13)
STORFREE LEN=72,ADDR=(1)
LM 14,12,12(13)
BR 14
END

Figure 3-13.

Using CALLOVLY in an Assembler Language Interface

for a High-Level Language Program

3-57

Chapter 3 Message Management

The set of Linkage Editor control statements i1llustrated below
would result in a root section containing the resident subsystems PGM1
and P@12, and in the Intercomm transient area, the subroutines SUB1,
SUB2, SUB3 and SUB4. The transient subroutine OVERLAY and INSERT
statements must be placed in the Intercomm linkedit after the Intercomm
OVERLAY TRAN(REGION) statement.

INCLUDE SYSLIB(PGM1,PGM2)
INCLUDE SYSLIB(SUB1,SUB2,SUB3, SUBY)

OVERLAY TRAN(REGION)

. Intercomm transient subroutines
OVERLAY TRAN

INSERT SUB1
OVERLAY TRAN

INSERT SUB2
OVERLAY TRAN

INSERT SUB3
OVERLAY TRAN

INSERT SUB4

PMIOVLAY and LOADOVLY must be included in the Intercomm linkedit.
The appropriate control cards for these modules and applicable Intercomm
routines in the Transient Subroutine Overlay Region may be generated

via the ICOMLINK macro specifying TRANS=zYES and requires coding of
OVLYSTR=YES,

Since the 0S linkage editor cannot create more than four overlay
regions, the use of one of them as a transient area will restrict the
application subsystems to the use of Intercomm Overlay Areas A, B and C.

Since the transient area is a serially reuseable resource, care
must be taken not to use it for subroutines that, due to frequency of
usage or duration of processing, will create a decrease in message
throughput or delay system control functions.

3.11.5 Subroutine Overlay Region (SUB)

Intercomm provides an overlay region dedicated to rarely used
Assembler Language subroutines which follow normal linkage conventions
and never relinquish control to the Dispatcher (no I1/0, no time delays,
etc.). Some Intercomm routines are defined for this overlay region and
thus accomplish a saving of 6-9K. ICOMLINX parameters are the same as
for Overlay Region TRAN.

3-58

Chapter 3 Message Management

OVERLAY and INSERT statements, for user subroutines eligible for
this area, must be placed in the Intercomm linkedit after the Intercomm
OVERLAY SUB(REGION) statement, and INCLUDE statements must be added as
described above for the TRAN area. Use of this area in addition to the
TRAN area will restrict application subsystems to Overlay A and B only.

3.12 GENERALIZED SUBTASKING

The concept of using 0S subtasks to perform operations containing
inherent WAITs, (for example, GET, OPEN, CLOSE, etc.) has been
generalized. At startup time the generalized subtasking facility will
create a pool of general purpose subtasks which can thereafter be used
to perform functions of this type. This facility, which is used by
Intercomm system routines, is also available for use by Assembler-coded
subsystems or subroutines. A SUBTASK macro is coded to specify a
subroutine which is to receive control under a general subtask. The
subroutine executes under the subtask, then returns control to the
original routine at the next sequential instruction after the SUBTASK
macro. The linkage between the issuer of the SUBTASK macro and the
subroutine is similar to a CALL; all registers must be preserved and
restored as they would be during a CALL.

The code executed as the subtask cannot relinquish control to any
Intercomm service routines such as the Dispatcher, File Handler, etec.
nor issue an OS WAIT macro. Execution of the subtask 1logiec 1is
synchronous with respect to the thread issuing the SUBTASK macro. The
calling routine may be resident or dynamically loadable, but may not
execute in an overlay area. The TCTIV for the originating subsystem
must be generous to prevent unnecessary time-outs.

3.12.1 Special Subtasks

Special subtasks are subtasks from the general pool which are
reserved by Intercomm with a unique identification number. Special
subtasks are defined to allow exclusive use of a subroutine. This is
useful for subtasking subroutines which may only be executed serially,
that is, nonreentrant code.

The first issuance of a SUBTASK macro with an ID number specified
via the TASKNUM parameter causes Intercomm to fetch a subtask from the
general pool, assign the ID number to it and place its address in the
special subtask table. Control is then passed to the subroutine to
execute under that subtask. For every subsequent SUBTASK macro with
the same ID specified, Intercomm retrieves the source subtask and
determines whether it is active. If it is active, an INTWAIT is
performed until the subtask is free. When it is free, or if it was
inactive, control is passed to the subroutine to execute under the
subtask, and that subtask is marked active. The ID assigned to the
subtask is unique and remains in effect until closedown.

3-59

Chapter 3 Message Management

The difference between a general subtask and a special subtask is
that when a general subtask is requested (no ID is provided), an
inactive subtask is chosen at random from the general pool and control
is passed to the subroutine to execute under that subtask. If a
special subtask is requested (an ID is provided with the SUBTASK
macro), the subtask to which the ID is assigned is located, and control
is passed to the subroutine only if the subtask is inactive, even
though there may be other inactive general or special subtasks. This
method forces serial reusability for the special subtasks.

If a subroutine is requested under a general subtask while it is
executing under a special subtask, control will be passed to the
subroutine and it will execute concurrently under both the general and
special subtasks. In addition, if a subroutine is executing under one
special subtask and that subroutine is requested for execution under a
different special subtask (different ID number), control will be passed
only if the second subtask is inactive. Intercomm can only determine
whether a special subtask is active or free; it cannot determine
whether the subroutine is active, nor can it associate special subtasks
with subroutines. Thus, to prevent concurrent use of the subroutine by
multiple requests, a subroutine should always be executed under the
same special subtask ID.

As with general subtasks, special subtasks should not relinquish

control to Intercomm, and they may not issue a WAIT or cause a program
check. Intercomm does not use special subtasks.

3.12.2 Implementation

The number of general and special subtasks in the system is

specified to Intercomm via the TASKNUM parameter of the SPALIST macro.
If the number of special subtasks in TASKNUM is zero, special subtasks
will not be allowed. The module ICOMTASK must be included in the
linkedit if general and/or special subtasks are in use.

To execute a subroutine under a general subtask, code the SUBTASK
macro in-line and omit the TASKNUM parameter. To execute a subroutine
under a special subtask, code the SUBTASK macro in-line, and code the
TASKNUM parameter with a valid subtask ID number (within the range
specified for the SPALIST TASKNUM parameter).

The subroutine must be coded in Assembler and must be resident.
Refer to Basic System Macros for coding specifications of the SPALIST
TASKNUM parameter and the SUBTASK macro.

3-60

Chapter 3 Message Management

3.13 TIME CONTROLLED MESSAGE PROCESSING

The Subsystem Controller automatically generates messages based
on the time of day, as dictated by the user's Time Zone Table. The
user specifies through the parameters supplied in the table what
Verb/Message Identifier is to be defined by the Subsystem Controller as
part of the constructed message header. The message 1s sent, through
Message Collection, to the specified subsystem. The message 1is
processed at the time of day specified by the user. The format of the
message produced by Intercomm is as follows:

® Byte 1-42: Standard Intercomm message header with:

— MSGHSSCH set to binary zero, MSGHSSC to C'M!'

-- MSGHRSC and MSGHRSCH fields set to the values supplied by
the user

-- MSGHVMI field set to the value specified by the user
Byte U43: Item Code=1

Byte 44: Length=1

Byte 45: Time Zone Code Value (supplied by user)

Byte U46: Item Code=2

Byte 47: Length=2

O ¢ 6 o o o

Byte 48-49: Time to allow for processing of this message
(specified by the user)

The Time Zone Table is constructed by coding one TMZONE macro for
each message the user wishes to be automatically started by Intercomm
based on the time of day. The TMZONE macros must be coded in a Csect
named PMITIMTB. The end of the table must be delineated by the PMISTOP
macro, which indicates the end-of-table condition at execution time.
The receiving subsystem can further trigger later 1terations of the
same message via the Dispatcher. Such a subsystem might be used to:

©® queue System Control Command messages
@® start a remote input terminal or line
@ generate a FECMDDQ for printer output

The module TRIGGER must be included as a resident program in
addition to the resident Time Zone Table.

3-61

Chapter 3 Message Management

Following is a sample Time Zone Table:

PMITIMTB CSECT
MESSAGE TO SUBSYSTEM AA AT NOON:

TMZONE SCHT=1200,PGID=A,PGIH=A, PVMI=N,TMZC=Z
*

MESSAGE TO SUBSYSTEM XY AT 4:00 PM:
TMZONE SCHT=1600,PGID=Y,PGIH=X,PVMI=X,TMZC=Y

END OF TABLE
PMISTOP
END

3-62

Chapter 4

TASK MANAGEMENT

4.1 DISPATCHER AND RELATED SERVICE ROUTINES

The Intercomm multitasking Dispatcher (IJKDSPO1) controls all
scheduling of task execution in the Intercomm environment, replacing
the Operating System multitasking facility. All system programs (Front
End, Subsystem Controller, File Handler, ete.) effect overlap of
operation, interprogram communication and scheduling via the Dispatcher.

4,2 DISPATCHER QUEUES

The Dispatcher controls operation via task queues of three
different types:

® Execution Queues

Tasks which are executable . based upon their order of
readiness within order of priority

® Event Queues

Tasks which will become executable upon completion of an
event, indicated via the posting of an Event Control Block;
whether by the operating system (WAIT queue) or an internal
posting (IPOST queue--see DISPATCH macro)

® Time Queue

Tasks which will become executable at a particular time of
day, or on completion of a timed wait.

Tasks are created via the DISPATCH or INTWAIT macros, described
in Basic System Macros, and the Assembler Language Programmer's Guide.

4,2.1 Defining the Number of Task Queue Elements

The Dispatcher contains assembled space for task queue elements
allowing up to 120 concurrent tasks (executable, event or
time-dependent). Task queue elements not in use are members of a free
queue element pool. Except in cases of very high message volume, this
number of Qqueue elements is satisfactory. The number of queue elements
is a global specification:

&NUMWQES within INTGLOBE and SETGLOBE

Chapter 4 Task Management

To increase the number of queue elements, update the global setting in
SETGLOBE and reassemble and link IJKDSP01. If the free queue is empty
when a new task element is to be created, Intercomm abends with a user
code 901 (see IJKTRACE description, below). To estimate the number of
WQEs necessary for a high-volume system, add the number of SYCTTBLs
generated for Front End processing to the number of BLINE macros and/or
VTAM I/0s (RCVNO and RCVRSP on VCT macro), and the total MNCL across
all subsystem SYCTTBLs, plus 50 for Intercomm processing.

4,2.2 IJKPRINT -Output to SYSPRINT

This Dispatcher-related service routine calls the PUT entry point
in the File Handler to output a print line image whose address was
passed to IJKPRINT in register 1. Print 1line images must be IBM
standard format V (variable-length) records, with an ASA printer
spacing control character as the first text byte. (Maximum logical
record length is that defined in the JCL for SYSPRINT.)

A count is maintained of the number of lines printed on the text
page; when the count exceeds sixty 1lines, the next 1line output will
specify a skip to head of form ¢ASA control character '1'), and the
line count will be reset.

Output is directed to the file with ddname SYSPRINT. If the file

is undefined or incorrectly defined, no output is produced and no
diagnostic indication is given.

The DD statement for SYSPRINT must define a DCB with DSORG=PS,
RECFM=VA, or VBA, LRECL=137 and BLKSIZE=141 or a multiple of 137 plus 4.

Any program may, if desired, call upon this routine to perform

routing of similarly formatted records to SYSPRINT. Control i1is not
released to the Dispatcher during IJKPRINT processing.

4,2.3 IJKTRACE-List Dispatcher Queues

This service routine constructs print line images producing a
formatted display of all Dispatcher task queues., It 1s called
automatically whenever the program check handler (SPIESNAP) is entered
for a snap 126, and by RMPURGE when purging a subsystem thread with
outstanding resources not released by that thread. It is also called
by the Subsystem Controller (SYCTUOO) when a subsystem times out (snap
118 produced), by STAZEXIT (for snaps 121 and 122), and by VTERRMOD for
VTAM error recovery (snap 63). It may also be called for diagnostic
purposes by any other program. The maximum 1line 1length 1is 120
characters, giving a maximum LRECL of 125. Successful execution of
this program also requires inclusion of IJKCESD and IJKWHOIT in the
Intercomm linkedit (see sections 4.2.4 and U4.2.5). IJKTRACE calls
IJKPRINT to output the print line images to SYSPRINT (see above). For
efficiency, the SYSPRINT data set should be blocked.

4.2

Chapter U4 Task Management

Each print 1line image is passed to the IJKPRINT routine for
output to SYSPRINT. Fields are printed in hexadecimal format, unless

otherwise noted. The following are detailed explanations of the
elements of the listing:

® Heading Line 1--General information giving:

-- The Julian date and time (decimal) at entry to the
routine, as obtained from the operating system clock:

IJKTRACE ENTERED DATE yy.ddd TIME hh.mm.ss.

-- The byte specifying the priority and overlay group of the
last program path given control by the Dispatcher:

PRI/OVLY xx

-- The byte specified by the last executed SETOVLY macro
instruction (00 if no overlay structure is used):

SETOVLY xx
-- The caller (Csect name and displacement) of IJKTRACE:
CALLED BY name+displacement
® Heading Line 2--Defines the list type, locations and activity:

-- The Dispatcher list name whose task elements, if any, are
printed below:

aaaaa LIST

In place of 'aaaaa' will appear the 1list type: FREE,
WAIT, IPOST, TIME or EXEC.

- The FREE 1list contains task elements that are unused or
that represent program paths already either given control
or cancelled, in the order in which these events occurred.
The oldest (first) entry in the FREE list i1s reused when
required for a new program path. The newest (last) entry
is for the most recently dispatched task. Only the last
200 entries are printed. To print more or less, modify
the local global &FQENUM in IJKTRACE.

- The WAIT 1list contains task elements for program paths
awaiting the posting of an Event Control Block (ECB) by
Intercomm or the operating system. Task elements appear
in the order in which the requests were made.

- The IPOST 1list contains elements for program paths
awaiting the posting of an ECB by Intercomm via an
internal INTPOST request. Task elements in this list are
in the order in which the requests were made.

4-3

Chapter 4

Task Management

- The TIME list contains task elements for program paths to
be resumed at a given real time; the list is maintained
in ascending real time sequence, with first-in first-out
sequence for equal real time values.

- One EXEC (execution) 1list for each priority level
(maximum=4) in the system contains task elements
representing program paths- ready to be given control, in
the order that readiness was determined.

-- The addresses of the 1list table entry, the first task
element, and the 1last task element in the 1list are
displayed. Where a list is empty (zero count), all three
addresses are equal:

wQT XXXXXX FIRST XXXXXX LAST XXXXX

— The decimal count of task elements currently in the list,
and the highest or lowest count value that has occurred
since processing began (highest count for all but the
FREE list):

COUNT aaaa HI/LO aaaa

NOTE: if the free queue LO value is below 10, the total
number of task queue elements should be increased
(see Section 4.2.1).

Heading Line 3--Provides task element column descriptors if
the list contains any task elements (nonzero count). This is
followed by task element fields, one task element per 1line.
The column headings are:

-- WQE--Address of the task element.

-- FLAGS--Letters corresponding to flag bits in the task
element, as follows:

D--Program path has been given control (dispatched).
C--Program path has been cancelled.

E--Task element has been placed on execute list.
P--Task element is (has been) in the IPOST list.
I--WAIT 1list element is internal ECB.

T--Task element is (has been) in the TIME list.
W--Task element is (has been) in the WAIT list.

NOTE : where an 1invalid combination of flags has been
detected, an asterisk (®*) precedes the flags field.
L.y

J

Chapter 4

Task Management

PRI/OVL--The priority and overlay-group portions of the
priority/overlay byte specified in the DISPATCH or
INTWAIT macro instruction; the sum of these values is the
value of the PRI/OVL field.

ECB/T--The ECB address or real time, where applicable. A
real time is a 24-bit value with the least significant
bit representing 1/37.5 of one second in this display. A
description of converting timer units is provided in the
chapter on "General Debugging Techniques" in Messages and

Codes.

This field is not printed for task elements that have
been in neither a WAIT, nor the TIME 1list, and thus may
be missing where an ECB was posted (internally or
externally) prior to the issuance of wait request.

ENTRY PT—Address for transfer of control to resume the
program path; the high-order (leftmost) byte contains the
thread number in hexadecimal (if nonzero, subsystem
processing created the task element).

PARAMETER--Value to be passed to program in register 1.

(ECB)--Value in ECB if the FLAGS field contains a W; it
is the value before posting if the task element is in an
event 1list (WAIT, IPOST).

TIME--for task element that is (was) in time list if the
FLAGS field contains a T, the time it was (will be)
dispatched or, if it was cancelled, the time it would
have timed out.

CSECT--the Csect (+ displacement if any), that was (will
be) given control of this task element (see ENTRY PT
above). If the Csect name is not easily recognizable,
refer to the Csect/Module name correspondence table for
Intercomm system modules in Figure 4-1.

ENTRY--the entry point within the Csect at which this
Csect was (will be) entered, if known (defined by an
ENTRY statement within the module).

SUBSYS--if CSECT is SYCTRL (no ENTRY), or the thread is

not zero (and the task element not on the Free Q); the
subsystem code of the subsystem processing under this
task element.

SUB NAME--if CSECT is SYCTRL (no ENTRY), or the thread is
not zero (and the task element not on the Free Q); the
name of the subsystem processing under task element.

An example of IJKTRACE output is shown in Figure 4-2.

4-5

Chapter 4

PMILINK2

Task Management

e e o e e e e = — = = — e — =y
e e P |

Function
F- - S-S oS- S-S oS- oS- o= C-CoCoCoCo=-=D=D=z==z==z=z==z=z====-73
Subsystem Controller
File Handler Initialization J
File Handler Processing
______________________________________ .

LINKAGE macro subroutine

Figure 4-1.

IJKTRACE - Csect/Module Name Correspondence Table

Task Management

Chapter U4

JWYN dNS

sAsans

19un4 YucleTULIDAS
DOONTHWI Ve 00NINKRD
CiuleNTII T

0SVeWISHY 1y

o1dVYI¥AD YGL 2+ TONOW IX]
H6L oWl SHY 1Y

Y6beHl SHY LY

05Us000H WY

213+104W

0GYeWISWY 1O

9C seW [SHY 11U

B66+HISHY 1A

GhusWISHY AN

HobeWISHY 1Y

B6ueWISHY 18

00ONIN M YYeNIHW
J13+10KH78

USVYeWISRY LU

Ivue SYi13SH

0GVeWISHY 18

93+ ¥IAL YO 49

Z23d1eNIHE

0uVeWISHY LU

UIdYIHAD 9G22+10LOWIN]
0IdYIHAY 9G12+1ONOWiX]
[JCTATTYY 9G4 2+ IONOWAX]
01dVIHAOD 9612+ 10NOWAXI
01dvI4AL 9G22+TONOWAXI
01dYIYAO 9622+ TONOWAXI
01dvIHAO 9G24 2+ LONOWAXT
MIELALTY 9G2 2+ TONOWAX]
0TdVYIYAO 9642+ 1ONOW4XI
0IdvIY4AQ 9622+ 1ONOWIXI
01dY14AD 9522+ TONORAX]
01dvYIHAO 9GL2+TONOWIX]
01dviHdAL 9622+ TONOWIKI
CIET ALTY 9G22+T0ONOWSX]
Ul1dVIYA0 9G22+TONOWAXI
01dvY4AOD 9622+ 1ONOW XL
OIdVIHA0 9G12eTUNOWAXI
9LAeWISHYILIO

0Idv YA 9522+ TONOH 4X I
JL43+JUH Y

g66+NISHYLA

oGV eWISHY 1Y

Oldv WHAD 9622+ luNONIXI
148103901

19804 Ye2Te1ULIAS
0ldv A0 9G12¢TONOWAXI
01dViuAD 9GLCe TONOW IXL
Oldv14AD 9612« IGNORAXI
Jound CITA CR FTRY Y
J9veuIdUNT W4
294 +0IAAONT Hd

AdIN] 1228

J0CT+JHLIAS AH QI11WVD

s9°cliatinl

U guigeidl

oyecrisgegl
zLeetriseial

elegriscsel
Lg°f1:6c:91
9L°10:6c201
Lserrsegiat
Lscrrisesyl
Lyct12Gci81

96°0¥:6¢301

coc0tsGgcal
ggrolesesat

vecrorzsec el

120t sgivl

[S RIS A
d0*0lssci0l

Za*6viGCiyl

If°60:CveBI

€9°602bs il

ve°e0:68:81
Wi}

€600 OV/IN

v0 ATAOL IS

(dd3)

¥G00 INNUD

0U ATAOZL Hd

HYO00Y104Q 9Lcivion FRIN X X4
0vJ26100 vidieloo

ougasiao ¢914<1C0 giveel
voveetao Cs3 FIA AN Ydav9¢
08935100 426ov1i0N 838261
¥%329100 0dxJcli0a Ivee9¢
8f0ly100 o8ydcion Hvev9e
uLLeST100 ogaéciIga Jvgacl
J1096100 Jesigtoo overcl
ovaLzioo 8cvliI00 L6609C
eleJ9100 4162¢100 age v9e
¥ ed9100 0BxJ2100 Ld6v92
¥64¥9100 0uedZloo0 0d6vY<e
HSGvIl00 08€£22100 046492
81gs9100 08522100 JLev92
03ueetoo ¥09.42100

uly9stoo J2glIfT100 ['RUTRA
o3¢L2t00 8x¥J2100 ¥66492
b 4¥94 100 3s2vEl00 0Joycl
0J0d2700 gC¥22100 §6649¢
¥229%100 FLILTI00 266492
¥3196100 ¢934¢100 0642l
0sL4L2100 gxed2M00 Ivee9e
BY93S100 3360vIi00 0J0611
8499135100 3J36Jvi00 020611
88935100 3352Jvio0 0Jowll
88934100 438Jvio00 0J0+sITI
H8915100 329Jvi00 0J0¢11
4945100 3ISIvIve 0204611
88936100 306ovi00 glovll
88935100 3362vi00 0Ja6ll
84934100 3280vio0 ouoell
gu9isloo 326IvI00 0dowvll
88945100 4352Jvi00 0d061I1
849135100 3J3SJvI00 gJovll
Hu945100 32%I0vI00 020411
49136100 326Jvioo0 0J0+%11l
Au93s100 3124%Jv1i00 0dovll
BU9 1%100 43GQJviICO 020611
8v¥91S100 43G6Ivio00 0J0¢ll
¢4449100 iledll00 avev9¢
848935100 3263v100 f862S1
01u9sl00 destnton 030¢21
80bu9100 0ugJcl00 bv6b9¢
01042100 gLelcioo Bv6v9¢
By946100 3J)sdvloo Bdeesl
0deéduloo g9devl 00

uvio9tioo 9fCLvi00 114692
duy9349100 42G6Jvie0 Ug6dsl
gu91s100 33GQIviv0 CRY Y4
odaJuloo 426I2vIiv0 gfe6csl
0vd 45000 ecLvIOQ Ul 489¢
DRV RN 320SVY1s0 45299¢
00uUdutEST BYAVEN A B L9399¢
H1lliWvavVd id AdlN] 17424

owvZel 15V

vicug®dl

O4d6cel 1SHIL4

wlil

9L0°€8 Jlvu

00 00 114 owveel
00 0 EY) ov9eel
00 U4 n1d 03deel
0v vy 134 olu2el
00 Ou LR Ti] 026l
00 Uu 134 0JuZwl
00 08 110 0362e1
00 0Ou nlu 0€d2¢vl
00 0y n3a orsevl
00 Ov 11a DJb2Wl
00 o4 110 ocdeel
00 0v 130 oLvewl
00 09 1130 0J22vl1
00 04y 134 0sd2el
00 Ou 130 042¢hl1
00 Uy 3q oouzZel
00 0y nig 01GCwl
00 Om 130 0ovZel
00 09 AlaQ 0ledyl
00 0d 1130 ovveel
00 oW 130 0ca2zel
00 089 nay 0G692e1
00 0w 130 0ol
00 0@ nia oagvewel
00 08 A 3d 0dsZel
00 08 n3aQ 0092wl
00 0w nio oaceel
00 o4 nia ovuenl
00 08 nig 0c82vl
00 v nia 09veel
00 us® nia oideel
00 09 nau D0e2vl
00 08 nia orgeel
00 o9 LRI 0uSeHhI
00 0w A0 (FE:T1 2
00 08 A3ao 99G2e1
00 04y (R]4] oveeel
00 0w nla 086261
00 04 M4Q 02621
00 0w nly ovdeel
00 08 130 oHveel
00 08 A3aQ ovueel
00 Uy Aia o3veel
00 ua 130 0982l
00 Ou 13a 0uGewl
00 00 nia 0392l
00 00 3a odeeel
00 a0 1) dvGeel
00 00 nla 02wl
00 09 ‘mnia 0veclel
00 00 L] 04621
00 00 1) 0 49¢vl
00 00 12 ou92el
00 00 12 04620l
AU [Y¥u Suvy ua
uev2el Lur 1S171 31d3

Q144N 1IVHLNNE

||ﬂtn‘\\\

J

Sample IJKTRACE Listing (Page 1 of 3)

Figure 4-2.

y-7

B,

Task Management

Chapter U

X13uNr T
A¥iINI

1no0aIsa
1107028y
10010288

9und

¥IVAQNVYH

G0ONIHTA
[TTLIERE
ANINY

11vAQd13

CLLE NI R
AdiNJ

YEGeT0dSANPrT
121380

YOLeUINWIIVA
ITIRTFEI]
Jolnvind
401NVIWd

S1SANI
Jlsdvaul
¥961Y102S9
¥96¥IQISH
Vv96¢v1QlSH
9y + AINWIW S Y
9621+ THLIAS
1d NI IHI

NZDe ISHIANOD

J0t1e022€1S 4L

CYC+INHINSY
cosle 10U 8
920T+WISHYLIO
9C el SHYLE
¥<E¢UVONINAG
9C 4eWISKHY LD
Bboed [SAVIQ
H66*WTSHY 18
9E dou I SHY LY
f6beWl SHYLY
B66eWiSHY LA
B66eWISHYLE
B6ueWISHYLE
daheWISHY 1A
B6u*HISHY 44
YWeNLHIE
YueNIHA
13380

044¢000HNWO
050*00UHNWD
0S8+000NKWY
058¢000HMY
BICeaNiSl nd
JAZeQ0WIDAND
3000 oW ISHY 14
VL veD00HWO
12180

9100 0/ 1M

¢000 01/14

wil

9200 01/1IH

toctossgiee
¥2°06:€Tlnl
(S0 R 114)
€9°605v5301
fo°geicaint
69°gsiesinl
c1°gGieeint
(1S AR L H]
Ge°60iT 0201
Te°Griasint
Glecosscsnl
19°05:2€381
66°2t31¢€:81
gl°geisciet
1S Y21 R1 A
geegcziesint
Gvc02Zisciol
Lge0eiscs 0l
G2*oticCiol
16°912a€281
12°9t:6L 28T
6L 21268301
9g L1801
£8°9ricczeal
v9°9liGgint
¥9°91:6801
9691688l
€9°Gli6Lidl
6v°SI268281
1e°graceinl
[g°Grsccanl
EL R DY

4€00 OV/IH

AWll

w700 01714

0000 1MMUD

0000 LINALD

(a3

(800 1NNUD

923

[€o68 INNUD

820l 150
o3LLection
' FRIVA &y
0oeoo00€0
00000000
89030500
¥9u30s00
¥9030500
(421

4000 iNiIWLI

ovieel As¥

J3vevl sVl Adveel LSHUIZ
0J%2e1 1S5¥1 006cel 1S4
19105400 eY 410100
YJilIWvaVd id ANING 17823
owueel 1sv) o3gZel LASuI
viLgstoo ved02Ziso LEIVIT
02442000 oveveloo 920612
ve 43eloo 0Te8¢100 69492
Ivia38100 0T v06100 9€0492
00000000 oLsteio0 6201392
0J)6dLt00 oalubloo 046392
08422700 ¢9loCi00 J10092
eoogzloo ¢8les100 JICu9e
044100 culot oy LU
0vw3lwfioo 949J6100 a6ilL9e
86045100 EISYR AN T 198992
00000000 0CcatT¥ioU 43099¢
86026100 0JvZaiod 648692
0605S100 (J'E] 28 %4] 493492
valael100 caedvlioo vide9e
osaielLo suvicioo 11412 1
84342100 Jovizlion aIve9¢
atvve 100 3ted2l00 vave9e
uEo L2100 coovitoo ovve9e
v4%69100 . 31632100 Y8VVYL
96329100 o4gd2iI00 6LVVI¢2
g€629100 o¥gIctoo 69v¥92
01629100 62100 6SYVIC
vavd9too 0ucICI00 SovbYe
Yo 4¥v9100 08€22100 3cVe9e
45Gv9100 0u€22100 ILVe9¢
vide9100 0ugdE100 dgve9e
20649100 oggacioo Uive9d
942uvi00 ouso2io0 £Ive9e
0Jel2L00 $093¢2100 0IvVe9¢
osuseioo v 0912100 J0VeYC
Y31 IWvYVd id AY¥LIN] 17021
04vY2el 15V 09ucel LSHl4
022465100 ogdcesioo Jvsect
suiccloo osaccioon dZivst
vylvctloo oceZclioo JZust
oguestoo osdZsi 0w Jover |
00000000 0Codllco 0cvdvl
aldvxioo dvvsiow volucl
036J21 3¢ 930d2100 IR
0edlbioo ogvesiow ¥J361¢1
Uil JWvuvd 1d ANINI 17623

avdcel 1Sut4

23e2el 10N 1S171 23x1
03vZel 1UA 1S1Y 23%3
00 00 3 ows2el
A0 Lus SOV ET)
vas2e1 Lon 1511 23x3
00 00 L 04vaer
00 00 1 ozazel
00 00 1 otr92et
00 00 1 056201
00 00 L 0duzel
00 0 1 osveet
00 Gy 1 osgeel
00 08 1 ove2el
00 o0v 1 oue2el
00 00 1 oog2el
v0 00 1 ouszel
00 00 1 0wveel
00 00 1 o0iuget
¥o 00 1 0992e1
06 00 L ouvael
00 ov 1 09221
00 ov 1 oo0a2el
00 Oy T TTETY
00 00 1 0avael
00 0% 1 0252t
00 Ov 1 o04eeet
00 0y L ov9Yeet
00 0@ 1 02wt
00 oy 1 oadzel
00 Ov 1 oudeel
00 Oy 1 ogseel
00 0v 1 ouvewl
00 Ou 1 o6u2el
00 09 1 osdevt
00 Ov L o04a2el
00 0y 1 eIueel
M0 T¥s Sovld 0n
WY VSV 10N 1517 3wl
00 00 AL oveael
00 ou AT 00d2Y
00 00 ARl 0S6cel
00 Ou AL 0eS2eI
00 0C RI 0Z9eel
ov o n o 0de2vl
00 04 R oveeel
00 uy "N ovdcel
10 s SOV J0M

Jobcel loum

IS1Y slva

Sample IJKTRACE Listing (Page 2 of 3)
4-8

Fig\]re u-z.

Task Management

Chapter 4

*Q30N3 DIVHLIC]

HJ1EAS <¢J00/4 NIVHNDS Y1 AS 01226100 ve0Uul0o0 04096100 eYoas i 00 0V Ad 0ldlewl
ATAONOW vQ00/W NIVHNIS TULI AS 08uc vl 00 g39d8l00 04094100 862081 10 0w Rd ougeel
SS1d¥JH) dQ00/0 NIVYHNIS TYLIAS oZveeloo 0¢9a8100 04094100 089a9l 00 Ou Aid [(FA X4 A¢
v108028S 8060/704 NIVKWNIS TY1IAS otvZeloo v9¢auloo 04090100 vIga8l 00 00 Ad o1vee|(
NROVIWd taoo/r NIVKHNDS THL1IAS 03s2v100 vd 326100 04094100 vl 4281 00 02 Ad 03acel
nlldYdXl 60060/sY NIVHNIS T41IAS 066<4100 014108100 040961040 aqiqguy 00 00 Ad Obbevl
WHOJNKWK ¢ QAvA/ WK NIVUNIS TH1IAS 0v6&ZCeI00 1406100 0409v100 Ja4J01 00 00 Ad ovecel
ATAONOW 13€2/1D NIVHNDIS TY1IAS 0gscelon JeLayloo 04090100 vLaset ¢0 00 rd 0Qucel
3S741S3L ¢dea/0mM NIVHNIS T41IAS oelZvwioo 86504100 04094100 805091 00 00 Nd 0etLeel
TIANOD v 4€0/6T NIVHNDIS T41J4AS oBLCwLOO vivQ8100 0409%100 *G5AB 1 00 00 nd odeeel
CINANS €4€d/R NIVHNDS T41DAS aLezeloo 064QuI00 03094100 04¢031 o0 00 Ad 0LLCh]
TIMGNS ¢€4£0/21 NIVYKHNDS TY1I4AS uyeLceloo JZeUBTI00 0409100 Je vyl 00 o0u Ad 09L2el
AFERIVIF I FIN(PAR] NLVHNDS Tdl1IAS 0SLcvl00 #3€0a8100 0409vi00 gcvaul 00 00 Ad ostLeel
UNISSIW $0SA/KT NIVWNDS TY1IAS ose2eloo 00£0au 00 0409700 09¢de 1 60 00 nd ogLcel
sv INONes €ICI/DD KIVHNIS TYLIAS 6cLZel00 J6ecawloo 0JoJvtoo Jdeunl 00 00 nd oZLewl
se3INONee HI8I/HH NIVKNDS Tl IAS oteeelioo 4€2auloo 0409¢100 8620ul 00 00 nd otLeel
49NVH) W00/ NIVHNIS Td1IAS 0osLeeloo valadtoo 04096100 vyceasi 00 00 nd oocLeel
NIVOONIAS 9300/R NIVHNDS IY1IAS 03492+100 Jotgdtoo 03094100 J9tael 00 00 Ad 039¢cel
9Sk39¥d ¢000/d NIVHNDS THLIAS 0dYcHl00 Y¥0du 100 04094100 guldyl 048 00 Ad 0ayeel
$Sd9 1QLI/dn NIVWNDS TY1IAS ovyeeloo 03428100 04a96100 ovouyl 00 ‘00 Ad ovyeel
12Sav0d g€agasM N1vWNDS 141 J4AS 06924100 Bl Jlulo0 as090100 8442491 00 00 Ad De9¢cel
1diN0lwd G300/A NLVYHNDS 41D AS oL9Zei0u 23424100 04096100 J¢320l 00 00 nd 0L92¢1
1din0Iwd ©1300/0 NIVYHNDS 1H41IAS 0g€9Z¢l00 a8dlutlao 040904 930281 00 00 Ad 0g9eel
1dlNNTWd SQ00/N NIVKNDS TUL1IAS 0sGZvl00 0536100 0409¢100 043281 00 00 Rd 06Gcvl
H1S3IINWW 2JL0/94 HIVWNDG TH4LIAS 0cseelog v89ub 1oL 0309¢100 v39ael 00 wu Ad 0zsdel
oeYN I 04420100 Jelel 00 JvaaLt1o0 v16281 00 0% Ad 036cel
JWYN ans SASans AYIN] 12352 Wl d23) HiliWvuvd 1d AuIN] 1/d33 A0 1y4 SOV 14 jon
ngoo0 vi/sIv 9¢00 LINNQD 15v1 1S4t 4 1OR 1817 1504l
: 1000 VI/INH 0000 LINNOD gasel 1Sy dJUvc el LSHl4 vdecel LOA 1817 2343

v

Sample IJKTRACE Listing (Page 3 of 3)

Figure 4-2.

Chapter 4 Task Management

When all Dispatcher 1lists have been scanned and formatted, the
following line is generated:

IJKTRACE ENDED,
Control is retained in the current program path for the duration of

processing by this module; the Dispatcher 1s not entered, and no other
system work is performed.

4,2.4 IJKCESD--Initialize Csect/Entry Tables

IJKCESD 1is called once during system startup to scan the main
Intercomm load module and to scan LPSPA (if the Intercomm Link Pack
facility is wused) in order to create the internal tables used to
provide the Csect and Entry names for the IJKTRACE report and various
Intercomm debugging messages, snap printouts, and the Resource
Management Thread Dump. IJKCESD may be resident or in the startup
overlay (conditionally called by the STUOVLY Csect). It is
automatically included if the ICOMLINK macro is used to generate the
Intercomm linkedit.

If an LPSPA 1linkedit is used (placing selected Intercomm load
modules in the Link Pack Area as described in Chapter 7), then a DD
statement for the load library containing the LPSPA load module must be
added to the Intercomm execution JCL after the //PMISTOP DD DUMMY
statement (library not processed via the File Handler), as follows:

//LPSPALIB DD DISP=SHR,DSN=LPSPA-load-module-library

4,2.5 IJKWHOIT--Find Csect/Entry and Subsystem Names

IJKWHOIT 1is called by several Intercomm system modules to
determine the Csect name, and displacement within that Csect, of an
address passed as a parameter. It may also be called to find out the
name of the subsystem for which the SCT entry address is passed as a
parameter. Note that the SCT entry address 1is the third parameter
passed to all subsystems on transfer of control from Intercomm.
IJKWHOIT must be 1included in the Intercomm 1linkedit as resident
(automatic if the ICOMLINK macro is used to generate the Intercomm
linkedit).

To find the name of (and displacement within) a Csect in which an
address in the Intercomm (or LPSPA, if there) or dynamically loaded
load module resides, call IJKWHOIT as follows:

CALL IJKWHOIT,({addr},{sct},wherecsect,{wherentry}, {wheresub}),

{o 1} { o Y{ o 1}
VL(,MF=(E,list))

4-10

Chapter U Task Management

where:

addr is a pointer to the field containing the address
whose Csect name is to be found (if only SCT desired,
code 0O--see below);

sct is a pointer to the SCT (SYCTTBL) entry for a
subsystem (if not desired/available, code 0);

wherecsect 1s a pointer to the area to which the caller wants
the Csect name moved (a print line, for example):
minimum area length must be 13 bytes for the Csect
name plus displacement, if any (if the Csect name
cannot be found, the value UNKNOWN ADDR is placed in
the area) (if only SCT passed, code 0);

wherentry is a pointer to the area to which the caller wants
the entry point name (if available within the Csect)
moved: minimum area length must be 8 bytes (if not
desired, code 0);

wheresub is a pointer to the area to which the caller wants
the name of the subsystem (if sct pointer coded)
moved: minimum area length is 8 bytes. If a

subsystem defined as resident or overlay 1s not
included in the 1linkedit, the value #¥NONE** ig
placed in the area. (If sct is not coded, code 0).

To obtain only a subsystem name, use the following form of the
call:

CALL IJKWHOIT,(O,%sct%,0,0,wheresub),VL(,MF:(E,list)]
(r)

where (r) is a register pointer to the SCT entry.

Return Codes: 0 - address(es) converted and required
information moved to user area(s);

4 - either address not found, or IJKCESD was not
in the Intercomm 1linkedit, or an error
encountered at startup - no CESD table
entries were formatted.

4,2,6 IJKDELAY--Request Time Delay

This module may be called, instead of using the DISPATCH or
INTWAIT macros for a timed wait, to introduce a timed delay averaging
100 milliseconds into a program path. The Dispatcher is given control
to perform other processing and returns at the expiration of the delay
interval. No parameters are passed. Standard linkage conventions are
used. The current thread will resume processing, after expiratlion of
the interval, with the same execution priority. There is no REENTSBS
code; a SUBMODS must be added for the routine if it is not called by an
Assembler Language program,

Chapter 4 Task Management

The facility may be utilized to give a time-slicing effect within
a routine that would otherwise monopolize CPU time. It can also force
the buildup of parallel program paths for reentrant testing purposes in
an environment where actual parallel execution otherwise might not
ensue, or 1t may be invoked to await the passing of a temporary
condition that is to be resolved by another previously scheduled
program.

4,2.7° IJKTLOOP--Trace Program Loop

This module assists in detecting closed program loops. If it is
included in the Intercomm linkedit, it will be activated automatically
at system startup. IJKTLOOP functions as an Intercomm subtask. When
IJKTLOOP is called at startup, a subtask is ATTACHed, followed by a
CHAP (change priority request) in the Intercomm main task giving the
subtask the highest priority in the Intercomm region. The subtask:

@ Initializes flags in the Intercomm Dispatcher
=] Issues a STIMER to schedule an exit routine, then
@ WAITs on an ECB to be posted by that exit routine.

After 30 seconds (real time), the exit routine receives control
and posts the ECB placing the subtask in the ready state. When the
subtask receives control, it <checks flags in the Dispatcher to
determine whether various conditions have occurred and to take the
appropriate actions as follows:

3 If closed loop detection has been deactivated via a call to
IJKTSTOP (see below), the closed loop subtask is DETACHed by
the Intercomm main task and c¢losed loop processing is no
longer operative.

-] If the Intercomm main task is in the WAIT state, then the
STIMER is reissued to schedule the exit routine and the
subtask WAITs again without taking further action.

C If the Dispatcher has been entered, indicating that a task
has been scheduled in the intervening 30 seconds (that is,
the task that was executing at the start of the 30-second
interval has returned control to the Dispatcher and thus was
not in a long duration ¢losed loop), then the
Dispatcher~entered flag is cleared (flag will be reset by the
Intercomm Dispatcher in the main task). The exit routine is
then rescheduled and a WAIT is performed as before.

<

Chapter 14 Task‘Management

® If none of the above conditions are true, the subtask returns
to the main task, which 1ssues the message numbered MP020I
and abends with a user code of 909, accompanied by a snap
with ID=121, an IJKTRACE printout and a thread dump. The
abend 909 will be recovered by STAEEXIT (if included in the
Intercomm linkedit), which cancels the looping thread, issues
message MPOO3I, and then transfers control to the retry
routine, STAERTRY, 1if it 1is included in the Intercomm
linkedit. The retry routine will call IJKTLOOP to reactivate
the closed loop detector and then restore the Intercomm
environment (via transfer of control to SPIESNAP at entry
ABNDCANC).

Closed loop detection may be deactivated at any time via a call
to IJKTSTOP, an entry in IJKTLOOP. No parameters are required;
standard linkage conventions are followed. This may be useful if, for
example, a program thread requires control, or calls an Intercomm
routine (for example, the File Handler) that requires control, for a
longer than average duration before returning to the Dispatcher. Once
the closed loop detector, IJKTLOOP, 1is deactivated via IJKTSTOP, it
must be reactivated to reinstate closed loop detection. Intercomm will
not reinstate it automatically unless a 909 abend occurs.

Closed loop detection is reactivated via a call to IJKTLOOP. No
parameters are required; standard linkage conventions are followed. If
IJKTLOOP is called and closed loop detection is already active, a

return code of X'O4' 1is returned in register 15 to the caller without
any further action taken.

NOTE : The hard-coded interval for the scheduling of the exit is
30 seconds real time, not task time. This means that the
time 1s decremented continuously whether Intercomm has
control of the CPU or not. This should be taken into
account if Intercomm runs on the system with other higher
priority jobs.

To summarize, IJKTLOOP processing requires inclusion in the
Intercomm linkedit of IJKTLOOP, STAEEXIT, STAERTRY, SPIEEXIT and
SPIESNAP, in addition ¢to IJKTRACE, IJKCESD, IJKWHOIT, IJKPRINT and
TDUMP (and the DD statements for SYSPRINT, SMLOG, SNAPDD and optionally
LPSPALIB). When generating the Intercomm linkedit via the ICOMLINK
macro, code LOOPTIM=YES. Also see Chapter 8 for further details on
snap processing and the description of snap 121 in Messages and Codes.

Chapter 5

RESOURCE MANAGEMENT

5.1 INTRODUCTION
Intercomm Resource Management has three major options:
1. Resource Auditing and Purging
2. User-defined pools of core storage
3. Accumulation of core-use statistics

All or any combination of these three options can be selected by
the user, according to installation requirements. If only the pools
option (recommended) is selected, Resource Management still provides
the system with an extremely efficient version of storage management.
Macros and their parameters referenced in this section are described in
Basic System Macros.

5.2 RESOURCE AUDITING AND PURGING

Resource Auditing refers to the maintenance of a chain of
resource control blocks (RCBs) defining user-accessed resources for
every active thread. There are five audited resource types:

1. CORE--acquisition of storage by invoking the STORAGE macro
2. FILE-—-use of a data set indicated by a call to SELECT

3. DDQ--access to a dynamic data queue indicated by a call to
QBUILD or QOPEN

4, DYNL—loading of a dynamically loaded subroutine via invoking
the MODCNTRL macro by the user, COBREENT, PMIPL1 or LOADSCT

5. NQ—activating an enqueue upon a resource by issuling the
INTENQ macro

Each time a thread acquires a resource, a control block is
created containing information about the resource and is attached to a
chain of similar blocks. When the thread releases control of the
resource, the corresponding control block is detached from the chain.
The on-line TDUMP utility (see Section 5.9) is provided to print out
the control block chains. This output shows which thread was in
control, what resources each thread owned, which module acquired each
resource, and the order of acquisition.

5-1

Chapter 5 Resource Management

Resource Purging means that when a thread completes, normally or
abnormally, its chain of resource control blocks is checked; in the
case of a non-empty chain, the used control blocks are released after
freeing blocks of storage, releasing files, etc.

All levels of Resource Management will purge Dispatcher queue
entries for failed message processing threads. With Resource Auditing,
storage, files, DDQs, loaded subroutines and enqueued resources are
also purged. Additionally, a "must complete" disable/enable facility
ensures that threads are not purged during critical operations; that
is, if a subsystem times out while an I/0 event is outstanding, a timed
wait for the I/0 event to complete is effected before attempting the
purge.

5.3 USER-DEFINED STORAGE PQOLS

User-defined storage pools are generated by the Intercomm
ICOMPOOL macro and may be dynamically loaded at startup or linkedited
into the Intercomm load module. A pool is a set of storage blocks of a
given size; there is no limit to the number of blocks in a pool. The
ICOMPOOL macro also generates an index that permits the storage
management routine to quickly determine whether or not a storage
request can be filled out of the pools. Freeing an area of pool
storage is usually Just as fast. Furthermore, the code is loop-free,
so that these time values are constant, and system degradation due to
storage fragmentation does not occur. The increase in efficiency
provided by Jjudiciously tailored Intercomm pools more than offsets any
overhead increment from core-use statistics gathering. Creation of the
user-defined Intercomm pools (via ICOMPOOL macro) is described later in
this chapter. Acquiring and releasing core under Intercomm 1is
accomplished via the STORAGE and STORFREE macros described in Basic
System Macros.

5.4 CORE-USE STATISTICS

Three sets of core-use statistics can be accumulated via the
RMTRACE routine. Statistics are computed and printed at intervals
defined in SPALIST macro parameters.

1. Global statistics--the number of STORAGE and STORFREE macros
issued, the average storage request length, the number of
requests filled from the pools, ete.

2. Breakdown of STORAGE requests into detailed user-defined core
block size ranges. For each range, the number of requests
falling 4into that range is given, plus ‘'concurrency"
statisties: at any given moment, the concurrency of a range
is the number of blocks that have been obtained, but not
freed. In addition to the instantaneous concurrency, high,
low and average concurrenclies are computed. These figures
are particularly useful in working out pool sizes; the most

5-2

Chapter 5 Resource Management

value from a pool is obtalned if the block size falls in a
range with a large number of requests, and the average
concurrency of the range indicates how many blocks are needed
in the pool. However, 1f the size 1is small, the high
concurrency may be used to get maximum efficiency, at a
relatively low cost in storage.

3. Pool-use detaill statistics measure the effects of different
choices of pools, providing such information as the number of
requests that could not be filled from the user-defined pool
(because all the blocks were in use), the average number of
free blocks, etc.

5.5 STORAGE CUSHION

Every version of Resource Management includes the Storage Cushion
feature. At startup, a block of storage 1s obtained and held until a
request arrives that cannot be satisfied out of the Intercomm pools or
dynamic storage (0S subpool area). The storage cushion 1s then
released and no new threads started until the cushion is available
again. Thus, a temporary shortage of storage i1s not 1likely to bring
the system down. The user specifies the size of the cushion in the
SPALIST macro CUSHION parameter; a zero size 1s acceptable. A WTO
informs the wuser whenever release and acquisition of the cushion
occurs. (Front End input operations are also temporarily halted if the
module SSPOLL is included--see Chapter 7.)

5.6 RESOURCE MANAGEMENT MODULES AND GLOBALS

Seven modules automatically included in the Intercomm linkedit
are used to support Resource Management. Their member names are
MANAGER (Csects: RSMGMNT, RMPC and RMFNQ), RMPURGE, RMTRACE, TDUMP,
POOLDUMP, RMNADISA and the core pools definition module.

© MANAGER is the main Resource Management module. It contains
entry points for STORAGE and STORFREE macro processing
(STORAGEM and STORFRED), routines that switch control of
blocks of storage between threads (RMPASS and RMCATCH), and
those that handle resource control blocks for files
(RMFON/OFF), enqueued resources (RMNQON/OFF), etc.

® RMPURGE is the Resource Purging routine. It is called by the
Subsystem Controller when a nonzero thread completes to free
any resources not previously freed by the thread.

® RMTRACE computes and prints out core-use statisties. (See
Figure 5-2 for explanation and sample output.)

® TDUMP prints out RCB chains. (See Figure 5-3.)

5-3

Chapter 5 Resource Management

o POOLDUMP prints out the current status of the user pools.
(See Figure 5-4.)

@® RMNADISA is the Intercomm disable/enable routine, and is also
used for resource purging.

o NEWPOOLS (or user-defined name) contains ICOMPOOL macros
defining storage pools.

Four independent options apply to Resource Management, and are
defined by binary set symbols in INTGLOBE and set in SETGLOBE,
controlling assembly of the MANAGER module. These options are as
follows:

1. &RM

If set to 1, Resource Audit and Purge are obtained; it is
necessary to include RMPURGE amd RMNADISA if this option is
chosen. Also, TDUMP should be included.

2. &RMPOOLS

If set to 1 (required), pool support 1s obtained; an ICOMPOOL
module must be defined. POOLDUMP may be included.

3. &RMSTATS

If set to 1, global core-use statistics are provided.
RMTRACE must be included.

L. &RMACCT

If set to 1, detall core block size and pool-use statistics
are provided. RMTRACE must be included.

5.6.1 Obtaining a Save Area with Resource Management

The STORAGE macro has Resource Management parameters. Instead of
a LINKAGE macro, STORAGE can be issued without supplying a save area or
a parameter 1list by the coding of RENT=NO. (See Figure 5-1). The
macro will generate code to build the 1list in MANAGER, and MANAGER will
save registers in its own in-line save area. In fact, with Intercomm,
the in-line save area 1s first used, shifting only to the user's save
area when a storage request fails and a retry is necessary. Thus,
coding RENT=NO means only one attempt is made to obtain user ‘storage;
however, the retry feature 1s not as 1likely to be 1nvoked with the
Storage Cushion facllity in use, and less likely to succeed when 1t is
invoked because it competes for storage with the routine that tries to
reacquire the cushion. If a STORAGE request fails, an error routine
may be given control as specified by the ERRADDR parameter. VS users
can optionally specify page boundary alignment in the STORAGE macro.

5L

Chapter 5 Resource Management

The code in Figure 5-1 illustrates a save area obtained via a
STORAGE macro.

*¥Register 15 is used by the STORAGE macro, as are 14, 0 and 1. Thus,
*the user must establish a base register other than 15.

ENTRY SUB
USING SUB,Rz

SUB STM 14,12,12(13)
LR Rz,R15

¥Next, establish addressability to the SPA Csect.
L Rx,=V(SPA)

*Issue STORAGE macro to obtain storage for save area and set forward
*chain in current save area.

STORAGE LEN=len,ADDR=8(13),SPA=(Rx),RENT=NO
%#Test for valid return (ensure storagé was obtained)

LTR 15,15
BNZ error-routine

%¥Restore registers used by STORAGE (optional)
LM 14,1,12(13)

¥Initialize new save area

L Ry,8(13) Get save area address
ST 13,4(Ry) Back chain
LR 13,Ry Point to new save area

NOTE : Rx, Ry and Rz refer to three general registers (2 to 12).
They have the following uses:

® Rx points to the System Parameter Area (SPA).
@ Ry temporarily holds the address of the storage obtained.

® Rz is the base register.

Figure 5-1. Obtaining a Save Area via the STORAGE Macro

5-5

Chapter 5 Resource Management

The RTNLINK macro, SPA=(r) parameter, is used by Resource
Management. RTNLINK generates a call to the PMIRTLR Csect, which in
turn calls STORFRED to release the save area. If PMIRTLR finds its
STORFRED VCON unresolved, it expects the SPA address in register 2. If
a register has been specified as the SPALIST base in the preceding
LINKAGE macro, RTNLINK will generate a LR of the base into register 2.
In cases where a LINKAGE macro was not issued or the SPALIST base is no
longer valid upon a return, the SPA address must be loaded into a

register (r) and the SPA=(r) parameter must be coded on the RTNLINK
macro.

5.7 INSTALLING RESQURCE MANAGEMENT WITH CORE-USE MONITORING AND POOLS

5.7.1 SETGLOBE Settings

The following globals must be defined in SETGLOBE:

&RMPOOLS SETB 1 use Intercomm pools (required)
&RMSTATS SETB 1 _ generate global core-use statisties
&RMACCT SETB 1 generate detail usage statisties

and MANAGER must be reassembled.

An additional option implemented via the conditional assembly of
MANAGER with the global &RMINTEG in SETGLOBE SETBd to 1, causes
validation of the integrity of the storage pools on each entry to
MANAGER. If the storage pool area is not intact, an error message
(RM0224) is generated. This facility assists in detecting problems in
destruction of storage, often difficult to find due to their random
nature. This facility 1is controlled by the STRT/STOP system commands,
and is set off at startup.

NOTE : This facility should be wused in the test environment
only, due to CPU overhead. See also the description of
the TRAP debugging module in Messages and Codes.

5.7.2 SPALIST Parameters

Associated parameters in the SPALIST macro are described below.
Other SPALIST parameters, not wused at this 1level of Resource
Management, are discussed in conjunction with Resource Auditing.

Choose appropriate values for these parameters and, if necessary,
reassemble INTSPA (SPA and SPAEXT Csects).

5-6

Chapter 5 Resource Management

g CUSHION

is the size in bytes of a block of storage (specify in 2K
(MFT/VS1) or 4K (MVT/MVS) increments) that will be acquired by a
GETMAIN at startup and released when a request for main storage
cannot be satisfied. When the cushion is released, the SPAHOLD
switeh 1is set so that no new threads are started, and a routine
issuing a GETMAIN is dispatched on a time interval to get the
cushion back. If unsuccessful, 1t leaves SPAHOLD set and
redispatches itself. The default is 2048.

CUSHTM
is the interval in seconds between tries at getting the cushion
back. The default is 1.

COREACC
is coded YES if computation of core block size statisties, broken
down by ranges with pool "concurrencies", and pool-use detail

statistics are desired. (See Figure 5-2.) The default is YES.

RMSTIM
is the time interval, in seconds, between successive invocations
of the detailed pool usage statistics program (RMTRACE). The
maximum value is 32,767 (9 hours, 6 minutes and 7 seconds). The
default is 5 seconds.

TRACETM
A is the interval, in seconds, between printouts of global (and
detailed) core-use statistics by RMTRACE. The default is 120,

5.7.3 Defining the Intercomm pools (ICOMPOOL)

The ICOMPOOL macro is coded by the user to define each user pool
area and has the following operands:

LEN
is the size of a pool block up to a maximum of 256K less 8 bytes.
NUMBER
is the number of blocks of that size.
LOWLIM
optionally specifies the minimum request size to be filled out of
this pool.

For example, to define a pool of 20 16-byte blocks, code:

ICOMPOOL LEN=16,NUMBER=20

Chapter 5 Resource Management

To define a second pool of 10 256-byte blocks, and to ensure that
only requests for greater than 200 bytes (but less than or equal to
256) will be allocated from the pool, code:

ICOMPOOL LEN=256,NUMBER=10,LOWLIM=200

The number of bytes allocated from a pool block will always be
greater than the block size of the preceding pool. LOWLIM is coded
only when the difference in block sizes between successive pools is
large and user intent is to reduce wastage. If LOWLIM were not coded

in the above example, an infrequent 30-byte request could tie up an
entire 256-byte block.

ICOMPOOL macros must be arranged by increasing block size; that
is, the wvalues of the LEN parameters have to be in ascending order. A
maximum of 255 ICOMPOOL macros may be coded.

i

The following JCL can be used to create the pools member:

// EXEC LIBE,Q=LIB
./ ADD NAME=member -name
./ NUMBER NEW1=1000,INCR=1000
ICOMINX CSECT
ICOMPOOL macro 1

ICOMPOOL macro n
END

Assemble the new member. One set of pools, member name NEWPOOLS,
is included on the release tape. These pools are roughly sized to
handle the storage requirements of the Intercomm beta test, and may be
used as a starter set before core-use statistics have been collected.

The member may be linkedited with the Intercomm load module, or
it may be chosen dynamically at startup if the dynamic core pool
facility is in use. (If the latter, the pools may not be linkedited
with the load module.) If the pool load module is to be selected
dynamically, the member name must be ICPOOLxx where xx is a two-digit
number 00-99. When dynamic pools are in use, a number of different
sets of pool load modules can be created and the proper one will be
loaded at startup, as described below.

5-8

Chapter 5 Resource Management

5.7.3.1 Dynamically Loaded Core Pools

At startup time, the user may dynamically choose a set of storage
pools for the system to use. That is, instead of choosing a set of
storage pools at 1linkedit time, a set of pools may be chosen at
execution time. The set of pools chosen 1is brought into core via a
LOAD macro and, for every Intercomm execution, a new set or the same
set of pools may be chosen. This option may prove advantageous if it
is desired to experiment with different sets of core pools to find the
most efficient, or if it is known that at certain times variations in
system activity make a different set of pools more efficient than they
would be normally. Also, in some operating systems, the size of load
modules is restricted, making the use of Intercomm administered storage
pools difficult. With dynamic core pools, because they are a separate
load module, the need for relinks of the system for every tuning of the
pools, and/or the problem of size restriction, can be alleviated.

To use dynamic core pools, the following must be done:
9 Include the module POOLSTRT in the Intercomm linkedit

® Exclude NEWPOOLS or whatever member name currently contains
the ICOMPOOL macros to define the user pool areas. (The
ICOMLINK macro will g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>