oOReXxX
Documentation 1.0.0

00SQLite Reference

Friday, December 23, 2022 svn revision 12583

R



ooRexx Documentation 1.0.0 ooSQL.ite Reference
Friday, December 23, 2022 svn revision 12583
Edition 2022.12.22

Author Open Object Rexx™
Author W. David Ashley
Author Rony G. Flatscher
Author Rick McGuire
Author Mark Miesfeld
Author Lee Peedin

Author Oliver Sims

Author Jon Wolfers

Copyright © 2005-2022 Rexx Language Association. All rights reserved.
Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.



http://www.oorexx.org/license.html

Preface X

I B o Tox 0 g 1= o | @ o] o V7= o1 i o o = X
1.1. TypographiC CONVENTIONS ......ccuuuniiiiiieieii ettt e e e e X

7 N o) (== U o YA Vg 1 o 1 X

2. Who Should USEe ThiS BOOK ........uiiiiiiiiiiiiiiiie ettt e et a et e e e Xi
3. HOW This BOOK IS STIUCIUIEA ......ceeeiiiiiiii et e Xi
4. Related INFOrMALtION .........iiii e et e e e e e ea e eees Xii
5. How to Read the Syntax DIagrams ............oicieeuiieiiiiei e Xii
6. Getting Help and Submitting Feedback .............cooiiiiiiiiiii Xiii
6.1. The Open Object ReXX SOUICEFOrge SIte .....ccuiiiiiiiiii e e Xiii

6.2. The Rexx Language Association Mailing LiSt ...........ccooeeviiiiiiieiiii e, Xiv

6.3. COMP.1ANG.FEXX NEWSHIOUP ...ierniiitieii ettt e et e e et e e e e e e e e eaa e eaaaeeees XV

1. Brief Overview 1
R =Y 1] o RS = 3 (T 1
1.2.1. Command LiNe Shell . ... 1

1.2. Definition Of TEIMIS ..ueiii e e et et e e et et e e et e e et e eeen e aees 2
1.2.1. DAtabase NAME ....couiiii et 3
1.2.2. HANAIE o e e e 3
1.2.3. Threading MOTE ......ouuiiiiii e et aeaaes 3

G T o 10 11 0T IO o) o =T o] £ 4
R Tt O = 3] o T= T [ [T PSP 4
1.3.2. DAtabase ENQINE .....couiiiiiiiii e e e e 4
(@ L I (I = T= (1] (=P 4
2. The Object Orientated Interface to SQLite 8
3. Primary ooSQLite Classes 9
3.1, The O0SQLITE ClaSS ...uiitiiiii ittt e e et e e et e e et e e e an e e eaeeeanaaes 9
R 0 I I /1Y 1 T Yo =T o 9

0 I o T L 7 1o T (=) 10
3.1.3. recordFormat (ALrBULE) .....oeie i 11
3.1.4. cOMPIlEOPLONGEL .....nietiiiiie et 13
3.1.5. compPileOPtONUSE ........iiiiiiiiiei et e e et 14
N I ST oo ] 1] o] =] (TSP UP PP UPPPTTRPPPPIN 14

T A = T [ [ (PP PTTP PRI 15
TN I S T = 1 20 | PP TPPT PP 17

I e TR 110 V=T =] T o IO STPRT 18
3.1.10. lIDVErSIONNUMDET ..ottt e e et 19
3.1.11. MeMOrYHIGRWALET ...t e eaans 19
3.1.12. MEMOIYUSEA ..ottt 20
3.1.13. FEICASEMEIMONY ...ttt ettt 20
0 I Y0 1= = T N 1 (7 21
3.L1L15. SOUICEID ..ot 22
3.1.16. SOIIEBVEISION ...ceuiiiieeii ettt 22

BLdL A7, SEALUS ettt ettt e e e e e aa e e e 23
3.1.18. threadSafe ......cocu i 25
0 I TR V=T 1 o o 25

3.2. The 00SQLItEBACKUP CIaSS ...uuiiuuniiiiieiiii et e e e e e e e e et e e e eaes 27
3.2.1. Method TabIe ....coeenii e 27
3.2.2. NeW (Class MEethOd) .......couuiiiiiiii e e 28
3.2.3. finished (ALHDULE) ... oo e 30
3.2.4. INItCOE (ALMDULE) ...oeeee i 30
3.2.5. [astErrCode (ALHDULE) ......coeeiiiiii e 31
3.2.6. 1aStErrMsg (ALrBULE) .....iiee e 32




3.2.7. pageCount (ALHDULE) ......c.uii e e e 32
3.2.8. remaining (AHDULE) ......ccoeiiiiiiii e 33
3.2.9. saveDestConn (ALHULE) .....coouu i e 34
B.2.00. FINISH e e 35
I Tt o 1= £ 111 (o T o 36
T (= o PP UPTPPT 36
3.3. The 00SQLIiteCoNNECtioN CIASS .......cieuiiiiiii e e e s 37
TR T I V111 0 To To I =T o = PN 38
3.3.2. New (Class MEethOd) ......cc.uuiiiiiiiiii e e 39
3.3.3. backupDestination (AttrDULE) .........vieriiii i 41
3.3.4. Closed (ALBULE) .....iiie e 41
3.3.5. fileName (ALHDULE) ....ceeiie e e 42
3.3.6. INILCOAE (ALLIDULE) ... eeeieee e e e et e e eaaas 42
3.3.7. 1aStErrCode (ALrDULE) ......cooutiiiiii e 43
3.3.8. 1aStEITMSQ (ALHDULE) .....nieeii e 44
3.3.9. NUII (ALFIBULE) eveeeeee e e e e 45
3.3.10. recordFormat (ARIDULE) .......eieeieii e 46
3.3 1L, BUSYHANAIET ..o 46
3.3.12. DUSYTIMEOUL ...ttt et e e et e e et e et e e e e eeenas 48
.33, CRANGES oot 49
B TR 0 7 S o [ 1 49
3.3.15. COMMITHOOK ...eeiiiiiiii e et e e e 50
3.3.16. CreateCOIlAtiON ......cceeuiiiiei e 52
3.3.17. CrEAtEFUNCEION ....uiieiiiii et ettt et e et e et e e e e eee s 52
3.3.18. ABFIIENGAIME ....iieee e e e e e aaas 53
3.3.19. ABMULEX ..ttt e a e aeen 53
3.3.20. ADREAAONIY ..ot 54
3.3.21. ADREIEASEMEIMOIY ...ovuiiiiieii et e e e e e e e e e e e e e et a e e e e anaeeeen 55
3.3.22. ADSHALUS .evvieiieii et 55
TR I B =1 1 { ©o o [ PP PTRPRRPN 57
B.3L24. BITIMIS ..ttt ettt e e e et aaas 57
i3 2D BB ittt e e 58
TR I G T = =1 o (=T | =1 { @ o o = 61
3.3.27. extendedRESUIKCOUES .......ooiiiiiiiei e 62
ICTRC 72 S T 11 VAU | (o Yo ] 1 4 o ]| A 62
RS I I 1] (=1 1 (U] o] A PP RTPPIN 63
3.3.30. 1ASLINSEITROWID ......iiiiiii et e e e e et e et e e e ees 63
R TR 1 U 11 o1 PSP 64
TR TR 1 14 1] 1 ¢ | P 65
G 0 0 2 TR o] o) 1] - P 65
3.3.34. ProgreSSHANAIET .........iiii e e 67
I TR TR ST o = o 1 1 I- PSP PPN 69
3.3.36. rollDACKHOOK ........eii e 80
3.3.37. SELAULNONIZEL ... e 81
3.3.38. tableColumNnMetadatal ............oeveuiiiie e e 85
TR T 1 R (] 7= 1 @ F= 1 o = 86
R 10 I 1 = (o = PSP PTOUPPTTPPTTPPTRPIN 87
3.3 AL, UPAAIEHOOK ... 88
3.4. The 00SQLIEMULEX ClASS ....ccuiiniiiiiii e e e aas 90
0 I V11 1 T To I =T o = S 90
3.4.2. new (Class MEethOd) ......co.uuiiiiiii e 91
3.4.3. Closed (ALBULE) .....iiee i 91
I S S NN W || (N 1] 10 =) 92
I ST =T 0| (] PP UPT PRI 92




I ST 1 (T 93

B 7. JBAVE .e.oniitiie et 93
S T | PP TP TPPT 94
3.5. The 00SQLItESIME ClASS ....ivuiiiiiiiie et e et e e e e eens 94
TR Y0 I 1Y/ 11 g T Yo B =1 o1 =PTSRS 94
3.5.2. neW (Class MEethOd) .......couuiiiiiiii e 95
3.5.3. iNItCOdE (ALLHDULE) ...t e e e e eaa s 95
3.5.4. finalized (ALMDULE) ...oooveiiei e 96
3.5.5. [aStErrCode (ALHDULE) ......coouteiiiiii e 96
3.5.6. 1aStErrMsg (ALrBULE) .....ciee i 97
3.5.7. NUIL (ALFIDULE) oveeeii e e e 98
3.5.8. recordFormat (AtHDULE) .......oirniiie e 99
3.5.9. DINABIOD ..ooeeiii e 99
3.5.10. bIiNADOUDBIE .o.eiiii s 100
G 7 70 1 U o1 T | 100
3.5.12. DINAINTBA ..cenieii e 101
35,13, DINANUIL oo 101
3.5.14. biNdParameterCOUNL ... ...iuiiiiiii et e e e e e e eaees 102
3.5.15. biNdParameteriNUEX ......c.ceuiiuiiniieie e e e e e ene 102
3.5.16. biNdParameterNAIME ......ccviiiiiiiiei e e e aees 103
G TR TR A o110 (o 1 = A 103
3.5.18. DINAVAIUE ....oveiiiiic et 104
3.5.19. DINAZEIOBIOD ....cviiiiii 104
G TR W02 0 o 1= = 1 =1 Vo L] o 1= N 105
3.5.21. COIUMNBIOD ..cetieit e 105
3.5.22. COIUMNBYLES ...ttt e e 106
3.5.23. COIUMNECOUNL ..o et e e e e e e e e 106
3.5.24. columnDataBasSENaAME .......civuiiiiiiiii e 107
3.5.25. COIUMNDECITYPE ..uniiiiii i e e e e e e aan s 107
3.5.26. COIUMNDOUDIE ... oot 108
3.5.27. COIUMNINUEX .ottt e e e et eaas 108
35,28, COIUMNINE oot 109
3.5.29. COIUMNINTBA ....eeee et e e e enes 109
3.5.30. COIUMNNAEAIME ..ottt e e e e e e e e e e et e et e et e e e ernns 110
3.5.31. COlUMNOFIGINNAME .. couiiiiiii e e e e e e e e et e et e e e e eanas 110
3.5.32. columnTableNAME ... s 111
ST T o0 ][]0 1 1 =) APPSR 111
3.5.34. COIUMNTYPE .ottt ettt e e et e et e e e aaa s 112
3.5.35. COIUMNVAIUE ....oeieie e e 112
3.5.36. dAtACOUNL ...uiiieiiiiii et 113
B.5.37. ADHANAIE ....oviiei e 113
3.5.38. fINALIZE ...eneeii 114
TR TRC e T (Y <Y 114
B.5.40. SEBP 1itiiit e e 115
.54, SIMEBUSY ..iitiiiii ittt 115
3.5.42. SIMIREAUONIY ...eeeeiiii e e 116
T T A TS 11 1] 6] =1 (1= 116
B5.44. VAIUE ..oeieii e 117
4. User Defined Extension Classes 118
4.1, The 00SQLCOIALION CIASS ..ituiiiiiiiiiii et e e e e e e e e et e e e e eaas 118
4.1.1. NeW (Class MEthOd) .......oiiiiiiiiiei e e e 118
4.2. The 00SQLCollationNeeded CIassS .......cccuviiiiiiiiiii e 119
4.2.1. neW (Class MELhO) ........oieuuiiiiai e 119




4.3. The 00SQLEXIENSIONS CIASS ...civuiiiiiiiiii e e e 119
4.3.1. Method TabBIe ......ooenii e 119
4.3.2. 1astErrCode (ALHDULE) ....coeeeii e 120
4.3.3. [aStErrMSg (ALLHDULE) ..uniee e e e e r e 121
4.3.4. autoBuiltin (Class Method) ..........cooiiiiiii e 121
4.3.5. autoCollationNeeded (Class method) .........cccoeeiiiiiiiiii e, 122
4.3.6. AULOCOIIALION ...t ettt e e et e e e 122
o Ty - U1 (o] W od 1T o I 123
4.3.8. AULOPACKAGE ....uuiiiiiii et 123
4.3.9. canCelAULOBUIIIN ......cooii e 124
4.3.10. QEILIDIAIY oniiie e e 124
4.3.11. QELPACKAGE . .cvuiiiiiiie e 125
4.3.12. NISTBUIIIINS ...ttt ettt e e et et e et e e et e e et e eaa s 125
4.3.13. 10AALIBIAIY ..o 126
4.3.14. 108dPACKAGE .....ciiiiiiee e 126
4.3.15. reSetAULOBUIILIN ..oouun e 127
4.3.16. regiSterBUIItiN ... 127

4.4, The 00SQLFUNCLON ClASS .....cvviiiiii i e e e e e 128
4.4.1. neW (Class MELNOM) ........iieuniiiiiai e e 128

4.5. The 00SQLLIBrary Class ........c.uuiiiiiiiiiiiiiiie e e 128
4.5.1. Method TabIe .....ccouniiiiie e e e 129
4.5.2. NeW (Class MEthOd) .......coieuiiiiiiie e e e e 129
4.5.3. [aStErrCode (ArDULE) ....c.uuiiii e e e e e e 129
4.5.4. 1aStErrMSQ (AIHDULE) ...veniee e e e e 130

4.6. The 00SQLPACKAGE CIASS ....uiietiiiiiieii ettt e e e e e e eens 131
4.6.1. Method TabIe ......couniiiii e e 131
4.6.2. new (Class MEthod) ........uuiiiiiii e 131
4.6.3. [aStErrCode (AMDULE) ....c..uieii e e e e e e 132
4.6.4. [aStErrMSsg (ALHDULE) .vu.ieeiii e e e r e e 133
4.6.5. getCOllatioN ...cceiiee i 133
4.6.6. getCollatioNNEeded .........ooeuiiiii e 134
A.6.7. GELFUNCHION ...ttt e et e et e e e e e e e rb s 134
S R (=T 111 =] ST PP UPPPTTRSPPIN 135

4.7. The 00SQLRESUIL CIASS ....ceuiiiiiiiiiiie e e e e ens 135
4.7.1. Method Table .......iiiiii e 135
4.7.2. blob (Class Method) ........couiiiii e 136

4.8. The 00SQLVAIUE CIASS ...cuuiitiiiiiii et e e e ees 136
4.8.1. Method TabIe ......couniii e e e 136
4.8.2. blob (Class MethOd) ......coeuuiiiii e 136

5. The ooSQLite Constants 138

5.1, All Constants Table ... e 138

5.2. Compile Time Version CONSIANTS ..........iiiiiiiiiiiiiiie ettt 148

5.3. 00SQLite SPECIfic CONSLANTS .....oiiieiiiiiiiii et 148

5.4. 00SQLite Specific Result Code CONSLANTS ...........ieviiiiriiieiii e e e e 149

5.5. RESUIt COE CONSIANTS ....uiiiiiiiiieiiiii et et e et e e e e et r e e eaae e e eneens 149

5.6. File OPEN CONSIANLS ....uuiiiiiiiii et e et e e e e e e e eanns 151

5.7. Authorizer ACtiON CONSLANTS ......c.uiiiiiiii ittt e et e e e e e et e e b e eenaees 152

5.8. Authorizer Return Code CONSIANTS ........iiiiiiiiie e eens 153

5.9. XAccess VFS Method CONSIANTS .......uiiiiiiiiiiei e e e e e 153

5.10. Checkpoint Operation Parameter CONStaNtS ..........cccovviiiiiiiiiieiiiierin e e e 153

5.11. Configuration Option CONSIANLS ......uiiiiiieiii e e e e e e e e e e e eanaeees 154

5.12. DB Connection Configuration CONSLANLS ..........c.oiiiiiiiieiie e 154

5.13. DB Status Parameter CONSIANTS ........c..oiuiiiiiiiii e e eans 155

Vi



5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.
5.24.
5.25.
5.26.
5.27.

File Control Opcode CONSIANTS ....c..uiiitiiiiieii et e e e e e e eaa e
Fundamental Datatype CONSIANTS ........coouriiiiiiiiieiiii et e e
Device Characteristic CONSIANTS ....c..uiiiiieiiieee e e e
RUN-TIME LimMit CONSLANTS .....iiiiiiiie e e e
[ L= I Yo 2 o T O 0 = = g £
MULEX TYPE CONSLANTS ...vuetiieiiiiie et ettt et et et e e e e e e e e anees
XSHhMLOCK VFS CONSLANTS ....oiiiiiiiiiiii et e e et e e et eeaneees
Destructor Behavior CONSLANTS ......c...iiiiiiiiiieeii e
Status Parameter CONSTANTS .......ccuiiiiii i e e e eens
Status Parameter (Stmt) CONSLANTS .......covvniviiiiiii e e e e
Synchronization CONSIANTS ........cciuuiiiiiii e e e e e eaes
Text ENCOAING CONSLANTS ......iutiii i e e e e e e e e e e e e e e e enees
Virtual Table Config Option CONSIANTS ......c..iiitiiiii e
merge (Class MELNOA) .........iiiiii e

6. The Classic Rexx Interface to SQLite

6.1.

Online BacCKUP FEALUIE ...ttt

7. ooSQLite Specific Functions

7.1
7.2.
7.3.
7.4.

(oo 1] @ 1IN (=1 =1 oo U o (=
(oo IS] @ ]I (11 1= o[ PN
00SQLItEREQISIEIBUIILIN .. ...iee i e e e e e e e
(o0 1S @ 1 (=AY /=T 5[] o PR

8. ooSQLite Functions A - F

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.
8.25.
8.26.
8.27.
8.28.
8.29.
8.30.

Lo T0 Yo | AU ] (0] =0 =1 o 1= o o
00S(IBACKUPFINISN ...t e e
00SOIBACKUPINIE ... et e e e e ean s
00SqIBaCKUPPAGECOUNL .. .coeiiiiiii et
00SqIBaCKUPREMEAINING .....oieiiiiiiiii e e
Lo To 0 |12 7= Tt W] 015 (=7 o
00SAIBINABIOD ... e
00S(IBINADOUDIE .. ..ot et
[oTo LYo 1271 gTo | o | A USSP UPTR
00SQIBINAINIBA ...t ettt et e e e et e e e s
00SIBINANUIL <.t e e et e e e e s
00S(IBINAPArameterCOUNL ........couuiiiii i e e e e e e e e e e e e e e e ean s
00S(IBINAPArameteriNOEX ........cveuiiiii e e e e e e e e e e e
00S(IBINAPArameterNAME ........couuiiiiiiiiii e e e aa s
(oo rS{o || 211 ol 1= TP
00SQIBINAVAIUE ...ttt e et e e e e e e eees
00SQIBINAZEIOBIOD .....iiiiiii e
Lo 0 T0 |1 2181537/ =T T |-
00SOIBUSYTIMEOUL ...t e e e e e e e e e e et e e e et e e aaneeean s
00S(ICaNCEIAULOBUIIIN ......ueie e
(o o 1S{o | (@44 F=Tq [0 =TS PP UPPTUPPT
00SQICIEAIBINAINGS ...eetiieiiiii ettt ettt et e e e enaa s
OO0SGICIOSE .. et
Lo To Yo | (@] 18] 141 01 =7 o] o ISP
Lo To Yo | [@Fo] 18] 141 0] =Y (TS
00SAICOIUMNCOUNT ...ttt e et et e et e e e e eeenas
00S(ICOIUMNDAtADASENEAIME ...t et e e aes
00SICOIUMNDECITYPE ..ottt et e et e e et e e e eae e eeees
00SqICOIUMNDOUDIE .. .cooii e
Lo To Yo | (@] 18] 141 0] 1 o =




8.31. 00SOICOIUMNING L..ceee et e e e e e e et e e e eanas 186
8.32. 00SICOIUMNINIBA ......eiii ettt e e 187
8.33. 00SICOIUMNNEAIME ...ttt ettt e et e e et e e enaes 187
8.34. 00SqICOIUMNOIIGINNAME ....iiiiiii e e e e e e e e eanas 188
8.35. 00SICOIUMNTABIENAME ....covniiiiie e e e e 188
8.36. 00SOICOIUMNTEXL ....eeieeii ettt et e et e e e e et e e ean e eanaas 189
8.37. 00SOICOIUMNTYPE ..oiiiiieei e et et e et e et e et e e et e e eaeaeans 189
8.38. 00SICOIUMNVAIUE .. .couiiiiiii e e et 190
8.39. 00SICOIAIONNEEAEM ......uniiiiiii et e e e e e e e eaa e e 190
8.40. 00SGICOMMITHOOK .. .eeiieiiiii e e e e e e e e e e e e ean s 191
8.41. 00SqICOMPIIEOPLONGEL ....cvtiiei e e e e e e e e e e e ee 191
8.42. 00SqICOMPIIEOPLONUSEM .....covniiiiiii e e e 192
R S B o To LYo | [0Fe] 431 o] =] = PP 192
8.44. 00SICIreateCOIIALION .........iieiiiie et ettt et et e e 193
8.45. 00SICIEatEFUNCLION ......iiiiiii et 193
LI o Yo TS |17 = 1@ 11 ] | S 194
8.47. 00SIDBFIIENGME ... e e e 194
8.48. 00SOIDDHANGIE ... .ot 195
8.49. 00SOIDDMULEX ....eiiii i et et 195
8.50. 00SOIDDREAUONIY ...ttt 196
8.51. 00SIDDREIEASEMEMOIY .....uiiiiiiiiiie ettt 196
8.52. 00SOIDBSIAIUS ....uiiitiiiii e 197
8.53. 00SQIENADBIELOAAEXIENSION ....ccviiiiiiiciiii e e e e e e e e e e e e e e eanaeees 197
8.54. 00SIEITCOUE ...ttt e e et et et et e e e e aanas 198
R T oTo LT || =T 1Y Ko PP 198
8.56. OOSUIEITSII ...ttt ettt et 199
8.57. OOSUIEXEC ...ttt 200
8.58. 00SOIEXIENUEUAEITCOUE .. .cevuiieiiieiie e e e e e e e e et e et e e e e e eanas 200
8.59. 00SIEXtENdEARESUICOUES .....vviiiiceii e e e e e 201
8.60. 00SOIFINANIZE ... et 201
9. ooSQLite Functions G - R 203
9.1, 00SQIGELAULOCOMIMIL L..iiitcii s ee e e e e e e e e e e et e e e e e et e e e e e aneeennes 203
LS I o o 1= || 1] (=4 ] o) 203
9.3. 00SIISHANAIENUIL ..o e et e e e eans 204
9.4, 00SQILASINSEITROWID ...ttt e e e e e e e e eans 204
9.5, 00SILIDVEISION ..ottt 205
9.6. 00SqILIBVErsioNNUMDET ....cooii e 205
1S o T 1o || 3 206
9.8. 00SOILOAAEXIENSION .. ..uiiiiiiieii et e e e e e e e e e e e et e et e e e e e e et e eann s 206
9.9. 00SqIMEMOIYHIGNWALET ... ..oniitiiii e e 207
9.10. 00SOIMEMOIYUSEM ...ttt e e et et e et e et e e et e eeannas 207
9.11. OOSOIMULEXAIIOC ...ttt ettt et e et e e e e e e s 208
9.12. OOSOIMULEXENTEL ...ttt e e e e e e e eaanns 208
9.13. 00SOIMULEXFTEE ....iiiiii e ettt e et e e et e e e e et e e e e e e an e e e et e e ean e aean e eaneeanaees 209
9.14. 00SOIMULEXLEAVE ....ievneiiiieiii e ei et et e e e e et e e e e e et s e et e e et s e et e e e e e et e e et e eennas 209
O.15. O0SOIMULEXTIY ettt ettt et e et e e e e e et et b e e et e e et e et e eanas 210
9.16. 00SOINEXESTML ...ttt et e e et e e e e et e e et e e eb e e e bn e eeneeaens 210
9.17. 00SOIOPEN ..ttt 211
9.18. 0O0SIPIEPAIE ...eeieiiii e 212
9.19. 00SIPIOTIE ...iiii i 214
9.20. 00SqIPTrOgreSSHANMIET ......civiiiii e e e e 214
9.21. 00SQIREIEASEMEMOIY ....ciiiiiiiee ittt e e 215
9.22. O0SOIRESEL ... ettt aa s 215




9.23.
9.24.
9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.

00SOIRESEIAULOEXIENSION ...cvtiiitieet ettt e et e e e e ea e
00SQIRESUIBIOD ... e
00SIRESUIDOUDIE ... .ot eaees
o0 Y0 | L= TS 0 L4 = o
00SOIRESUREITOTCOAE .....uiiiiiiiii e e e e e e e e e e e e e aanaees
00SOIRESUREITOINOMEM ...t et
00SOIRESUREITOITOOBIQ ...cvniiiiiiiiii et e een s
OO0SOIRESUIIINT ..o ettt e e e e et e e e
00SIRESUIINTBA ...ttt
o0 1Yo | L= TS 0 14N
(o0 Y0 | =TS 0 L = S
O00SOIRESUITVAIUE ... et
00SOIRESUIZEIOBIOD ... e
00SQIROIDACKHOOK ... .t

10. ooSQLite Functions S - Z

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.

Lo T0 o | KT =] 7 U 11 o =
Lo To Yo | KT ] 0w 1= = o T 0 011 {7 S
OO0SQISOUICEID ... ettt et e et e e e eanas
(o T0E{0 | 15T | R PRSPPI
OOSGISTALUS ... ettt ettt et e
ToTo LT | K53 (] o RSP UPPTT
Lo o Y0 | K] 12112 1Y/
Lo T0 7o | K] (a1 4 == T (o] o] V2
(oo 0] IS] 11 4165] ¥= 11U L OO UPPRUPI

10.10. 00SOISIIGIOD ...eeee e e e
10.11. 00sqITableColUMNMELAAALA .........uieieieiieieii e
10.12. 00SQITRIEAUSATIE ......iiiiiiii e e
0001k o To Y=o | I o) =1 [ g 7= o Vo [
000 S To 1= | 1 = Lo =
10.15. 00SQIUPAAIEHOOK .......ceiiiieeeii ettt et e et e e e ean e
10.16. 00SIVAIUEBIOD .......e e e
10.17. 00SOIVAIUEBYLES ...ttt ettt e eaans
10.18. 00SIVAIUEDOUDIE ... oottt eeaa e
10.19. 00SIVAIUEINT ...t e e e e e
02 0 I o To Yo | AV 7= 11U =T L0 T g 1T ol 1Y o=
10.21. 00SIVAIUETEXL ...eeeeiieeei ettt e et et e e e e e e ean s
10.22. 00SOIVAIUETYPE ..nieiieii ettt e et et e et e e et e e e e eaa s
O A T 0T 1o | AV = £ o o TSP UPPPTTPPPPTTRSPPIN

A. Notices

Al
A2

B = T LT F= U 2
Source Code FOr ThiS DOCUMENT .......ieiiiiieiiei et e e e e r e e e eaaaaas

B. Common Public License Version 1.0

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.

(D= 11 011 1o E= S PP UP PPN
Grant Of RIGNTS .....iiiii e
REQUITEIMENTS ...ttt ettt e et et et e e e e et e e e eaba e eeene
Commercial DIStHDULION ... .coiouiiii e
N[O VY= 1 =T o | PP PP
Disclaimer of Liability ........c..oouniiiiii e
(1=t =T o | PP

C. Revision History

Index




Preface

This book describes the 0oSQLite framework, which is implemented as an external library package
for ooRexx. External library packages are often called extensions, or native extensions. The library
package extends the capability of the Rexx interpreter by adding functionality or features not present
in the base interpreter.

The 0oSQLite library package gives programmers access to the SQLite database engine directly from
their Rexx programs. This book describes the Classes, Methods, and Funtions in ooSQLite that allow
that access and describes how to use them.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions

Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return . true or . false, the result of
performing the comparison operation.

This method is exactly equivalent to subwWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any haséntry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters

added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.




Who Should Use This Book

@e

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

M

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Who Should Use This Book

This book is intended for Open Object Rexx programmers who are using or intend to use ooSQLite in
their Rexx programs. The book does not teach SQL nor relational database design or management. It
provides a basic introduction to using SQLite through the documentation of the classes and functions
available in ooSQLite. In depth documentation of SQLite is provided by the developers of SQLite at
their website®, not in this book.

3. How This Book is Structured

This book is primarily a reference to the classes and functions in coSQLite. 00SQLite provides an
object-orientated interface and a classic Rexx interface to SQLite. The book is broken into two main
sections. The first section describes the object-orientated interface and the second section describes
the classic Rexx section. Preceding the object-orientated section are the two chapters, About This
Book and Brief Overview. They contain a small amount of overall information. A detailed index follows
the classic Rexx section.

The object-orientated section contains a reference for each class in 00SQLite. Each class reference
contains a single section for every class, instance, and attribute method of the class. The first section
in a class reference is a table listing every method with a brief description and a link to the detailed
documentation for the method.

Each method section starts with a syntax diagram as a synopsis of how to invoke the method. Text
follows describing the method, listing each argument to the method, and the return from the method.
Most method sections have a remarks component discussing the method in more detail. Most method
sections also have a details component pointing to the SQLite documentation that is most relevant

! http://www.sqglite.org/index.html

Xi


http://www.sqlite.org/index.html
http://www.sqlite.org/index.html

Related Information

to the method. To fully understand the use of any single method, the reader should also consult the
SQLite documentation relevant to that method. Finally, many, but not all, of the method sections end
with a short code snippet as an example of using the method.

The classic Rexx section starts with a table that lists every function available for the classic Rexx
programmer. This table is similar to the method table that begins each class reference. The table
contains a brief description of the function and a link to the detailed documentation for the function.
Each function is fully documented in a single section.

The reference for each single function is very similar to the reference to each single method. It starts
with a syntax diagram, describes the function, lists the arguments and return. It usually has a remarks
component. The details component points the way to the authoritative SQLite documentation. Some,
but not all function references contain an example.

Each method and function reference is meant to be stand alone. All the details to use any method or
function are included within the section for that method or function. Each method and function is listed
in the index. The reader can look up any function or method in the index or the table of contents and
go straight to the reference for the function or method.

Within the reference for a single class, each method appears in alphabetical order. Likewise the
reference for each function appears in this reference manual in alphabetical order.

4. Related Information

See also: Open Object Rexx: Reference

There is a wealth of information on SQLite and how to use SQLite on the Web. This information is
directly applicable to using 0oSQLite. The SQLite home® page is the authoritative answer to any
SQLite question. In addition there is a SQLiter users mailing list® that can be subscribed to.

5. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below. This is similar to, but
slightly different than, the IBM syntax diagrams used in other ooRexx reference documentation. The
author is calling these diagrams simplified railroad tracks. It primarily strives to limit all diagrams

to 2 lines, and does away with much of the complexity of true IBM railroad tracks. The body of text
following the syntax diagrams will resolve any ambiguities in the diagram.

» Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The >>- - - symbol indicates the beginning of a statement.

The - - -> symbol indicates that the statement syntax is continued on the next line. In most cases
statement continuation is avoided.

The >- - - symbol indicates that a statement is continued from the previous line.
The - - ->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >- - - symbol and end
with the - - -> symbol.

2 http://www.sglite.org/index.html
® http://sqlite.org:8080/cgi-bin/mailman/listinfo/sglite-users

Xii


http://www.sqlite.org/index.html
http://sqlite.org:8080/cgi-bin/mailman/listinfo/sqlite-users
http://www.sqlite.org/index.html
http://sqlite.org:8080/cgi-bin/mailman/listinfo/sqlite-users

Getting Help and Submitting Feedback

» Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item-------------------------------—--_- ><

» Optional items appear below the main path.

>>-STATEMENT - -+--------ommommn e ><
+-optional_item-+

In this reference, the syntax being presented is the syntax for method invocations and function calls.
The diagrams show the method, or function, names and their arguments. For method invocations, the
section the method is included in, and / or the text itself, make it clear as to which class the method
belongs to. The arguments to the method or function are enclosed in parenthesis and separated by
commas. The arguments are represented by appropriate variable names and these variable names
are then described in the text for the method. When arguments are optional, the default value and or
behavior if the argument is omitted is also described in the text. In all cases, the text rather than the
syntax diagram should be considered definitive.

The following example shows the described syntax:

>>--rollbackHook(--callBackObj--+------------ R ) ><
+-,-mthName--+ +-,-userData--+

6. Getting Help and Submitting Feedback

The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

6.1. The Open Object Rexx SourceForge Site

The Open Object Rexx Projecl‘4 utilizes SourceForge5 to house the ooRexx Project6 source
repositories, mailing lists and other project features. Over time it has become apparent that the
Developer and User mailing lists are better tools for carrying on discussions concerning ooRexx and
that the Forums provided by SourceForge are cumbersome to use. The ooRexx user is most likely to
get timely replies from one of the mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions7
page. This list is for discussing ooRexx project development activities and future interpreter
enhancements. It also supports a historical archive of past messages.

The Users Mailing List
You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions8 page.
This list is for discussing using ooRexx. It also supports a historical archive of past messages.

4 http://www.oorexx.org/

® http://sourceforge.net/

6 http://sourceforge.net/projects/oorexx

7 http://sourceforge.net/mail/?group_id=119701
8 http://sourceforge.net/mail/?group_id=119701

Xii


http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701

The Rexx Language Association Mailing List

The Announcements Mailing List
You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscripl‘ionsg
page. This list is only used to announce significant ooRexx project events.

The Bug Mailing List
You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions10 page.
This list is only used for monitoring changes to the ooRexx bug tracking system.

Bug Reports
You can create a bug report at ooRexx Bug Report11 page. Please try to provide as much
information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to
debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at ooRexx Documentation
Report12 page. Please try to provide as much information in a documentation report as possible.
In addition to listing the document and section the report concerns, direct quotes of the text
will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature F?equests13 page.

Patch Reports
If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch
Report14 page. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report and attach the
patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They
are located on the ooRexx Forums™ page. There are currently three forums available: Help,
Developers and Open Discussion. In addition, you can monitor the forums via email.

6.2. The Rexx Language Association Mailing List

The Rexx Language Association™® maintains a mailing list for its members. This mailing list is only
available to RexxLA members thus you will need to join RexxLA in order to get on the list. The dues
for RexxLA membership are small and are charged on a yearly basis. For details on joining RexxLA
please refer to the RexxLA Home Page'’ or the RexxLA Membership Application'® page.

® http://sourceforge.net/mail/?group_id=119701

10 http://sourceforge.net/mail/?group_id=119701

n http://sourceforge.net/tracker/?group_id=119701&atid=684730
12 http://sourceforge.netitracker/?group_id=119701&atid=1001880
13 http://sourceforge.net/tracker/?group_id=119701&atid=684733
14 http://sourceforge.net/tracker/?group_id=119701&atid=684732
'3 http://sourceforge.net/forum/?group_id=119701

1 http://www.rexxla.org/

r http://rexxla.org/

1 http://www.rexxla.org/rexxla/join.html

Xiv


http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html

comp.lang.rexx Newsgroup

6.3. comp.lang.rexx Newsgroup

The comp.lang.rexx19 newsgroup is a good place to obtain help from many individuals within the Rexx
community. You can obtain help on Open Object Rexx or on any number of other Rexx interpreters
and tools.

19 http:/igroups.google.com/group/comp.lang.rexx/topics?hl=en

XV


http://groups.google.com/group/comp.lang.rexx/topics?hl=en
http://groups.google.com/group/comp.lang.rexx/topics?hl=en

Chapter 1.

Brief Overview

00SQLite is a direct interface to SQLite. SQLite is an in-process library that implements a self-
contained, serverless, zero-configuration, transactional SQL database engine.

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not
have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete
SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file. The
database file format is cross-platform - you can freely copy a database between 32-bit and 64-bit
systems or between big-endian and little-endian architectures.

00SQLite provides both an object-orientated interface and a classic Rexx interface to SQLite. Some
people refer to this as a binding. The binding allows a programmer to write applicaions using the Rexx
programming language that access and use databases through the SQLite database engine.

1.1. Getting Started

If the user of 00SQLite is unfamilar with SQLite itself, the best way to get started is to browse the
SQLite website® to get a basic feel for what SQLite is.

To actually use the 0oSQLite package in an ooRexx program, simply require the ooSQLite.cls in
the progam and ensure that ooSQLite.cls is in a location where the operating system can find it:

rirequires 'ooSQLite.cls'

This is no different than using any other external package in ooRexx, such as ooDialog.cls,
rxftp.cls, cvsStream.cls, etc..

Next, the user should familarize herself with the example programs provided by the 00SQLite
package. In the installation location of ooSQLite are the examples and testing subdirectories.
These direcories contain examples meant to be run from the command line. The user should run the
examples after reading through the source code. The examples are meant to be played with. That is,
the user should make small changes to the samples and observe what happens. As in any activity,
experience is the best teacher.

Using the examples should be done in conjunction with reading this reference manual. The best
advice would be to read the source code in an example and look up each class and method in the
example in the reference. Or each function call in the example if the reader is more interested in the
classic Rexx interface.

If things are unclear, then post a question to the 0coRexx user's list. The list is easy to subscribe®

to. In addition the getting help section of this reference lists a number of other resources for the
programmer with questions about 0oSQLite.

1.1.1. Command Line Shell

00SQLite comes with a command line shell executable. 0oSQLite3.exe on Windows and
oosqlite3 on Unix-like systems. This documentation will refer to the command line shell as

! http://www.sglite.org/index.html
2 http://sourceforge.net/mail/?group_id=119701



http://www.sqlite.org/index.html
http://sourceforge.net/mail/?group_id=119701
http://www.sqlite.org/index.html
http://sourceforge.net/mail/?group_id=119701

Definition of Terms

00SQLite3.exe as opposed to oosqlite3 because it is easy to distinguish that ooSQLite3.exe is an
executable. In all cases, 00SQLite3.exe refers to both the Windows and Unix-like command line shell.

The command line shell is a simple program to use and will read any SQL.ite database file. It is
extremely useful when first starting out with ooSQLite. Indeed, it is probably very useful at any time for
anyone working with SQLite databases.

The executable is installed alongside the ooSQLite. cls file and the implementation library. The
installation directory is normally added to the path, putting the command line shell also in the path. As
long as it is in the path the command line shell can be executed from anywhere on the system.

Note that the 00SQLite command line shell is the same as the command line shell provided by
SQLite. The shell source code is simply compiled as part of the 00SQLite build process and renamed.
The source code is virtually unchanged, so 00SQLite3.exe behaves exactly the same as sqlite3.exe.
At this time, the only change in 00SQLite3.exe is a few of the startup defaults.

Typically a command line shell is started up and presents some type of a prompt. The user then
enters commands, the shell executes the command, and then returns to the prompt to await the
next command. ooSQLite3.exe is no different. To start it type 00SQLite3, or oosglite3 at a command
prompt:

C:\>o00SQLite3

SQLite version 3.7.13 2012-06-11 02:05:22
Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sgqlite>

The .help command gives help on how to use the shell. Typically, the shell is started with the name of
a database and the shell opens that database:

C:\>00SQLite3 phoneBook.rdbx

SQLite version 3.7.13 2012-06-11 02:05:22

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sglite> .tables

addr_type contacts inet_addr phone_addr street_addr
sqlite>

To exit the shell type .exit, or just .e

sglite> .e

C:\>

As noted, 00SQLite3.exe is the same as the sqlite3.exe command line shell that can be downloaded
from SQLites. There is a wealth of information on the Internet regarding the SQLite command shell
program. Anything said about sqlite3.exe applies to 00SQLite3.exe. Have fun with 0oSQLite3.exe, it is
an useful tool.

1.2. Definition of Terms

A collection of definitions and explanations for terms used in the 00SQLite documentation. These
terms may not be familiar to the average Rexx programmer.

8 http://www.sqlite.org/download.html



http://www.sqlite.org/download.html
http://www.sqlite.org/download.html

Database Name

1.2.1. Database Name

The SQLite database engine tracks the databases opened on a database connection by internal
names. The main database file opened on a connection has the name "main" and the name "temp"
refers to the database used for temporary tables. However, SQLite also has the concept of attaching
another database file to the current database connection. Attaching a database uses a SQL statement
with the format of ATTACH DATABASE expr AS database-name. The expression after the AS
keyword is the name used internally by the database engine for the attached database.

Many of the 0oSQLite methods and functions have as an argument the database name. In these
methods and functions, the name refers to the internal name used by SQLite, not the file name of the
database. This documentation attempts to distinguish between a database file name and the internal
database name by always using file name when refering to the actual database file.

1.2.2. Handle

A unique reference to a system resource managed by the operating system. In 00SQLite, most
handles are references to data structures assigned by the SQLite database engine to manage its
databases. These can be references to a database connection, a prepared statement, an online
backup, etc.. Other handles not related to the database engine are also used by ooSQLite.

Handles are mostly used in the classic Rexx interface and are required as arguments for certain
functions. Some handles are also used in the object orientated interface. A handle is an opaque type,
the Rexx programmer need not be aware of the specific format of a handle. For the classical interface,
the 0oSQLite package provides functions that return handles. When a function requires a handle as an
argument, the Rexx programmer needs to obtain the handle from one of those provided functions. In
the object orientated interface the situation is similar, 00SQLite provides methods that return handles
and methods that require handles as arguments. To obtain a handle required for a method argument,
the Rexx programmer needs to obtain the handle from one of the provided methods.

As a general rule, handles obtained from functions in the classic Rexx interface should not be used as
handle arguments to methods, and vice versa. However, as o0SQLite is enhanced, this may not be an
absolute rule. The 00SQLite documentation will point out exceptions to this rule if there are any.

1.2.3. Threading Mode

SQLite itself supports three different threading modes:

Single-thread:
In this mode, all mutexes are disabled and SQLite is unsafe to use in more than a single thread at
once.

Multi-thread:
In this mode, SQLite can be safely used by multiple threads provided that no single database
connection is used simultaneously in two or more threads.

Serialized:
In serialized mode, SQLite can be safely used by multiple threads with no restriction.

SQLite allows the threading mode to be determined at compile-time, start-time, and run-time.
However, the 00SQLite framework is compiled in serialized threading mode and, currently, provides no
way to change this at start-time. Therefore, for all intents and purposes, ooSQLite uses the serialized
threading mode.

It is possible to change the threading mode to multi-thread for individual database connections when
instantiating a new connection object or opening the connection using the classic Rexx interface.

3



Common Concepts

However, this is stongly advised against. The 00SQLite implementation is done using the assumption
that the threading mode is always serialized.

Consult the SQLite documentation on the threading mode* for more information.

1.3. Common Concepts

There are some common concepts shared throughout ooSQLite whether the programmer is using the
object-orientated interface or the classic Rexx interface. Some of these concepts are briefly discussed
here.

1.3.1. Embedded

The 00SQLite package embedds the SQLite database engine within the package. Embedding
indicates that the SQLite software code is compiled directly into the coSQLite library. This in turn
means that ooSQLite does not need any external piece to work. There is no need for a SQLite library
to be installed on the system. There is no reason why a SQLite library can not be installed on the
system, but if there is one, coSQLite will not access it.

1.3.2. Database Engine

Database engine refers to the code that carries out the actual database function. For example, MySQL
comes with a database engine, but it also comes with components that allow a server to serve up
connections to the database engine, allow a client to contact the server, etc.. These components

are not a part of the database engine of MySQL. 00SQLite works by making calls into the SQLite
database engine, (which is embedded within coSQLite.) Within this documentation, a reference to

the database engine means the SQLite database engine. In places in the documentation, the SQLite
database engine is stated explictly. In places where the SQLite part is left off, the SQLite part is
implicit.

1.4. SQL.ite Features

SQLite has some characteristics and features that are distinct from other database engines. Many of
these features seem suitable for the types of applications ooRexx programmers want to write.

Zero-Configuration:
SQLite does not need to be "installed" before it is used. There is no "setup" procedure. There
is no server process that needs to be started, stopped, or configured. There is no need for an
administrator to create a new database instance or assign access permissions to users. SQLite
uses no configuration files. Nothing needs to be done to tell the system that SQLite is running.
No actions are required to recover after a system crash or power failure. There is nothing to
troubleshoot.

SQLite just works.

Other more familiar database engines run great once you get them going. But doing the initial
installation and configuration can be intimidatingly complex.

Serverless:
Most SQL database engines are implemented as a separate server process. Programs that
want to access the database communicate with the server using some kind of interprocess

4 http://www.sqlite.org/threadsafe.html



http://www.sqlite.org/threadsafe.html
http://www.sqlite.org/threadsafe.html

SQLite Features

communication (typically TCP/IP) to send requests to the server and to receive back results.
SQLite does not work this way. With SQLite, the process that wants to access the database reads
and writes directly from the database files on disk. There is no intermediary server process.

There are advantages and disadvantages to being serverless. The main advantage is that there is
no separate server process to install, setup, configure, initialize, manage, and troubleshoot. This
is one reason why SQLite is a "zero-configuration" database engine. Programs that use SQLite
require no administrative support for setting up the database engine before they are run. Any
program that is able to access the disk is able to use an SQLite database.

On the other hand, a database engine that uses a server can provide better protection from bugs
in the client application - stray pointers in a client cannot corrupt memory on the server. And
because a server is a single persistent process, it is able control database access with more
precision, allowing for finer grain locking and better concurrency.

Most SQL database engines are client/server based. Of those that are serverless, SQLite is
probably the only one that allows multiple applications to access the same database at the same
time.

Single Database File:
A SQLite database is a single ordinary disk file that can be located anywhere in the directory
hierarchy. If SQLite can read the disk file then it can read anything in the database. If the disk file
and its directory are writable, then SQLite can change anything in the database. Database files
can easily be copied onto a USB memory stick or emailed for sharing.

Other SQL database engines tend to store data as a large collection of files. Often these files are
in a standard location that only the database engine itself can access. This makes the data more
secure, but also makes it harder to access. Some SQL database engines provide the option of
writing directly to disk and bypassing the filesystem all together. This provides added performance,
but at the cost of considerable setup and maintenance complexity.

Cross-Platform Database File:
The SQLite file format is cross-platform. A database file written on one machine can be copied to
and used on a different machine with a different architecture. Big-endian or little-endian, 32-bit or
64-bit does not matter. All machines use the same file format. Furthermore, the developers have
pledged to keep the file format stable and backwards compatible, so newer versions of SQLite can
read and write older database files.

Most other SQL database engines require you to dump and restore the database when moving
from one platform to another and often when upgrading to a newer version of the software.

Compact:
When optimized for size, the whole SQLite library with everything enabled is [footprint | less than
350KiB in size] (as measured on an ix86 using the "size" utility from the GNU compiler suite.)
Unneeded features can be disabled at compile-time to further reduce the size of the library to
under 190KiB if desired.

Most other SQL database engines are much larger than this. IBM boasts that its recently released
CloudScape database engine is "only" a 2MiB jar file - an order of magnitude larger than SQLite
even after it is compressed! Firebird boasts that its client-side library is only 350KiB. That's as big
as SQLite and does not even contain the database engine. The Berkeley DB library from Oracle is
450KiB and it omits SQL support, providing the programmer with only simple key/value pairs.

Manifest typing:
Most SQL database engines use static typing. A datatype is associated with each columnin a
table and only values of that particular datatype are allowed to be stored in that column. SQLite

5



SQLite Features

relaxes this restriction by using manifest typing. In manifest typing, the datatype is a property of
the value itself, not of the column in which the value is stored. SQLite thus allows the user to store
any value of any datatype into any column regardless of the declared type of that column. (There
are some exceptions to this rule: An INTEGER PRIMARY KEY column may only store integers.
And SQLite attempts to coerce values into the declared datatype of the column when it can.)

As far as the authors of SQLite can tell, the SQL language specification allows the use of manifest
typing. Nevertheless, most other SQL database engines are statically typed and so some people
feel that the use of manifest typing is a bug in SQLite. But the authors of SQLite feel very strongly
that this is a feature. The use of manifest typing in SQLite is a deliberate design decision which
has proven in practice to make SQLite more reliable and easier to use, especially when used in
combination with dynamically typed programming languages such as Tcl and Python. This feature
should go very well with ooRexx.

Variable-length records:
Most other SQL database engines allocated a fixed amount of disk space for each row in most
tables. They play special tricks for handling BLOBs and CLOBs which can be of wildly varying
length. But for most tables, if you declare a column to be a VARCHAR(100) then the database
engine will allocate 100 bytes of disk space regardless of how much information you actually store
in that column.

SQLite, in contrast, use only the amount of disk space actually needed to store the information in
a row. If you store a single character in a VARCHAR(100) column, then only a single byte of disk
space is consumed. (Actually two bytes - there is some overhead at the beginning of each column
to record its datatype and length.)

The use of variable-length records by SQLite has a number of advantages. It results in smaller
database files, obviously. It also makes the database run faster, since there is less information
to move to and from disk. And, the use of variable-length records makes it possible for SQLite to
employ manifest typing instead of static typing.

Public domain
The source code for SQLite is in the public domain. No claim of copyright is made on any part of
the core source code. (The documentation and test code is a different matter - some sections of
documentation and test logic are governed by open-source licenses.) All contributors to the SQLite
core software have signed affidavits specifically disavowing any copyright interest in the code.
This means that anybody is able to legally do anything they want with the SQLite source code.
This allows ooRexx to directly embedd the database engine in the 0oSQLite package.

There are other SQL database engines with liberal licenses that allow the code to be broadly and
freely used. But those other engines are still governed by copyright law. SQLite is different in that
copyright law simply does not apply.

The source code files for other SQL database engines typically begin with a comment describing
your license rights to view and copy that file. The SQLite source code contains no license since it
is not governed by copyright. Instead of a license, the SQLite source code offers a blessing:

May you do good and not evil
May you find forgiveness for yourself and forgive others
May you share freely, never taking more than you give.

SQL language extensions:
SQLite provides a number of enhancements to the SQL language not normally found in other
database engines. The EXPLAIN keyword and manifest typing have already been mentioned

6



SQLite Features

above. SQLite also provides statements such as REPLACE and the ON CONFLICT clause that
allow for added control over the resolution of constraint conflicts. SQLite supports ATTACH and
DETACH commands that allow multiple independent databases to be used together in the same
qguery. And SQLite defines APIs that allows the user to add new SQL functions and collating
sequences.




Chapter 2.

The Object Orientated Interface to

SQLite

The object-orientated interface to SQLite provides a number of classes whose methods are used to
work with SQLite databases.

The intent is for the object-orientated interface to allow access to the complete functionality and
feature set of SQLite. The first release of 00SQLite will not meet, and is not intended to meet, that
goal. Lesser used functionality will be added over time.

The object-orientated and classic Rexx interfaces are developed in tandem. As each new feature or
functionality of SQLite is added to 00SQLite, access to the feature is added to both interfaces at the
same time. There is no SQLite functionality in the object-orientated interface that can not be accessed
through the classic Rexx interface. And, vice versa.

The following table lists the classes used in the object orientated interface of the 00SQLite package:

The 00SQLite Class

Table 2.1. ooSQLite Class Listing

Class Description

The 00SQLite class provieds a number of class methods that are generally
useful in working with SQL.ite databases. Many of the methods are used

to query or set values in the database engine rather than an individual
database.

The ooSQLiteBackup
Class

An ooSQLiteBackup object provides methods for copying the content
of one database into another. It is useful either for creating backups of
databases or for copying in-memory databases to or from persistent files.

The
00SQLiteConnection
Class

Each ooSQLiteConnection object represents an open connection to a
SQLite database. Mulitple connections to the same database are allowed
by instantiating multiple ooSQLiteConnection objects.

The
00SQLiteConstants
Class

The ooSQLiteConstants class provides a CONSTANT value for each
SQLite defined constant, and a small number of 00SQLite specific
constants.

The o0SQLiteMutex
Class

An ooSQLiteMutex object provides methods for allocating and using

a mutex. In general a mutex is a synchronization object used in multi-
threading programs to prevent different threads from acessing a shared
resource at the same time.

The 00SQLiteStmt
Class

Each 0oSQLiteStmt object represents a single SQL statement, which is
often referred to as a prepared statment.




Chapter 3.

Primary ooSQLite Classes

Most of the work to use the SQLite database engine is done through the primary ooSQLite classes
documented in this chapter. SQLite also allows extensions to the database engine to be written by
the user of the engine. An SQLite extension is typically a shared library or DLL and written in C / C+
+ code. 00SQLite provides full support for the loading of these extensions with a number of classes.
Those classes are documented in their own chapter.

As a note, support for user defined extensions written in Rexx are also part of o0SQLite. This support
is done through the createCollation and createFunction. In the future support for user defined virtual
tables is intended to be added to ooSQLite through a createModule method.

The following table lists the primary classes used in the object orientated interface of the 0oSQLite
package that are documented in this chapter:

Table 3.1. 0oSQLite Class Listing

Class Description

The 00SOQLite Class The 00SQLite class provieds a number of class methods that are generally
useful in working with SQL.ite databases. Many of the methods are used

to query or set values in the database engine rather than an individual
database.

The ooSQLiteBackup An ooSQLiteBackup object provides methods for copying the content
Class of one database into another. It is useful either for creating backups of
databases or for copying in-memory databases to or from persistent files.

The Each ooSQLiteConnection object represents an open connection to a
00SQLiteConnection SQLite database. Mulitple connections to the same database are allowed
Class by instantiating multiple ooSQLiteConnection objects.

The 00SQLiteMutex An ooSQLiteMutex object provides methods for allocating and using
Class a mutex. In general a mutex is a synchronization object used in multi-

threading programs to prevent different threads from acessing a shared
resource at the same time.

The 00SOQLiteStmt Each 0oSQLiteStmt object represents a single SQL statement, which is
Class often referred to as a prepared statment.

3.1. The ooSQL.ite Class

The methods of the 00SQLite class consist entrirely of class methods. These are utility methods that
primarily deal with application-wide or process-wide settings, and the database engine itself, rather
than specific databases.

3.1.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with the database engine using the ooSQLite class

Table 3.2. 00SQLite Methods and Attributes

Method Documentation

Class Attribute
Methods

recordFormat Sets or queries the default, process-wide format for returned result sets.

9



null (Attribute)

Method Documentation

null

Reflects the default representation for the SQL NULL value that is returned
by the interpreter for database values that are NULL.

Class Methods

compileOptionGet Returns the name of the nth compile time option if the option was used
during the build of ooSQLite.

compileOptionUsed Determines if the named compile-time option was used during the build of
00SQLite.

complete Determines if the specified text seems to be a complete SQL statement.

enquote Converts the supplied Rexx value(s) into SQL literals.

enquote Retrieves the English language descriptive string for a result code.

libVersion Returns the embedded SQLite library version as a string.

libVersionNumber

Returns the embedded SQLite library version as a number..

memoryHighWater Returns the maximum value of the number of bytes of memory malloced
but not freed (memory in use) of the database engine since the high-water
mark was last reset.

memoryUsed Returns the number of bytes of memory currently in use by the database
engine.

releaseMemory Causes the database engine to attempt to free the specified number of
bytes of heap memory by deallocating non-essential memory.

softHeapLimit64 Imposes a limit on the heap size, or queries the current size.

sourcelD Returns the embedded SQLite library source ID string.

sqlite3Version

Returns the value of the SQLite C code sqlite3_version[] string
constant.

status Retrieves runtime status information about the performance of the
database engine, and optionally resets various highwater marks.

threadSafe Tests to see if the currently running database engine is using a library that
is thread safe.

version Produces a version string in the format specified.

3.1.2. null (Attribute)

>>--null-------------

>>--null = nullObj

Reflects the default representation for the SQL NULL value that is returned by the interpreter for
database values that are NULL.

null get:

Returns the current default object the interpreter uses for the SQL NULL value. If the programmer
has not changed this attribute, its value is the .nil object.

null set:

Set this attribute to either the .nil object, or some alternative string value.

10



recordFormat (Attribute)

Remarks:
By default, 00SQLite uses the .nil object to represent the SQL NULL value. Queries for values
stored in the database will return the . nil object for any value that is SQL NULL. However, by
changing the value of the null attribute, the Rexx programmer can change the value the interpreter
returns for NULL. Typically this would be done when the returned values are going to be displayed
as text and the programmer would prefer to work with a string directly. Perhaps the value NULL, or
no value would be assigned.

The null attribute of the ooSQL1ite class is the default value used for the entire application.
The null attribute of the ooSQLiteConnection object can be used to change the value on
a database connection only. Likewise the null attribute of the ooSQLiteStmt can be used to
change the value for a single statement only.

Note that this attribute does not affect the value the programmer must use to assign a SQL NULL
to the database. The programmer must use the .nil object for that.

Details
Raises syntax errors when incorrect usage is detected.

This attribute is provided by ooSQLite, there is no similar feature provided by SQLite.

Example:

This example sets the null attribute of the ooSQLite class to empty. This allows the application
to invoke the left method on the returned value without having to check that the return is the .nil
object. Note that invoking the left method on the .nil object will raise a syntax condition:

.ooSQLite~null = 'empty'
dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

sql = 'SELECT * FROM foods ORDER BY name;'
stmt = .ooSQLiteStmt~new(dbConn, sql)

say stmt~columnName(1)~left(25) || stmt~columnName(2)~left(25) ||
stmt~columnName(3)~left(25)
say '='~copies(80)

do while stmt~step == stmt~ROW

say stmt~columnText(1)~left(25) || stmt~columnText(2)~left(25) ||
stmt~columnText(3)~left(25)
end

3.1.3. recordFormat (Attribute)

>>--recordFormat------------------------------- ><

>>--recordFormat-=-varName----------------------- ><

Sets or queries the default format for any result set produced by ooSQLite. The default format on
startup is OO_ARRAY_OF DIRECTORIES.

recordFormat get:
The value of this attribute is one of the 00SQLite Result Set Format Constants that define how
a result set is formatted. The default format can be over-ridden at the database connection,
statment, or method level. If not over-ridden, all returned result sets for the entire process will have
the format specified by this attribute.

11



recordFormat (Attribute)

recordFormat set:
The default format of a record set can be changed by setting this attribute to one of the coSQLite
Result Set Format Constants.

Remarks:

There are currently 4 formats defined:

* OO_ARRAY_OF_DIRECTORIES - The result set is returned in an Array object. Each row
(each record) in the result set is an item in that array. The rows 1 through N in the result set are
the items 1 through N in the array. Each row (each record) is a Directory object. The directory
object has a single item for each column in the row, where the index of the item is the name of
the column and the value at that index is the value of the column.

« OO_ARRAY_OF_ARRAYS - The result set is returned in an Array object. Each row (each
record) in the result set is an item in that array. Each item in the array is also an array. The first
item in the array is an array of the column names for a row, with column name 1 through column
name N as item 1 through N in the array. Each row in the result set is an array of the column
values for the row, in column order. The first row in the result set will be the second item in the
array. Thus the rows 1 through R in the result set will have indexes 2 through R + 1 in the array.

* OO_STEM_OF_STEMS - The result set is returned in a Stem object. Each row (each record)
in the result set is also a stem. The stem for a row has a single tail for each column in the row,
where the tail is the name of the column and the value of that tail is the value of the column. The
returned stem has tails 0 through N, N equal to the number of rows in the result set. The value
at tail O is the count of rows in the result set. The values at tail 1 through N are the stems for row
1 through N in the result set..

* OO_CLASSIC_STEM - The result set is returned in a Stem object. The returned stem has tails
0 through N, N equal to the number of rows in the result set. The value at tail O is the count of
rows in the result set. Each tail 1 through N are compound tails that represent the rows in the
result set. Each compound tail is the row humber combined with a column name in the row.
The value at that compound tail is the value of the named column in that row. E.g., for a result
set that contains the 3 columns, id, name, and type_id, the values for row 1 in the result set
would be at the stem variables stm.1.id, stm.1.name, and stm.1.type_id.

The format for a result set can also be set for an individual database connection. Use the
ooSQLiteConnection object's recordFomat attribute, or the defFormat argument in the new
method.

Details
This attribute is provided by ooSQLite, there is no similar feature provided by SQLite.

Example:
This example changes the default format for a result set to be an array of records where each
record in the array is an array of the column values. The first item in the array is an array of the
column names, and the records are the second through nth items, where n is the number of
records:

-- Set the result set format to an array of arrays:
.00SQLite~recordFormat = .00SQLite~00_ARRAY_OF_ARRAYS

dbName = 'ooFoods.rdbx'
dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

sql = '"SELECT * FROM foods ORDER BY name;'
resultSet = dbConn~exec(sql, .true)

12



compileOptionGet

3.1.4. compileOptionGet

>>--compileOptionGet(--nth--)-------cmooommmonn ><

Returns the name of the nth compile time option if the option was used during the build of o0SQLite.
Returns the string NULL if the nth compile time option was not used.

Arguments:
The single arguments is:
nth [required]
nth is the index of the compile time option. The database engine has a list of options that were
set at compile time, 1 through N. This argument specifies which N is geing queried.

Return value:
The name of the nth compile time option, or NULL if nth is out of range.

Remarks:
The compileOptionGet method allows one to iterate over the compile-time options that were
defined during the build of the SQLite database engine. This is done by starting with index 1 and
incrementing the index at each iteration until the string NULL is returned. This produces a list of
the compile-time options that were specified at build time.

For most purposes, SQLite can be built just fine using the default compilation options. However,
if required, compile-time options can be used to omit SQLite features (resulting in a smaller
compiled library size) or to change the default values of some parameters. 00SQLite is built using
just a few compile-time options.

Details
The functionality of the compileOptionGet method is similar to that of the SQLite
sqlite3_com;:;ileo;:;tion_gel‘1 API.

Example:
This example shows how to iterate over the compile-time options:

opt = "'

do i = 1 while opt \== 'NULL'
opt = .ooSQLite~compileOptionGet (i)
say 'Compile option:' opt

end

say

/* Output might be:

Compile option: CURDIR

Compile option: ENABLE_COLUMN_METADATA
Compile option: ENABLE_MEMORY_MANAGEMENT
Compile option: TEMP_STORE=1

Compile option: THREADSAFE=1

Compile option: NULL

*/

! http://www.sqlite.org/c3ref/compileoption_get.html

13


http://www.sqlite.org/c3ref/compileoption_get.html
http://www.sqlite.org/c3ref/compileoption_get.html

compileOptionUsed

3.1.5. compileOptionUsed

>>--compileOptionUsed(--name--)------------------ ><

Determines if the named compile-time option was used during the build of ooSQLite.

Arguments:
The single argument is:
name [required]
The name of the SQLite compile-time option to check. The SQLITE_ prefix may be omitted.
l.e., SQLITE_THREADSAFE and THREADSAFE will produce the same result.

Return value:
Returns true if the name option was used, otherwise false.

Remarks:
For most purposes, SQLite can be built just fine using the default compilation options. However,
if required, compile-time options can be used to omit SQLite features (resulting in a smaller
compiled library size) or to change the default values of some parameters. 00SQLite is built using
just a few compile-time options.

Details
The functionality of the compileOptionUsed method is similar to that of the SQLite
sqlite3_compileoption_used® API.

Example:
This example checks several random compile-time options and displays if they were defined at
compile time.

names = .array~of('DEFAULT_AUTOVACUUM', 'THREADSAFE', 'TEMP_STORE', -
'4_BYTE_ALIGNED_MALLOC', 'CURDIR', 'SQLITE_THREADSAFE')
do i = 1 to names~items
say 'Option' names[i] ':' .ooSQLite~compileOptionUsed(names[i])
end

/* Output might be:

Option DEFAULT_AUTOVACUUM : 0
Option THREADSAFE : 1

Option TEMP_STORE : 1

Option 4_BYTE_ALIGNED_MALLOC : ©
Option CURDIR : 1

Option SQLITE_THREADSAFE : 1

*/

3.1.6. complete

>>--complete(--text--)--------------"-"------------ ><

Determines if the specifie text seems to form a complete SQL statement.

2 http://www.sqlite.org/c3ref/compileoption_get.html

14


http://www.sqlite.org/c3ref/compileoption_get.html
http://www.sqlite.org/c3ref/compileoption_get.html

enquote

Arguments:
The arguments are:
text [required]
The text to check.

Return value:
Reurns 0 if the text is incomplete and 1 if the text seems complete. Note that the database engine
allocates some memory when this method is executed. If memory allocation fails, the database
engine will return the NOMEM constant. This is very unlikely to happen.

Remarks:
This method is useful during command-line input to determine if the currently entered text seems
to form a complete SQL statement or if additional input is needed before sending the text into
00SQLite for parsing. A statement is judged to be complete if it ends with a semicolon token and
is not a prefix of a well-formed CREATE TRIGGER statement. Semicolons that are embedded
within string literals or quoted identifier names or comments are not independent tokens (they are
part of the token in which they are embedded) and thus do not count as a statement terminator.
Whitespace and comments that follow the final semicolon are ignored.

Details
The functionality of the complete method is similar to that of the SQLite sqlite3_comp/ete3 API.

Example:
This example show some possible output of using this method:

text = 'SELECT * from foods'
say 'Is "'text'" a complete SQL statement?' .ooSQLite~complete(text)

text = 'SELECT * from foods;'
say 'Is "'text'" a complete SQL statement?' .ooSQLite~complete(text)

say 'Value of NOMEM constant:' .ooSQLite~NOMEM
/* Output:
Is "SELECT * from foods" a complete SQL statement? 0
Is "SELECT * from foods;" a complete SQL statement? 1

Value of NOMEM constant: 7

*/

3.1.7. enquote

>>--enquote(--+---------- R e ><
+--values--+

Converts the supplied Rexx value(s) into SQL literals. This method is useful to help construct SQL
statements. The specified Rexx object(s) are converted to SQL literals by adding single quotes to the
beginning and end of the string value of the object, escaping single quotes within the string value of
the object, and changing the .nil object to SQL NULL.

8 http://www.sqlite.org/c3ref/complete.html

15


http://www.sqlite.org/c3ref/complete.html
http://www.sqlite.org/c3ref/complete.html

enquote

Arguments:
The single argument is:
values [optional]

A Rexx object, or an array of Rexx objects, to be converted to SQL literals. If this argument is
omitted then NULL is returned.

Return value:

The string value of the specified object(s) as a SQL literal, or a comma separated list, of SQL
literals.

Remarks:
The enquote methods accepts a single argument, values. If values is an array whose size is N,
then each item at index 1 through N is converted to a SQL literal. Any index 1 through N that is
not assigned an item is converted to SQL NULL. Likewise, if an item 1 through N is the . nil
object, that item is converted to SQL NULL. All other items are converted to the string value of the
item, with a single quote added to the front and end of the string. If the string value contains any
single quotes, those single quotes are escaped. If N is greater than 1, then each converted value
is added to the returned string with a comma used as a separator.

If values is not an array, then it is taken to be a single value to be converted, and is converted in
the same manner as a single item in an array is converted, as described above. This implies that if
values is omitted altogether, it is converted to SQL NULL.

Details
The functionality of the enquote method is similar to that of the SQLite sq/iteSfmprint‘f4 API.

Example:

This example shows how the enquote method can be used to create SQL INSERT statements that
are not prone to SQL Injection flaws:

rl = .array~new(4)
rifi] "Tom"
ri[2] "Hanks"
rif4] "male"

r2 = .array~of("Mike", , "555-9988", .nil)

sgll = "INSERT INTO my_table (fName, 1Name, phone, gender)
VALUES("ooSQLite~enquote(r1)");"

sgl2 = "INSERT INTO my_table (fName, 1Name, phone, gender)
VALUES("ooSQLite~enquote(r2)");"

say sqli
say sqgl2

/* Output would be:

INSERT INTO my_table (fName, 1Name, phone, gender) VALUES('Tom', 'Hanks', NULL, 'male');
INSERT INTO my_table (fName, 1Name, phone, gender) VALUES('Mike', NULL, '555-9988',
NULL);

*/

This example shows a conversion for a single string that has an apostrophe within it:

4 http://www.sqlite.org/c3ref/mprintf.html

16


http://www.sqlite.org/c3ref/mprintf.html
http://www.sqlite.org/c3ref/mprintf.html

errStr

str = "It's a happy day!"
say .ooSQLite~Enquote(str)

/* Output would be:
'It''s a happy day!'

*/

3.1.8. errStr

>>--errStr(--resultCode--)----------------------- ><

Retrieves the English language descriptive string for a result code.

Arguments:
The arguments are:

resultCode [required]

One of the result code constants, or one of the 00SQLite specific result code, whose
descriptive sting is to be retrieved.

Return value:
Returns the descriptive, English language, string for the specified result code.

Remarks:

This method is useful for getting the description of a result code without needing a
00SQLiteConnection or o0SQLiteStmt object. The errMsg method will return the descriptive string
for the most recent result code associated with the database connection. The errStr method can
be used at any time to get the descriptive string for a result code.

Details
The functionality of the errStr method is similar to that of the SQLite sqlite37errstr5 API.

Example:
This example is a small snippet of code to print out the description of the first 27 result codes.

Inspection of the ooSQLite.cls file shows us that the first 27 result code constants are in
numerically consecutive order:

first
last

.00SQLite~0K
.00SQLite~NOTADB

do i = first to last

say .ooSQLite~errStr(i)
end
say

/* Output would be:

not an error

SQL logic error or missing database
unknown error

access permission denied

® http://www.sglite.org/c3refferrcode.html

17


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html

libVersion

callback requested query abort
database is locked

database table is locked

out of memory

attempt to write a readonly database
interrupted

disk I/0 error

database disk image is malformed
unknown operation

database or disk is full

unable to open database file

locking protocol

table contains no data

database schema has changed

string or blob too big

constraint failed

datatype mismatch

library routine called out of sequence
large file support is disabled
authorization denied

auxiliary database format error

bind or column index out of range
file is encrypted or is not a database

*/

3.1.9. libVersion

>>--1ibVersion-------c-cccccoooo oo ><

Returns the embedded SQLite library version as a string.

Arguments:
There are no arguments to this method.

Return value:
Returns the library version number as a string.

Remarks:
This method can be used to determine exactly which version of the SQLite database engine is
in use. It can also be used to verify that the 0ooSQLite.cls file matches the compiled library file,
(oosqlite.dll, oosglite.so, or oosglite.dylib depending on the operating system.) The value returned
by this method should be exactly equal to the the compile-time version VERSION constant. If it is
not, the ooSQLite installation is incorrect.

Details
The functionality of the libVersion method is similar to that of the SQLite sqlite37/ibversion6 API.

Example:
This example checks that ooSQLite.cls is loading the correct library and aborts if it is not:

if .ooSQLite~libVersion() \== .ooSQLiteConstants~VERSION then do
say 'The ooSQLite class file and library file do NOT match.'
say 'The ooSQLite extension is not installed correctly on this system.'

6 http://www.sqlite.org/c3ref/libversion.html

18


http://www.sqlite.org/c3ref/libversion.html
http://www.sqlite.org/c3ref/libversion.html

libVersionNumber

say 'Aborting application.'
return 99
end

3.1.10. libVersionNumber

>>--1ibVersionNumber-------cccccccoooooaaaaao ><

Returns the embedded SQLite library version as a number.

Arguments:
There are no arguments for this method.

Return value:
The number of the library version in use, perhaps 3007013.

Remarks:
This method is similar to the /ibVersion method, returning a whole number rather than a dotted
version string.

The value returned by this method should be exactly equal to the the compile-time version
VERSION_NUMBER constant.

Details

The functionality of the libVersionNumber method is similar to that of the SQLite
sqlite:;Llibversionfnumber7 API.

3.1.11. memoryHighWater

>>--memoryHighwater(--+--------- D R ><
+--reset--+

Returns the maximum value of the number of bytes of memory malloced but not freed (memory in use)
of the database engine since the high-water mark was last reset.

Arguments:
The single argument is:
reset [optional]
True if the high-water mark should be reset, false if it should not be reset. The default if the
argument is omitted is false.

Return value:
The highest amount of memory used by the database engine, since any previous reset, in bytes.

Remarks:
The memory high-water mark is reset to the current number of bytes of memory in use, if and only
if the reset arg true. The value returned by this method is the high-water mark prior to the reset if a
reset is done.

7 http://www.sqlite.org/c3ref/libversion.html

19


http://www.sqlite.org/c3ref/libversion.html
http://www.sqlite.org/c3ref/libversion.html

memoryUsed

Details
The functionality of the memoryHighWater method is similar to that of the SQLite
sq/iteSLme—:~moryfhighwan‘er8 API.

Example:
This example shows the effect of using / not using the reset argument:

say

say 'Memory high water: ' .ooSQLite~memoryHighWater

say 'Memory high water: ' .ooSQLite~memoryHighWater

say 'Memory high water (reset):' .ooSQLite~memoryHighWater(.true)
say 'Memory high water: ' .ooSQLite~memoryHighWater

say

/* Output might be:

Memory high water: 93664
Memory high water: 93664
Memory high water (reset): 93664
Memory high water: 91712

-- Note that the return when the reset is done is the current high wated mark, not the
-- value after the reset.
*/

3.1.12. memoryUsed

>>--memoryUsed----------c--oooooo oo ><

Returns the number of bytes of memory currently in use by the database engine. That is, the number
of bytes allocated and not yet freed.

Arguments:
There are no arguments to this method.

Return value:
The amount of memory the database is currently using, in bytes.

Details

The functionality of the memoryUsed method is similar to that of the SQLite
sq/ite3_memory_used9 API.

3.1.13. releaseMemory

>>--releaseMemory(--count--)----------ccooooooooo ><

This method causes the database engine to attempt to free count bytes of heap memory by
deallocating non-essential memory allocations held by the database library.

8 http://www.sglite.org/c3ref/memory_highwater.html
o http://www.sqlite.org/c3ref/memory_highwater.html

20


http://www.sqlite.org/c3ref/memory_highwater.html
http://www.sqlite.org/c3ref/memory_highwater.html
http://www.sqlite.org/c3ref/memory_highwater.html
http://www.sqlite.org/c3ref/memory_highwater.html

softHeapLimit64

Arguments:
The single argument is:
count [required]
The number of bytes the database engine should try to release.

Return value:
Returns the number of bytes actually released, which may be mor or less than requested.

Remarks:

Memory used to cache database pages to improve performance is an example of non-essential
memory. This method would be a no-op returning zero if SQLite was not compiled with the
SQLITE_ENABLE_MEMORY_MANAGEMENT compile-time option. However, 00SQLite does use
that option when it is built, so this method is not a no-op.

Details

The functionality of the releaseMemory method is similar to that of the SQLite
sq/ite37release;memory10 API.

3.1.14. softHeapLimit64

>>--softHeapLimit64(--N--)---------mcmmmmmmm o ><

Imposes a limit on the heap size, or queries the current size.

Arguments:
The single argument is:
TERM

A 64-bit signed whole number. If n is positive the soft heap limit is set to its value. If n is zero
then the soft heap limit is disabled. If n is negative then no change is made to the current limit.

Return value:

On success, returns the size of the soft heap limit prior to the method invocation. On error a
negative number is returned.

Remarks:
To query the current limit only, use a negative value for n.

The database engine strives to keep heap memory utilization below the soft heap limit by reducing
the number of pages held in the page cache as heap memory usages approaches the limit. The
soft heap limit is soft because even though the engine strives to stay below the limit, it will exceed
the limit rather than generate a NOMEM error. In other words, the soft heap limit is advisory only.

Details
The functionality of the softHeapLimit64 method is similar to that of the SQLite
sqlite3_soft_heap_limit64™ API.

Example:

This example queries the current soft heap limit, sets the limit, and queries it again. It also displays
the current memory usage.

10 http://lwww.sglite.org/c3ref/release_memory.html
n http://www.sqlite.org/c3ref/soft_heap_limit64.html

21


http://www.sqlite.org/c3ref/release_memory.html
http://www.sqlite.org/c3ref/soft_heap_limit64.html
http://www.sqlite.org/c3ref/release_memory.html
http://www.sqlite.org/c3ref/soft_heap_limit64.html

sourcelD

say 'Current soft heap limit:

say 'Setting soft heap limit:'

say 'Current soft heap limit:

say 'Current memory used:

/* Output might be:

Current soft heap limit: ©
Setting soft heap limit: ©

Current soft heap limit: 64000000

Current memory used: €]

*/

3.1.15. sourcelD

.00SQLite~softHeapLimit64(-1)
.00SQLite~softHeapLimit64(64000000)
.00SQLite~softHeapLimit64(-1)
.00SQLite~memoryUsed

>>- - SOUrCeID---------- - oo ><

Returns the embedded SQLite library source ID string.

Arguments:

There are no arguments to this method.

Return value:

The source ID string of the running database engine.

Remarks:

This method is similar to the /libVersion method, but rather than a dotted version string it returns an
unigue identifier that contains the date and time of the library source code release and a globally

unigue nubmer hexadecimal number.

The value returned by this method should be exactly equal to the the compile-time version

SOURCE_ID constant.

Details

The functionality of the sourcelD method is similar to that of the SQLite sqlitesfsourceid12 API.

Example:

This example displays the source ID for the currently running database engine:

say 'Source ID:
/* Output might be:
Source ID:

*/

3.1.16. sqlite3Version

12 http://www.sqlite.org/c3ref/libversion.html

.00SQLite~sourceID

2012-06-11 02:05:22 f5b5a13f7394dcl143aal36fld4faba6839eaabdc

22


http://www.sqlite.org/c3ref/libversion.html
http://www.sqlite.org/c3ref/libversion.html

status

>>--sglite3dVersion-----------------~-~-----------_- ><

The sqlite3Version method returns the value of the SQLite C code sqlite3_version(] string constant.

Arguments:
There are no arguments to this method.

Return value:
The SQLite version string.

Remarks:

This method is included for completeness. The string returned is exactly the same as the string
returned from libVersion.

Details

The value returned by the sqlite3Version method is the value of the SQLite sqlite3_version13
constant string.

Example:
This example shows the equivalence of the two ooSQLite class methods:

say 'Return from libVersion method:' .ooSQLite~libVersion
say 'Constant string value: ' .ooSQLite~sqglite3Version

/* Output would be, depending on the exact library version of the embedded database
engine:

Return from libVersion method: 3.7.13
Constant string value: 3.7.13

*/

3.1.17. status

>>--status(--optParam-, -result--+---------- +--)--><
+-,-reset--+

Retrieves runtime status information about the performance of the database engine, and optionally
resets various highwater marks.

Arguments:
The arguments are:
optParam [required]
One of the runtime status parameter constants. This specifies which status parameter
information is required.

result [required IN/OUT]

A Directory object in which the retrieved information is returned. On a successful return the
directory object will contain the following two indexes:
CURRENT:

The current value of the parameter specified by optParam.

1 http://www.sqlite.org/c3ref/libversion.html

23


http://www.sqlite.org/c3ref/libversion.html
http://www.sqlite.org/c3ref/libversion.html

status

HIGHWATER:
The highest recorded value of the parameter specified by optParam.

reset [optional]
A logical value, true or false, to specifiy whether the high water mark should be reset. The
default if omitted is false.

Return value:
Returns one of the 00SQLite result code constants. OK on success, otherwise an error code. On
error no indexes of the result object are set.

Remarks:
Some parameters do not record the highest value. Other parameters record only the highwater
mark and not the current value. For parameters that do not record the highest value, the reset
argument is ignored.

Details
The functionality of the status method is similar to that of the SQLite sqlite3_statusl4 API.

Example:
This example prints out all the status parameters:

a = .array~of( -
.00SQLite~STATUS_MEMORY_USED ;-
.00SQLite~STATUS_PAGECACHE_USED e
.00SQLite~STATUS_PAGECACHE_OVERFLOW ;-
.00SQLite~STATUS_SCRATCH_USED =
.00SQLite~STATUS_SCRATCH_OVERFLOW e
.00SQLite~STATUS_MALLOC_SIZE ;-
.00SQLite~STATUS_PARSER_STACK ;-
.00SQLite~STATUS_PAGECACHE_SIZE e
.00SQLite~STATUS_SCRATCH_SIZE ;-
.00SQLite~STATUS_MALLOC_COUNT -

n = .array~of( -
'STATUS_MEMORY_USED ! ;-
'STATUS_PAGECACHE_USED ! , -
'STATUS_PAGECACHE_OVERFLOW' ;-
'STATUS_SCRATCH_USED ! ;-
'STATUS_SCRATCH_OVERFLOW ' , -
'STATUS_MALLOC_SIZE ! ;-
' STATUS_PARSER_STACK ! ;-
'STATUS_PAGECACHE_SIZE ! , -
'STATUS_SCRATCH_SIZE ! ;-
'STATUS_MALLOC_COUNT ! -

)

values = .directory~new
do i =1 to a~items

.00SQLite~status(a[i], values)

say n[i]': current:' values~current~left(10) 'high water:' values~highwater
end

/* Output might be:

STATUS_MEMORY_USED : current: 88864 high water: 93664

1 http://www.sqlite.org/c3ref/status.html

24


http://www.sqlite.org/c3ref/status.html
http://www.sqlite.org/c3ref/status.html

threadSafe

STATUS_PAGECACHE_USED . current:
STATUS_PAGECACHE_OVERFLOW: current:
STATUS_SCRATCH_USED . current:
STATUS_SCRATCH_OVERFLOW : current:
STATUS_MALLOC_SIZE . current:
STATUS_PARSER_STACK . current:
STATUS_PAGECACHE_SIZE . current:
STATUS_SCRATCH_SIZE . current:
STATUS_MALLOC_COUNT . current:
*/

3.1.18. threadSafe

>>--threadSafe-------------------~-~-~-~---~—~-~----__--

Tests to see if the currently running database engine is using a library that is thread safe.

Arguments:

There are no arguments for this method.

Return value:

The return is the value of the compile-time option SQLITE_ THREADSAFE, 0, 1, or 2.

Remarks:

16288

512

1272

95

high
high
high
high
high
high
high
high
high

water:
water:
water:
water:
water:
water:
water:
water:
water:

16288

64000

1272

105

Currently, ooSQLite is compiled with SQLITE_ THREADSAFE=1 and therefore the return from this
method is always 1. When SQLITE_ THREADSAFE is setto 1, as it is in 00SQLite, then SQLite
uses its Serialized threading model. In serialized mode, SQLite can be safely used by multiple

threads with no restriction.

Details

The functionality of the threadSafe method is similar to that of the SQLite sqlite37threadsafel‘r’ API.

Example:

This example shows the return from threadSafe:

say 'Thread safe value:' .ooSQLite~threadSafe

/* Output will be:
Thread safe value: 1

*/

3.1.19. version

>>--version(--+-------- ) ><

+--type--+

Produces a version string in the format specified by the type argument.

15 http://www.sqlite.org/c3ref/threadsafe.html

25


http://www.sqlite.org/c3ref/threadsafe.html
http://www.sqlite.org/c3ref/threadsafe.html

version

Arguments:
The single argument is:
type [optional]
If not omitted, exactly one of the following keywords, case is not significant and only the first
letter is needed:

Compact OneLine Number
Full LibVersion SourcelD
Compact

The compact format is a simple dotted version, similarto 1.0.0.7925

Full
Produces a long version listing of several lines. The 00SQLite version, the ooRexx
version, and the SQLite version are all shown. The example below has a sample output of
this format.

Oneline
A version string similar to ooSQLite Version 1.0.0.7925 (64 bit). Thisis the
deault if the type argument is omitted.

LibVersion

A version string similar to 3.7.13. This is the embedded SQLite database engine version
and is identical to the output from the /ibVersion method.

Number
A version number, similar to 3007013. This is the embedded SQLite database engine
version number and is identical to the output from the libVersionNumber method.

SourcelD
A version string similar to 2012-06-11 02:05:22
f5b5a13f7394dc143aal136f1d4faba6839eaa6bdc. This is the embedded SQLite
database engine source ID and is identical to the output from the sourcelD method. text

Return value:
Returns a string formatted as specified above.

Details
This attribute is provided by ooSQLite, there is no similar feature provided by SQLite.

Example:
This example prints out the full format version string:

say 'ooSQLite version (full):'; say
say .ooSQLite~version('F'")

/* Output might be:

ooSQLite version (full):

ooSQLite: ooSQLite Version 1.0.0.7925 (64 bit)
Built Jun 19 2012 12:40:58
Copyright (c) RexxLA 2012-2012.
All Rights Reserved.

Rexx: Open Object Rexx Version 4.2.0

SQLite: SQLite Library Version 3.7.13

26



The ooSQLiteBackup Class

2012-06-11 02:05:22

*/

3.2. The ooSQLiteBackup Class

One feature of SQLite is an online backup API. The online part means that a database can be backed
up while it is in use. The backup API copies the content of the source database into the destination
database, overwriting the original contents of the destination database. It is useful either for creating
backups of databases or for copying in-memory databases to or from persistent files.

The copy operation may be done incrementally, in which case the source database does not need to
be locked for the duration of the copy, only for the brief periods of time when it is actually being read
from. This allows other database users to continue uninterrupted while a backup of an online database
is made.

The ooSQLiteBackup class provides a complete interface to the SQLite backup API. The authoritive
documentation™® for using the online backup API is the SQLite documentation. The basic process to
perform a backup using the ooSQLiteBackup object is as follows:

* Initialize the backup by instantiating a new backup object with the source and destionation
databases.

» Use the step method to copy some or all of the pages of the source database to the destination
database.

» Repeat invocations of the step method until all pages are copied, or a fatal error occurs, or it is
determined the backup should be abandoned.

* Invoke the finish method to release the system resources used for the backup.

By using a backup object, 00SQLite is able to optimize this process a little for the Rexx programmer.
During the step method, when it is determined that all the pages have been copied successfully, or
that a fatal error has ocurred, the finish method is invvoked automatically. This means the programmer
only needs to use finish when it is determined that the backup should be abandoned before it is done.

The source database can be accessed while the backup is in progress. It is only locked while the
backup is reading from the database, it is not locked continuously for the entire backup operation. This
implies that the source database is more acessible when a smaller number of pages are copied during
each step.

When the source database is in use while the backup is in progress, if the database is written to, the
database engine may restart the backup. Whether or not the backup process is restarted as a result
of writes to the source database mid-backup, the user can be sure that when the backup operation
is completed the backup database contains a consistent and up-to-date snapshot of the original.
However, if the source database is big and the backup gets restarted often, it is possible that the
backup will never finish. This would be a case where it might be needed to abandon the backup.

3.2.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with backup objects using the ooSQLiteBackup class.

16 http://www.sqlite.org/c3ref/backup_finish.html#sglite3backupinit

27


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupinit
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupinit

new (Class method)

Table 3.3. ooSQLiteBackup Methods and Attributes

Method Documentation

Class Methods

new Instantiates a new 0oSQLite backup object.
Attribute Methods

finished Reflects the finished state of the backup, that is, if finish has been invoked.

initCode Used to check if the backup object was initialized correctly during new.

lastErrCode Reflects the value of the last recorded SQLite result code.

lastErrmsg An English text message describing, to a degree, the meaning of the result
code contained in the lastErrCode attribute.

pageCount Reflects the total number of pages in the source database.

remaining Reflects the number of pages still to be backed up.

saveDestConn Determines if 00SQLite will close the destination database connection

automatically during finish.

Instance Methods

finish

Releases all resources associated with the backup operation.

getDestConn Retrievs the destination database connection after the backup has
finished..
step Copies the specified number of pages from the source database to the

destination database of this backup object.

3.2.2. new (Class method)

>>--new(--srcbB-, -dstDB--+--------- R e LR EE R ><

+-,-save--+ +-,-srcName-+ +-,-dstName-+

Instantiates and initializes a new backup object.

Arguments:

The arguments are:

srcDb [required]

Specifies the source database for the backup. This argument must be a database connection
object that is open and not in an error state.

dstDb [required]

Specifies the destination database. This argument can either be an open database connection
or it specifies the file name for the database. If the argument is a database connection, it must
be an open connection that is not in an error state. If the argument specifies a file name, then
a destination database connection object is instantiated using the specified name.

Top specify the destination database as a file name use either a string or a File object. When
a File object is used, case it is treated exactly if it was a string file name and all remarks
concerning a file name versus a database connection apply. When specified as a File object,
the absolutePath() method of the object is used to obtain the database file name. When
specified as a string, the name is used as is, implying it could be a relative file name. l.e.,
myBackup.db would be created in the current directory.

28



new (Class method)

Normally, when this argument is a file name, the connection object is closed during the
finish method. This behavior can be changed either by setting the save argument to true,
or by setting the saveDestConn attribute to true at any time prior to invoking finish. Both the
argument and the attribute default to false.

save [optional]
If save is true and dstDB is a file name, then the destination database connection will not be
closed during finish. Normally when the destination database is specified by a file name, the
connection is closed during finish.

If the dstDb argument is a database connection, this argument is ignored completely. The
programmer is responsible for closing the connection.

srcName [optional]
The source database name. This is not the database file name, but rather the main, temp, or
attached as, name. If this argument is omitted, the name is set to main.

dstName [opitonal]
The destination database name. Again, this is not the database file name, but rather the main,
temp, or attached as, name. If this argument is omitted, the name is set to main.

If the dstDb argument is a file name rather than a database connection, this argument is
ignored completely. In this case the only possible name is main and 0oSQLite sets that
internally when it instantiates the database connection object.

Return value:
Returns the newly instatiated backup object. If an error occurs during initialization, the finish
method will have been invoked and the object can not be used to perform a backup. Check the
initCode, lastErrCode, or lastErrMsg attributes to determine if errors have ocurred.

Remarks:
The SQLite doc says: The application must guarantee that the destination database connection
is not passed to any other API (by any thread) after sqlite3_backup_init() is called and before
the corresponding call to sqlite3_backup_finish(). SQLite does not currently check to see if the
application incorrectly accesses the destination database connection and so no error code is
reported, but the operations may malfunction nevertheless. Use of the destination database
connection while a backup is in progress might also also cause a mutex deadlock.

In 00SQLite, the destination database connection object will raise a syntax condition if any of the
methods of the object are invoked between the time the new method of the ooSQLiteBackup
object is invoked and the finish method is invoked. This prevents malfunctions and deadlock.

For the backup to work effectively the source and destination database connections should

have a busy handler or a busy timeout handler. This prevents a possible cause of failure of the
backup. With an argument to new that is a database connection, the programmer is responsible
for configuring the connection correctly, the backup object does not fiddle with the connection.
When the dstDb argument is a file name, the database connection object is instantiated internally
by ooSQLite. In this case, 00SQLite will add a busy timeout handler of 3 seconds.

Usually, it does not matter if the page-sizes of the source database and the destination database
are different before the contents of the destination are overwritten. The page-size of the
destination database is simply changed as part of the backup operation. The exception is if the
destination database happens to be an in-memory database. In this case, if the page sizes are not
the same at the start of the backup operation, then the operation fails with a SQLITE_READONLY
error.

29



finished (Attribute)

This second possible cause of failure can be prevented by setting the page-size of the in-memory
database to the same size as that of the sourec database. When the dstDB argument is :memory:
then ooSQLite will read the page-size of the source database, open a new in-memory database
connection, and set its page size to match the source database page-size. Page-size can only be
changed in a database before anything is put in it. If dstDB is passed in as a connection to an in-
memory database, then the programmer is responsible for correctly setting the page-size.

Details

The functionality of the new method is similar to that of the SQLite sqlite3_backup_init"" API. Note,
however that the arguments to new have been re-ordered so that the optional arugments come
last.

Example:

This example loads a database from disk into an in-memory database and exits if there is an error
in initialization:

srcConn = .ooSQLiteConnection~new("contacts.rdbx")
srcConn~busyTimeout (3000) -- 3 seconds.
bu = .ooSQLiteBackup~new(srcConn, ":memory:", .true)

if bu~initCode <> bu~OK then do
say 'Error opening backup object:' bu~lastErrCode bu~lastErrMsg
srcConn~close
return 99

end

3.2.3. finished (Attribute)

>>--finished-----------------“--------- ><

>>--finished-=-varName------------------o ><

This attribute can be used to determine if finish has been invoked on the backup object.

finished get:
If finished is true the backup is finished and its resourced have been released. If false the backup
is still in progress.

finished set:
The programmer can not set the finished attribute. It is set internally by ooSQLite.

Remarks:

If finished is true, other methods of the backup object that access the database engine can not be
invoked. Those are the finish and step methods, and the pageCount and remaining attributes.

The finished attribute can be accessed at any time, before or after finish has been invoked.

3.2.4. initCode (Attribute)

v http://www.sqlite.org/c3ref/backup_finish.html#sglite3backupinit

30


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupinit
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupinit

lastErrCode (Attribute)

>>--jnitCode---------------~--------__—_____- ><

>>--initCode-=-varName-----------------------~-~--- ><

The initCode attribute is used to check if the backup object is initialized correctly during new.

initCode get:
The value of the initCode attribute reflects the state of the initialization of the backup object. It is
set during new and is not changed afterwards.

initCode set:
The programmer can not set the initCode attribute. It is set internally by ooSQLite.

Remarks:

When the initCode is not 0 (.00SQLite~0K) an error in initialzation has ocurred and a backup
operation is not possible. The finish method will already have been invoked, the programmer does
not need to call finish to clean up resources.

In most cases the initCode value will be a SQLite result code and the same as the lastErrCode
attribute. However it also could be one of the coSQLite specific result codes, either
OO_UNEXPECTED_RESULT or OO_BACKUP_DB_ERRSTATE.

The initCode attribute can be accessed at any time, before or after finish has been invoked.

Details
This attribute is provided by 0oSQLite, there is no similar feature provided by SQLite.

Example:

This example instantiates an ooSQLiteBackup object and checks the initCode value to be sure it
is safe to proceed:

buObj = .ooSQLiteBackup~new(srcConn, dstConn)
if buObj~initCode <> buObj~OK then do ...

3.2.5. lastErrCode (Attribute)

>>--lastErrCode------------ - ><

>>--lastErrCode-=-varName------------------------ ><

The lastErrCode reflects the value of the last recorded SQLite result code.

lastErrCode get:
The lastErrCode attribute reflects the value of the last errror code recorded by the SQLite
database engine during the backup operation. It is set during initialization, (during new,) and is
also updated during an invocation of step and finish.

lastErrCode set:
The programmer can not set the lastErrCode attribute. It is set internally by ooSQLite.

Remarks:
During a backup operation, the database engine sets error codes in the destination database
connection. The lastErrCode attribute is the value of the error code in the destination database
connection. If the programmer has a reference to the destination database connection, that

31



lastErrMsg (Attribute)

reference can be used to get the same value through the errCode method. However, if the
programmer initializes the backup object using the file name of the destination database she may
not have a reference to that database connection.

The lastErrCode attribute can be accessed at any time, before or after finish has been invoked.

Details
The functionality of the lastErrCode attribute is similar to that of the SQLite sq/iteSLerrCode18 API
when used with the destination database connection.

3.2.6. lastErrMsg (Attribute)

>>--1aStErrMsg----------m s oo ><

>>--lastErrMsg-=-varName------------------------- ><

The lastErrMsg attribute contains an English text message describing, to a degree, the meaning of the
result code contained in the /astErrCode attribute.

lastErrMsg get:
The value of this attribute is a string message specific to the value of the last error result code. For
example if the value of the lastErrCode is .00SQLite~O0K, the text message would be no error.
The lastErrMsg attribute is updated every time the value of the lastErrCode is changed.

lastErrMsg set:
The programmer can not set the lastErrMsg attribute. It is set internally by ooSQLite.

Remarks:
During a backup operation, the database engine sets error codes and messages in the destination
database connection. The lastErrMsg attribute is the value of the error message in the destination
database connection. If the programmer has a reference to the destination database connection,
that reference can be used to get the same value through the errMsg method. However, if the
programmer initializes the backup object using the file name of the destination database he may
not have a reference to that database connection.

The lastErrMsg attribute can be accessed at any time, before or after finish has been invoked.

Details
The functionality of the lastErrMsg attribute is similar to that of the SQLite sqlite3_errMsg™ API
when used with the destination database connection.

3.2.7. pageCount (Attribute)

>>--pageCoUnt------------oo oo ><

>>--pageCount-=-varName-------------------------- ><

The pageCount attribute reflects the total number of pages in the source database file.

18 http://www.sglite.org/c3ref/errcode.html
1 http://www.sqlite.org/c3ref/errcode.html

32


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html

remaining (Attribute)

pageCount get:
The value of this attribute is the number of pages in the source database file as reported by
SQLite. The database engine only updates this value during a step operation. If the source
database is modified during a backup operation, then the value is not updated to account for the
size of the source database file changing.

pageCount set:
The programmer can not set the pageCount attribute. It is set internally by ooSQLite.

Remarks:

The pageCount and remainung attributes can be used to determine the progress of the backup.
The percentage completion of the backup process may be calculated as:

Completion = 100% * (buObj~pagecount - buObj~remaining) / buObj~pagecount

The database engine reports the page count and remaining values stored by the previous step
operation, it does not actually inspect the source database file. This means that if the source
database is written to by another thread or process after the call to step returns but before

the values returned by the pageCount and remaining attributes are used, the values may be
technically incorrect. This is not usually a problem.

The pageCount attribute must not be accessed after finish has been invoked. It calls into the
database engine and the resources allowing that call have been released.

Details
The functionality of the pageCount attribute is similar to that of the SQLite
sq/ite3_backup_pagecountzo API.

3.2.8. remaining (Attribute)

>>-remaining-----------mm oo ><

>>--remaining-=-varName-------------------------- ><

The remaining attribute reflects the number of pages still to be backed up

remaining get:
The value of this attribute is the number of pages still to be backed up as reported by SQLite.
The database engine only updates this value during a step operation. If the source database is
modified during a backup operation, then the value is not updated to account for any extra pages
that need to be updated.

remaining set:
The programmer can not set the remaining attribute. It is set internally by ooSQLite.

Remarks:
The remaining and pageCount attributes can be used to determine the progress of the backup.
The percentage completion of the backup process may be calculated as:

Completion = 100% * (buObj~pagecount - buObj~remaining) / buObj~pagecount

2 http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

33


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

saveDestConn (Attribute)

The database engine reports the page count and remaining values stored by the previous step
operation, it does not actually inspect the source database file. This means that if the source
database is written to by another thread or process after the call to step returns but before

the values returned by the remaining and pageCount attributes are used, the values may be
technically incorrect. This is not usually a problem.

The remaining attribute must not be accessed after finish has been invoked. It calls into the
database engine and the resources allowing that call have been released.

Details
The functionality of the remaining attribute is similar to that of the SQLite sqlite3_remaining™ API.

3.2.9. saveDestConn (Attribute)

>>--SaVeDESTECONN- - - = =i=i=i= = = oloioio o ooioio o o —ssioo - - ><

>>--saveDestConn-=-varName----------------------- ><

The saveDestConn attribute allows the programmer to change the default behavior of the
ooSQLiteBackup object during finish. This behavior is to automatically close the destination
connection if it was opened the connection during new.

saveDestConn get:
The value of the saveDestConn is false if the 00SQLite framework is going to close the destination
database connection, that it opened, during finish and true if the framework is not going to close
the connection. The 0oSQLite framework never closes a connection it did not open. This implies
that the value of the saveDestConn is ignored unless the destination connection was opened
internally by ooSQLite.

saveDestConn set:
The programmer can set the value of the saveDestConn to true or false. Attempting to set the
value to anything else will raise a syntax condition.

Remarks:
The saveDestCon attribute can be accessed at any time, before or after finish has been invoked.
Note that setting the attribute after finish has been invoked has no effect.

Details
This attribute is provided by 0oSQLite, there is no similar API provided by SQLite.

Example:
This example loads a database from disk into an in-memory database. It uses the saveDestConn
attribute to prevent ooSQLite from closing the in-memory connection and uses the getDestConn
method to retrieve the database connection:

bu = .ooSQLiteBackup~new(srcConn, ":memory:")
if bu~initCode <> bu~OK then do

-- handle error ...
end

bu~saveDestConn = .true

2 http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

34


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

finish

bu~step(-1)

memConn = bu~getDestConn

3.2.10. finish

>>--finish-------cccccmm o ><

Releases all resources associated with the backup operation.

Arguments:
There are no arguments to this method

Return value:
Returns .00SQLite~OK if no errors occurred during a step invocation, whether or not the
backup operation completed. If an out-of-memory condition or 10 error occurred during any prior
invocation of step on this ooSQLiteBackup object, then finish returns the corresponding error
code.

Remarks:
There should be exactly one invocation of finish for each successful invocation of new. Note
that during step, if the backup finishes successfuly, or a fatal error occurs, finish is invoked
automatically by ooSQLite. Thus, the programmer should only invoke finish to abandon (halt) the
backup before it is finished.

Details
The functionality of the finish method is similar to that of the SQLite sqlite37backupjinish22 API.

Example:
This example shows a online backup in progress. The source database is in use in a busy
application. The backup operation is expected to complete in less than 4 hours. If it does not, the
operation is abandoned and the application reschedules the backup for another time:

count = 0
do while .true
ret = bu~step(2)
if ret == bu~DONE then leave

if ret <> bu~OK, ret <> bu~BUSY, ret <> bu~LOCKED then do
say 'Fatal error during back up:' bu~lastErrCode bu~lastErrMsg
leave

end

j = SysSleep(.5)
count += 1

if count > (count * 2 * 60 * 60 * 4) then do
say "Backup has not completed in 4 hours, going to abandon the operation."
bu~finish
leave
end
end

z http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

35


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

getDestConn

3.2.11. getDestConn

>>--getDeStCONN---- === oo ><

The getDestConn method can be used to obtain the destination database connection, under certain
circumstances, after the backup has finished.

Arguments:
There are no arguments to this method.

Return value:
Returns the destination database connection if the following conditions are met, otherwise returns
the .nil object.
» The destination database was specified as a file name in the new method.

* The saveDestConn attribute has been set to true.
» The finish method has been invoked on this backup object.

Details
This attribute is provided by 0oSQLite, there is no similar API provided by SQLite.

Example:
This example loads a database from disk into an in-memory database. It sets the saveDestConn
attribute to true to prevent ooSQLite from closing the in-memory connection. It then uses the
getDestConn method to retrieve the database connection:

bu = .ooSQLiteBackup~new(srcConn, ":memory:")
if bu~initCode <> bu~0K then do

-- handle error ...
end

bu~saveDestConn = .true
bu~step(-1)

memConn = bu~getDestConn

3.2.12. step

>>--step(--+--------- B e R T ><
+--count--+

Copies up to count pages between the source and destination databases of this backup object.

Arguments:
The single argument is:
count [opitonal]
The number of pages in the source database to copy to the destionation. If this argument is
negative, then all remaining pages are copied. If this argument is omitted, count defaults to 5.

Return value:
If count pages are successfully copied, and there are still more pages to be copied, then OK
(.ooSQLite~OK) is returned. If step successfully finishes copying all pages from source to

36



The ooSQLiteConnection Class

destination, then DONE (.00SQLite~DONE) is returned. Otherwise an error code is returned.
Some errors are fatal and some are not. The remarks section further discusses this.

Remarks:
If the database engine can not obtain a required lock than step returns BUSY (.00SQLite~BUSY.)
If the source database connection is being used to write to the source database when step is
invoked, then LOCKED is returned. The return code can also be NOMEM, READONLY, or one
of the I0O_ERR_XXX codes. After BUSY or LOCKED, step can be tried again. But NOMEM,
READONLY, and IO_ERR_XXX are considered fatal. There is no point in retrying if any of those
codes are returned. The application must accept that the backup operation has failed and invoke
finish to release associated resources.

Internally, when either DONE or a fatal error return is detected, ooSQLite invokes finish. The
programmer does not need to, and should not invoke finish after step returns any of those codes.

Details
The functionality of the step method is similar to that of the SQLite sqliteéLbackupfsl‘ep23 API.

Example:
This example backs up a small database. Since the database is small, it simple copies all the
pages at one time:

buObj = .ooSQLiteBackup~new(srcConn, dstConn)

if buObj~initCode == buObj~0K then ret = buObj~step(-1)
else ret = buObj~lastErrCode

if ret <> buObj~DONE then do
-- back up failed, handle error

end

return 0

3.3. The ooSQLiteConnection Class

An ooSQLiteConnection object represents a SQLite database, or to be more precise a connection
to a SQLite database file. Each database in SQLite is contained in a single file. The files are platform

independent, that is a database created and used on a Windows system can be moved to a Linux or

Mac OS X system and will work unchanged.

Instantiating a connection object implicitly opens the SQLite database. SQLite supports multiple

open connections to the same database. The Rexx programmer can open up multiple connections
by instantiating multiple ooSQLiteConnection objects using the same database file name. The
00SQLite native extension builds the SQLite database engine in serialized multi-threading mode. In
this mode the database engine can be safely used by multiple threads with no restriction. Therefore a
connection object can be used in any thread in the Rexx program.

The close method should always be invoked when the connection object is no longer needed. This
frees up the system resources used by the connection. The close method should be invoked even if
an error ocurred during instantiation. Once close is invoked, the object can no longer be used to work

= http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

37


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

Method Table

with the database. It is an error to inovke database methods with a closed connection object. However,
the close method can always be invoked. The method is a harmless nop if the connection has already

been closed.

3.3.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with database connection objects using the ooSQLiteConnection class.

Table 3.4. 00SQLiteConnection Methods and Attributes

Method Documentation

Class Methods

new

Instantiates a new 00SQLite database connection

Attribute Methods

backupDestination Reflects whether this database connection is currently in use as the
destination for an online backup.

closed Reflects the open or closed state of this database connection.

fileName Reflects the database file name used to instantiate this connection.

initCode Reflects the status of the initialization of the database connection.

lastErrCode Reflects the last error code set by for the ooSQLiteConnection object.

lastErrMsg Reflects a human readable explanation, a message, of the last error code
recorded by the connection object.

null Reflects the default representation for the SQL NULL value that is returned
by the interpreter, for this database connection, for database values that
are NULL.

recordFormat Sets or queries the default format for result sets returned through this

database connection.

Instance Methods

busyHandler Installs a user defined busy handler.

busyTimeOut Sets a busy handler that sleeps for the specified amount of time when a
table is locked.

changes Returns the number of database rows that were changed or inserted or
deleted by the most recently completed SQL statement on this database
connection.

close Releases all systems resources that have been allocated for the database
connection.

commitHook Registers a callback method to be invoked whenever a transaction is
committed.

dbFileName Returns the database file name of the database specified by the name
argument.

dbMutex Retrieves an 0oSQLitMutex object that represents the SQLite mutex that
serializes access to this database connection.

dbReadOnly Determines if the named database on this connection is read only.

dbReleaseMemory Causes the SQLite database engine to attempt to free as much heap
memory as possible from this database connection.

dbStatus Retrieves runtime status information about this database connection.

38




new (Class method)

Method Documentation

errCode Returns the numeric result code for the most recent failed SQLite API call
associated with this database connection.

errMsg Returns the English-language text that describes the currenterrCode
value.

exec Executes the specified SQL statement(s). A callback is invoked for each
result row coming out of the evaluated SQL statements.

extendedErrCode Returns the numeric result code for the most recent failed SQLite API call
associated with this database connection.

extendedResultCodes | This is a nop in 00SQLite, extended result codes are always on.

getAutocommit

Determines if this database connection is, or is not, in autocommit mode.

interrupt Causes any pending database operation on this database connection to
abort and return at the earliest opportunity.

lastinsertRowID Returns the rowid of the most recent successful INSERT into the database
from this database connection.

limit Queries or sets the limiting size of various constructs on this database
connection.

nextStmt Returns the next prepared statement object after the specified statement,
or the first prepared statement if stmt is omitted or the .nil object.

profile Registers an user callback method that can be used for profiling. The
callback method is invoked is invoked as each SQL statement finishes.

progressHandler Registers an user callback method that is invoked periodically during long
running calls to exec and step methods for this database connection.

pragma Executes a PRAGMA statement. A PRAGMA statement is a SQLite
specific SQL extension, probably unknown to any other database engine.

rollbackHook Registers a callback method to be invoked whenever a transaction is rolled
back.

setAuthorizer Registers an authorizer callback method that is invoked as SQL
statements are being compiled by instantiating an coSQLiteStmt object.

tableColumnMetadata | Retrieves metadata about a specific column of a specific table of this
database connection.

totalChanges Determines the number of row changes caused by INSERT, UPDATE or
DELETE statements since the database connection was opened.

trace Registers an user callback method that can be used for tracing. The
callback method is invoked at various times when an SQL statement is
being executed.

updateHook Registers a callback method to be invoked whenever a row is updated,

inserted, or deleted.

3.3.2. new (Class method)

>>--new(--file--+-----
+-,-opts--+

cooodbooiboccooocoosooo dboodbocooocoosooo R ><

+-,-defFormat-+ +-,-reserved-+

Instantiates a new database connection object and opens the specified database for use.

39



new (Class method)

Arguments:
The arguments are:
file [required]
The file name of the database to open. The special string :memory: can be used to open an in
memory database.

This argument can be specified as a string, or as a File object. When specified as a File
object, the absolutePath() method of the object is used to obtain the database file name.
When specified as a string, the name is used as is, implying it could be a relative file name.
l.e., myDatabase.db would have to be in the current directory to be opened successfully.

If the dbFileName argument is a string, it can also be an URI. Refer to the SQLite
documentation for details.

opts [optional]
One or more of the file open constants. This argument controls how the database is
opened. Do not use any constant marked as VFS only. Use the merge method of the
00SQLiteConstants class to combine two or more of the constant values together, if needed.

The 3 common flags are OPEN_READWRITE, OPEN_READONLY, and OPEN_CREATE. If
this argument is omitted, the OPEN_READWRITE combined with OPEN_CREATE flags are
used.

defFormat [optional]
Specifies one of the 00SQLite Result Set Format Constants that define how a result set
is formatted and sets the recordFormat attribute for this database connection. This is a
convenience argument, the recordFormat attribute can always be set directly. If this argument
is omitted, then the recordFormat attribute is set to the value of the ooSQLite class
recordFormat attribute.

reserved [optional]
Reserved for future use. This argument is completely ignored in the current implementation.

Return value:
Returns a newly instantiated ooSQLiteConnection object.

Remarks:
Errors can occur when opening the uderlying database, in which case the returned
ooSQLiteConnection object can not be used to interact with the database. The initCode
attribute is used to check for errors. The initCode attribute will be set to one of 00SQLite result
code constants. If it is the OK constant there were no errors and the database can be used.
Otherwise, the database can not be use and the /astErrCode and lastErrMsg attributes can be
used to determine the exact nature of the failure.

When an error has occurred, the resources used by the database engine for a connection are
released automatically. Otherwise, every successful open of the database through the instantiation
of a 0ooSQLiteConnection object must be matched by an invocation of the close method to

free the resources. Once the database is closed, other methods of the ooSQLiteConnection
object can not be used. Note that this does not apply to the attrbute methods of the object, which
are always accessible. As noted, if an error with the database engine happens during new, the
database engine resources are freed. This is an implicit close of the database.

Do not invoke the methods of the 0ooSQLiteConnection object when an error occurs during
new.

40



backupDestination (Attribute)

Details:
The functionality of the new method is similar to that of the SQLite sqlite3_open_v2** API.

Example:

This example opens up a connection to the phoneBook database, located in the current directory
of the application, and checks for error:

db = .ooSQLiteConnection~new( 'phoneBook.rdbx")

if db~initCode <> 0 then do
-- handle error in some fashion

end

3.3.3. backupDestination (Attribute)

>>--backupDestination---------------------------- ><

>>--backupDestination = varName------------------ ><

The backupDestination attribute reflects whether this database connection is currently in use as the
destination for an online backup.

backupDestination get:
When the value of this attribute is true, this database connection is currently in use as the
destination database of an online backup. At al other times, the value is false.

backupDestination set:
The programmer can not set the value of this attribute. Its value is set internally by ooSQLite.

Remarks:
The destination database connection can not be used, by any thread, after the backup is
initialized and before the backup is finished. Becasue SQLite does not currently check to see if the
application incorrectly accesses the destination database connection, no error code is reported,
but the operations may malfunction nevertheless. Use of the destination database connection
while a backup is in progress might also cause a mutex deadlock.

To prevent this situation, if this database connection is currently in use as the destination for an
online backup, this object is locked. Any invocation of any method of this object will raise an error
condition. Note that all attributes of this object are still accessible.

Normally, the programmer would be fully aware of which database connection is currently in use
as a destionation database. However, in the event the programmer is not sure of the state of this
database connection, the backupDestination attribute can be used to determine the state.

Details:
This attribute is provided by 0oSQLite, there is no applicable API provided by SQLite.

3.3.4. closed (Attribute)

2 http://www.sqlite.org/c3ref/open.html

41


http://www.sqlite.org/c3ref/open.html
http://www.sqlite.org/c3ref/open.html

fileName (Attribute)

>>--closed---------------oo o ><

>>--closed = varName--------------------~-~----~---- ><

Reflects the open or closed state of this database connection.

closed get:
If the database connection has been closed the value of the closed attribute is true, otherwise it is
false.

closed set:

The Rexx programmer can not set the value of this attribute. It is set internally by the ooSQLite
framework.

Remarks:
Itis an error to invoke most methods of the connection object once the connection is closed.
The only exceptions to this are the attributes of the ooSQLiteConnection object and the close
method. The closed attribute can be used to check if the connection has already been closed.

3.3.5. fileName (Attribute)

>>--fileName---------cmm oo ><

>>--fileName = varName-----------ccccccoooooonnoo ><

Reflects the database file name used to instantiate this connection.

fileName get:
Returns the file name used to open up the database connection in the new method.

fileName set:
The programmer can not set this attribute, it is set internally by the ooSQLite framework.

Remarks:
The file name is set during initialization of the connection object. It never changed after that.

3.3.6. initCode (Attribute)

>>--ipitCode-----------------“--------- ><

>>--initCode = varName------------------~-~-~-~-~-~---- ><

Reflects the status of the initialization of the database connection. Any value other than 0,
(.o0SQLite~OK,) indicates that an error ocurred during intialization and that the connection is not
open.

initCode get:
The value of the initCode is one of the result code constants and indicates the status of the
attempt to open the connection to the database.

initCode set:

The Rexx programmer can not set the value of this attribute, it is set internally by the 0oSQLite
framework.

42



lastErrCode (Attribute)

Remarks:
Errors can ocurr during instantiation of a database connection object. The initCode attribute can
be checked to determine if an error ocurred. The cautious programmer would always check the
init code after instantiating a connection ojbect to ensure that the connections was opened without
error.

Example:
This example attempts to open up a connection to the ooFoods . rdbx database and checks that
the connection was opened successfully, aborting if it was not:

dbName
dbConn

'ooFotods. rdbx'
.ooSQLiteConnection~new(dbName, .o0SQLite~OPEN_READWRITE)

if dbConn~initCode <> 0 then do
errRC = dbConn~lastErrCode
errMsg = dbConn~lastErrMsg

say 'ooSQLiteConnection initialization error:' dbConn~initCode
say ' Error code:' errRC '('errMsg')'

dbConn~close
return errRC
end

3.3.7. lastErrCode (Attribute)

>>--lastErrCode---------------------o oo ><

>>--lastErrCode = varName------------------------ ><

Reflects the last error code set by for the ooSQLiteConnection object.

lastErrCode get:
The value of the lastErrCode attribute will be a SQLite result code or one of the ooSQLite specific
result codes.

lastErrCode set:

The programmer can not set the value of this attribute, it is set internally by the ooSQLite
framework.

Remarks:
The last error code attribute is similar to the /astErrMsg attribute. Its value is the last status
code recorded by ooSQLite. The /lastErrCode and the lastErrMsg attributes are always updated
together. The error message is always the message that goes with the error code.

Each of the three major 00SQLite objects, an c0SQLiteConnection, an 00SQLiteStmt, and an
00SQLiteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by ooSQLite.

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

43



lastErrMsg (Attribute)

Example:
This example uses the lastErrCode attribute to produce a meaningful error message when a
database connection fails to open:

dbName = 'ooFotods.rdbx'
dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

if dbConn~initCode <> 0 then do
errRC dbConn~lastErrCode
errMsg dbConn~lastErrMsg

say 'ooSQLiteConnection initialization error:' dbConn~initCode
say ' Error code:' errRC '('errMsg')'

dbConn~close
return errRC
end

3.3.8. lastErrMsg (Attribute)

>>--1aStErrMsg-------cccccccococ oo ><

>>--lastErrMsg = varName------------------------- ><

Reflects a human readable explanation, a message, of the last error code recorded by the connection
object.

lastErrMsg get:
Returns a string message that corresponds to the last error code.

lastErrMsg set:
The programmer can not set this attribute, it is set internally by the 0oSQLite framework.

Remarks:
The last error message attribute is similar to the /astErrCode attribute. Its value is the last status
message recorded by ooSQLite. The lastErrCode and the lastErrMsg attributes are always
updated together. The error message is always the message that goes with the error code.

Each of the three major o0SQLite objects, an coSQLiteConnection, an 0oSQLiteStmt, and an
00SQLijteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by 0oSQLite.

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

Example:
This example uses the lastErrMsg attribute to produce a meaningful error message when a
database connection fails to open:

'ooFotods. rdbx'
.ooSQLiteConnection~new(dbName, .oo0SQLite~OPEN_READWRITE)

dbName =

dbConn =

if dbConn~initCode <> 0 then do
errRC = dbConn~lastErrCode

44



null (Attribute)

errMsg = dbConn~lastErrMsg

say 'ooSQLiteConnection initialization error:' dbConn~initCode
say ' Error code:' errRC '('errMsg')'

dbConn~close
return errRC
end

3.3.9. null (Attribute)

D 1 LU B ><

>>--nU1L = NULLODJ - - --=-=m-m s moe oo ><

Reflects the default representation for the SQL NULL value that is returned by the interpreter, for this
database connection, for database values that are NULL.

null get:
Returns the current object the interpreter uses for this database connection for the SQL NULL
value. If the programmer has not changed this attribute, its value is the value of the null attribute of
the ooSQLite class. Normally this is the .nil object.

null set:
Set this attribute to either the .nil object, or some alternative string value.

Remarks:
By default, 00SQLite uses the .nil object to represent the SQL NULL value. Queries for values
stored in the database will return the . nil object for any value that is SQL NULL. However,
by changing the value of the null attribute, the Rexx programmer can change the value the
interpreter returns for NULL for any statement executed through this database connection.
Typically this would be done when the returned values are going to be displayed as text and the
programmer would prefer to work with a string directly. Perhaps the value NULL, or no value would
be assigned.

When a ooSQLiteConnection object is instantiated, the null attribute is assigned the value of
the null attribute of the ooSQLiteConnection.

Note that this attribute does not affect the value the programmer must use to assign a SQL NULL
to the database. The programmer must use the .nil object for that.

Details
Raises syntax errors when incorrect usage is detected.

This attribute is provided by 0oSQLite, there is no similar feature provided by SQLite.

Example:
This example sets the null attribute of the database connection to NULL. This allows the
application to invoke the left method on the returned value without having to check that the return
is the .nil object. Note that invoking the left method on the .nil object will raise a syntax
condition:

dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)
dbConn~null = 'NULL'

45



recordFormat (Attribute)

sql = '"SELECT * FROM foods ORDER BY name;'
stmt = .ooSQLiteStmt~new(dbConn, sql)

say stmt~columnName(1)~left(25) || stmt~columnName(2)~left(25) ||
stmt~columnName(3)~left(25)
say '='~copies(80)

do while stmt~step == stmt~ROW

say stmt~columnText(1)~left(25) || stmt~columnText(2)~left(25) ||
stmt~columnText (3)~left(25)
end

3.3.10. recordFormat (Attribute)

>>--recordFormat-----------------~-~-~-~-~-—~———----- - ><

>>--recordFormat = varName----------------------- ><

Over-rides the process-wide default record format set through the ocoSQLite class for this database
connection.

recordFormat get:
The value of this attribute is one of the 00SQLite Result Set Format Constants that define how a
result set is formatted. This value defines the format of all result sets produced by this connection.
If the programmer has not changed the value of the attribute explicitly, its value is the same as the
default value set by the ooSQLite classes recordFormat attribute.

recordFormat set:

To over-ride the application-wide record format for result sets, assign one one of the 0oSQLite
Result Set Format Constants to this attribute. This default can still be over-ridden at statment or
method level. If not over-ridden, all returned result sets from this database connection will have the
format specified by this attribute.

3.3.11. busyHandler

>>--pusyHandler(--callBackObj--+------------ e LR ><
+-,-mthName--+ +-,-userData-+

Installs a user defined busy handler.

Arguments:
The arguments are:

callBackObj [required]

An instantiated object with a method that might be invoked whenever an attempt is made to
open a database table that another thread or process has locked.

However, this argument can also be .nil to indicate that any installed busy handler is to be
removed. When no busy handler is installed then BUSY or IOERR_BLOCKED is returned
immediately upon encountering the lock.

46



busyHandler

mthName [optional]
The method name that will be invoked during a call back. By default, the method invoked
will be busyCallBack(). However, the user can specify an alternative method if desired. This
argument is ignored when the callbackObj argument is .nil.

userData [optional]
This can be any Rexx object the user desires. The object will be sent as the second
argument to the busy callback method when it is invoked. This argument is ignored when the
callbackObj argument is .nil.

Return value:
Returns a SQLite result code.

Remarks:
By default, there is no busy handler installed.

There can only be one busy handler installed. Setting a new busy handler automatically clears
any previously installed handler. Note that invoking busyTimeOut can also set or clear the busy
handler.

The busy handler should not take any actions which modify the database connection that invoked
the busy handler. Any such actions result in undefined behavior.

A busy handler must not close the database connection or prepared statement that invoked the
busy handler.

Details:
The functionality of the busyHandler method is similar to that of the SQLite sqlil‘e:ﬁ;bus;ghatnd/e’r25
API.

Example:
This example installs a busy handler with a onTimeOut method that is to be invoked. It passes the
busy handler object itself as the userData argument:

helper = .MyHelperClass~new

db = .ooSQLiteConnection~new( 'phoneBook.rdbx")
if db~initCode <> O then return db~lastErrCode

db~busyHandler (helper, onTimeOut, helper)

::class 'MyHelperClass

::method onTimeOut unguarded
use arg count, helperoObj

if helperObj~query(count) == "ABANDON_TIMEOUT" then return ©
else return 1

::method query private unguarded
use strict arg count

{ code that determines what to return }

= http://www.sqlite.org/c3ref/busy_handler.html

47


http://www.sqlite.org/c3ref/busy_handler.html
http://www.sqlite.org/c3ref/busy_handler.html

busyTimeOut

3.3.11.1. busyCallBack

>>--pusyCallBack(--countInvoked, --userData--)----><

The busyCallBack method is an example of a user callback method for the busyHandler method. Here
the method name of busyCallBack is used, because it is the default method name if the programmer
does not specify his own name in the busyHandler method. Any method name can be used by
specifying it as the second argument to busyHandler.

Note: there is no busyCallBack method in any 00SQLite class. This method is just used to illustrate
how to define a user callback method to be used as a busy handler.

Arguments:
The arguments sent to the callback method are:

countinvoked [required]
The number of times that the busy handler has been invoked for this locking event.

userData [optional]
The user data object specified by the programmer as the third argument to the busyHandler
method. If the programmer did not specify a user data argument, this argument is omitted
when the callback is invoked.

Return value:
The programmer must return a value from the callback. If the method returns 0, then no additional
attempts are made to access the database by the SQLite database engine and SQLITE_BUSY or
SQLITE_IOERR_BLOCKED is returned. If the callback returns non-zero, then another attempt is
made to open the database for reading and the cycle repeats.

Details:

The implementation of a busy handler method is is discussed on the SQLite
sqlite3_busy_handler”® page.

3.3.12. busyTimeOut

>>--pusyTimeOQut(--milliseconds--)---------------- ><

Sets a busy handler that sleeps for the specified amount of time when a table is locked. The handler
sleeps multiple times until the specified time has been accumulated. After the specified milliseconds of
sleeping, the handler returns 0 which causes step to return BUSY or IOERR_BLOCKED.

Arguments:
The arguments are:

milliseconds
The whole number of milliseconds the busy handler should sleep when a table is locked. If
milliseconds is less than or equal to zero all busy handlers are turned off.

% http://www.sqlite.org/c3ref/busy_handler.html

48


http://www.sqlite.org/c3ref/busy_handler.html
http://www.sqlite.org/c3ref/busy_handler.html

changes

Return value:
This method will aways return OK.

Remarks:
After the specified milliseconds of sleeping, the handler returns 0 which causes step to return
BUSY or IOERR_BLOCKED. There can only be a single busy handler for a particular database
connection any any given moment. If another busy handler was defined, using busyHandler, prior
to calling this routine, that other busy handler is cleared.

Details:
The functionality of the busyTimeOut method is similar to that of the SQLite
sq/itefa’fbusyftimeout27 API.

Example:
This example sets a busy timeout value of 3 seconds:

db = .ooSQLiteConnection~new( 'phoneBook.rdbx")
if db~initCode <> O then return db~lastErrCode

db~busyTimeout (3000)

3.3.13. changes

>>--changes------------ommm oo ><

Returns the number of database rows that were changed or inserted or deleted by the most recently
completed SQL statement on this database connection.

Arguments:
There are no arguments to this method.

Return value:
The number of changed, deleted, or inserted rows.

Remarks:
Only changes that are directly specified by the INSERT, UPDATE, or DELETE statement are
counted. Auxiliary changes caused by triggers or foreign key actions are not counted. Use the
totalChanges method to find the total number of changes including changes caused by triggers
and foreign key actions.

Details:
The functionality of the changes method is similar to that of the SQLite sq/ite3_changes28 API.

3.3.14. close

>>--ClOS@------ - o e e e oo ><

z http://lwww.sglite.org/c3ref/busy_timeout.html
= http://www.sqlite.org/c3ref/changes.html

49


http://www.sqlite.org/c3ref/busy_timeout.html
http://www.sqlite.org/c3ref/changes.html
http://www.sqlite.org/c3ref/busy_timeout.html
http://www.sqlite.org/c3ref/changes.html

commitHook

The close method releases all systems resources that have been allocated for the database
connection. Once the connection has been closed, it is an error to invoke any method of the
ooSQLiteConnection object that interacts with the SQLite database. All connection objects should
be closed when they are no longer needed, even connection objects that were instantiated with an
error.

Arguments:
There are no arguments for this method.

Return value:
An 00SQLite result code. Returns OK if the connection is successfully closed and all associated
resources are deallocated. Returns BUSY if the connection is associated with unfinalized prepared
statements or unfinished backup objects.

Remarks:
Programs should finalize all prepared statements, close all BLOB handles, and finish all backup
objects associated with the connection object prior to attempting to close the object. It is a
harmless nop to invoke close on a connection object that has already been closed. The attributes
of the object are still valid after the connection is closed, but invoking other methods of a closed
connection object is an error.

Details:
The functionality of the close method is similar to that of the SQLite sqlite3_c/ose29 API.

Example:
This example opens a database to do some work with it, then closes it. Note that if an error ocurrs
trying to open the database, the connection object is still closed:

dbFile = 'ooFoods.rdbx'
db = .ooSQLiteConnection~new(dbFile, .00SQLite~OPEN_READWRITE)
if db~initCode <> 0 then do

-- do error stuff

db~close

return 99

end

-- work with the database

db~close

3.3.15. commitHook

>>--commitHook(--callBackObj--+------------ e ) e ><
+-, -mthName--+ +-, -userData-+

Registers a callback method to be invoked whenever a transaction is committed.

Arguments:
The arguments are:

2 nttp://www.sglite.org/c3ref/close.html

50


http://www.sqlite.org/c3ref/close.html
http://www.sqlite.org/c3ref/close.html

commitHook

callBackObj [required]
An instantiated object with a method that will be invoked whenever a transaction is committed.

However, this argument can also be .nil to indicate that any installed commit hook is to be
removed.

mthName [optional]
The method name that will be invoked during a call back. By default, the method invoked will
be commitHookCallBack(). However, the user can specify an alternative method if desired.
This argument is ignored when the callbackObj argument is .nil.

userData [optional]
This can be any Rexx object the user desires. The object will be sent as the first and only
argument to the commit hook callback method when it is invoked. This argument is ignored
when the callbackObj argument is .nil.

Return value:
The userData argument to a previous invocation of the commitHook method on the same
database connection, or .nil if there has not been a previous invocation or the userData argument
was not used on the previous invocation.

Details:

The functionality of the commitHook method is similar to that of the SQLite sqlite3_commit_hook™
API.

3.3.15.1. commitHookCallBack

>>--commitHookCallBack( --userData--)------------- ><

The commitHookCallBack method is an example of a user callback method for the commitHook
method. Here the method name of commitHookCallBack is used, because it is the default method
name if the programmer does not specify his own name in the commitHook method. Any method
name can be used by specifying it as the second argument to the commitHook method.

Note: there is no commitHookCallBack method in any 00SQLite class. This method is just used to
illustrate how to define a user callback method to be used with the commit hook.

Arguments:
The single argument sent to the callback method is:

userData [required]
The user data object specified by the programmer as the third argument to the commitHook
method. If the programmer did not specify a user data argument, this will be the .nil object.

Return value:
The programmer must return a value from the callback. If the method returns 0, then the commit is
allowed to continue normally. If the callback returns non-zero, then the COMMIT is converted into
a ROLLBACK. If a rollback hook has been installed, it is invoked just as it would be for any other
rollback.

%0 http://www.sqlite.org/c3ref/commit_hook.html

51


http://www.sqlite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/commit_hook.html

createCollation

Remarks:
The callback method must not do anything that will modify the database connection that invoked
the callback. Any actions to modify the database connection must be deferred until after the
completion of the step invocation that triggered the commit hook to begin with. Running any other
SQL statements, including SELECT statements, or merely instantiating a new statement object, or
executing another step method will modify the database connection.

Details:
The implementation of a commit hook method is is discussed on the SQLite
sqlite3_commit_hook™" page.

3.3.16. createCollation

>>--createCollation(--+-------- ) R LR T T TR ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.3.17. createFunction

>>--createFunction(--+-------- ) R e ><
+--type--+
XX
Arguments:

The arguments are:

8 http://www.sqlite.org/c3ref/commit_hook.html

52


http://www.sqlite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/commit_hook.html

dbFileName

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.3.18. dbFileName

>>--dbFileName(--name--)--------------------~----- ><

Returns the database file name of the database specified by name.

Arguments:
The arguments are:
name [required]
The database name, as known internally by the SQLite database engine, of the database to
get the file name for.

Return value:
The file name of the database specified by name on success. If there is no name database on the
database connection, or if name is a temporary or in-memory database, then the empty string is
returned.

Remarks:
The filename returned will be an absolute pathname, even if the filename used to open the
database originally was a URI or relative pathname.

Details:
The functionality of the dbFileName method is similar to that of the SQLite sqlite3_db_filename®
API.

3.3.19. dbMutex

=B o] ;i [ = ><

Retrieves an 00SQLitMutex object that represents the SQLite mutex that serializes access to this
database connection.

8 http://www.sqlite.org/c3ref/db_filename.html

53


http://www.sqlite.org/c3ref/db_filename.html
http://www.sqlite.org/c3ref/db_filename.html

dbReadOnly

Arguments:
This method takes no arguments.

Return value:

An ooSQLiteMutex object that gives access to the underlying SQLite mutex serializing acces
to this database connection. The mutex object could be a closed null mutex, see the remarks
section.

Remarks:
If the threading mode for this database connection is not serialized, then the returned mutex object
will be a closed, null, mutex. This is not likely.

The dbMutex method is provided for completeness. It is expected that Rexx programmers who do
not understand mutexes well and / or do not understand how SQLite itself works with respect to
the mutex that serializes access to the database connection, will not use this method.

Since the ooSQLiteMutex object returned by the dbMutex method represents a mutex in use
by the SQLite database engine, invoking free on the object closes the Rexx object, but does not
actually close the underlying SQLite mutex.

Details:
The functionality of the dbMutex method is similar to that of the SQLite sqlite37db7mutex33 API.

3.3.20. dbReadOnly

>>--dbReadOnly(--name--)----------------~-----~---- ><

Determines if the named database on this connection is read only.

Arguments:
The single argument is:
name [required]
The database name, as known internally by the SQLite database engine, of the database to
check for read only.

Return value:
Returns 1 if the database is read only, 0 if the database is read / write, and -1 if name is not an
opened database on this connection.

Details:

The functionality of the dbReadOnly method is similar to that of the SQLite sq/ite37db7readon/y34
API.

Example:
This example illustrates the dbReadOnly method:

dbName = 'ooFoods.rdbx'

dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READONLY)

3 http://www.sqglite.org/c3ref/db_mutex.html
3 http://www.sqlite.org/c3ref/db_readonly.html

54


http://www.sqlite.org/c3ref/db_mutex.html
http://www.sqlite.org/c3ref/db_readonly.html
http://www.sqlite.org/c3ref/db_mutex.html
http://www.sqlite.org/c3ref/db_readonly.html

dbReleaseMemory

if dbConn~initCode <> O then do
-- Do error stuff and return
end
dbConn~exec("ATTACH DATABASE 'phonebook.db' AS phone;", .true)
dbConn~exec ("ATTACH DATABASE 'ooFoodsCopy.rdbx' AS dupe;", .true)
say 'Read only? main: ' dbConn~dbReadOnly('main')
say 'Read only? phone:' dbConn~dbReadOnly( 'phone')
say 'Read only? dupe: ' dbConn~dbReadOnly('dupe')
say 'Read only? temp: ' dbConn~dbReadOnly('temp')
ret = dbConn~close
/* Output might be:
Read only? main: 1
Read only? phone: 1
Read only? dupe: 1
Read only? temp: -1

*/

3.3.21. dbReleaseMemory

>>--dbReleaseMemory------------------------------ ><

Causes the SQLite database engine to attempt to free as much heap memory as possible from this
database connection.

Arguments:
This method has no arguments.

Return value:
Returns an 0oSQLite result code. Although the SQLite documentation does not explicitly state this,
it seems likely that OK is always returned.

Remarks:
See also the releaseMemory method of the 0oSQLite class.

Details:

The functionality of the DbReleaseMemoyr method is similar to that of the SQLite
sqlite3_db_release_memory™ API.

3.3.22. dbStatus

>>--dbStatus(--opt--,--result--+---------- +--)---><
+-,-reset--+

Retrieves runtime status information about this database connection.

35 http://www.sqlite.org/c3ref/db_release_memory.html

55


http://www.sqlite.org/c3ref/db_release_memory.html
http://www.sqlite.org/c3ref/db_release_memory.html

dbStatus

Arguments:
The arguments are:
opt [required]
A DB status parameter constant that specifies what status information is requested.

result [required]
A Directory object whose indexes will hold the requestion information on return. On
success the following indexes in the object will be valid:

CURRENT
This index will contain the current value for the status information queried.

HIGHWATER
This index will hold the high water mark for the status information queried.

reset [optional]
Must be true or false to specify whether the high water mark should be reset, or not. The
default if this argument is omitted is false, do not reset the high water mark.

Return value:
Returns a SQLite result code, OK on success otherwise an error code on failure.

Remarks:
If the high water mark is reset, it is reset to the current value of the status information. The
00SQLite DB status constants reflect the currently available SQLite DB status options. The set of
SQLilte DB status options is likely to grow in future releases of SQLite. When, or if, those options
grow, the 00SQLite constants will be updated to reflect the new options

Details:
The functionality of the dbStatus method is similar to that of the SQLite sq/iteCuLdthteztus36 API.

Example:
This example checks the values of the page memory useed by the caches for the database
connection and does not reset the high water mark:
dbName = 'ooFoods.rdbx'
dbConn = .ooSQLiteConnection~new(dbName, .o00SQLite~OPEN_READWRITE)
if dbConn~initCode <> 0 then do
-- do error handling and return
end

values = .directory~new

ret = dbConn~dbStatus(.00SQLite~DBSTATUS_CACHE_USED, values, .false)

if ret == .dbConn~0K then do
say 'Bytes of page memory used by all caches on this database connection:'
say ' Current:' values~current ' High water:' values~highwater
say
end
else do
say 'Error returned from dbStatus():' ret
say
end

% http:/mwww.sglite.org/c3ref/db_status.html

56


http://www.sqlite.org/c3ref/db_status.html
http://www.sqlite.org/c3ref/db_status.html

errCode

/* Output might be:

Bytes of page memory used by all caches on this database connection:
Current: 16824 High water: ©

*/

3.3.23. errCode

>>--errCode-----------m oo ><

Returns the numeric result code for the most recent failed SQLite API call associated with this
database connection.

Arguments:
This method has no arguments

Return value:
The return is a numeric result code.

Remarks:
The errMsg method provides an English-language description of the current value of errCode. If a
previous SQLite API call failed, but the most recent call succeeded, the return from errCode and
errMsg is undefined. If a SQLite API fails with a result code of MISUSE, that means the API was
invoked incorrectly by the program. In that case, the error code and message may or may not be
set.

In SQLite, extended result codes are turned off by default, so the SQLite API provides an
extended error code API that returns the extended result codes even if extended result codes
are turned off. In 00oSQLite however, the extended result codes are turned on during compilation.
This makes the errCode method and the extendedErrCode method exactly equivalent. The
extendedErrCode method is provided for completeness

Details:
The functionality of the errCode method is similar to that of the SQLite sq/ite3ferrcode37 API.

3.3.24. errMsg

>> - @ IMSg-m = - m e oo ><

Returns the English-language text that describes the currenterrCode value.

Arguments:
This method has no arguments.

Return value:
A string describing the current errCode value.

s http://www.sqlite.org/c3ref/errcode.html

57


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html

exec

Remarks:
The errMsg method provides an English-language description of the current value of errCode. If a
previous SQLite API call failed, but the most recent call succeeded, the return from errCode and
errMsg is undefined. If a SQLite API fails with a result code of MISUSE, that means the APl was
invoked incorrectly by the program. In that case, the error code and message may or may not be
set.

In SQLite, extended result codes are turned off by default, so the SQLite API provides an
extended error code API that returns the extended result codes even if extended result codes
are turned off. In 00SQLite however, the extended result codes are turned on during compilation.
This makes the errCode method and the extendedErrCode method exactly equivalent. The
extendedErrCode method is provided for completeness

Details:
The functionality of the errMsg method is similar to that of the SQLite sqlite3_errmsg38 API.

3.3.25. exec

>>--exec(--sql-+--------- Fobmmm e e mam E Fotmmm e e mam B +--)---><
+-,-useCB-+ +-,-format-+ +-,-cbObj-+ +-,-mthName-+ +-, -uData-+

Executes the specified SQL statement(s). A callback is invoked for each result row coming out of the
evaluated SQL statements. This callback can either be a callback internal to the ooSQLite framework,
or a callback to a method in an object supplied by the programmer.

Arguments:
The arguments are:
sql [required]
A string containing the SQL statement, or statements, to execute. More than 1 statement can
be executed by including semi-colons in the string. Each SQL statement is ended with a semi-
colon.

useCB [optional]
True or false to indicate if the callback feature should be used or not.

If this argument is false, the sql is simply executed and a result code returned. The other
arguments are ignored. The default if this argument is omitted is false.

If this argument is true, then the callback feature is used. If the cbObj arg is omitted then an
internal callback of the ooSQLite framework is used and a result set is returned. The result set
could be empty if the sgl does not produce a result set. The format for the returned result set
will the format specified by the recordFomat attribute of this database connection. However,
the default format can be overridden for this invocation of exec() through the optional format
argument.

Otherwise, if cbObj is not omitted, then the call back method of that object is invoked for each
result row coming out of the evaluated SQL statements. In this case the return is the result
code from the database engine's execution.

% http://www.sqlite.org/c3ref/errcode.html

58


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html

exec

format [optional]

This argument can be used to specify the format of the result row(s) coming out of the
evaluated SQL statements. If this argument is omitted the default format value for this
connection is used. If specified, it must be one of the 00SQLite Result Set Format Constants
that define how a result set is formatted. The format effects the result set if a result set is
returned, and the format of the result row sent to a user defined callback when a user defined
callback is used.

cbObj [optional]
Specifies that a user defined callback should be used rather than the ooSQLite internal
callback. A callback method in this object is inovked for each row coming out of the evaluated
SQL statement(s). By default the method invoked in the object will be execCallBack.
However the optional mthName argument can be used to change this.

If this argument omitted, the internal ooSQLite callback is used. This argument is ignored if
useCB is false.

mthName [optional]

Names the method to be invoked in cbObj. This argument is ignored if cbObj is omitted, or
useCB is false. By default the method invoked in cbObj is execCallBack.

uData [optional]

User data that is passed to the user defined callback method. This can be any Rexx object
the programmer wishes to use. The object is passed as the third argument to the callback
method. This argument is ignored if useCB is false, or if cbObj is omitted.

Return value:

The return value is dependent on whether the internal ooSQLite callback is used or not. When
the internal callback is used, a result set is returned containing all the result rows produced by the
SQL statement(s). In all other cases a result code is returned.

Remarks:

The easiest approach to using this method is to use the internal callback of the 00SQLite
framework. However, it is possible that more control might be desired in the processing of the
result rows than the internal callback provides. In this case, a user defined callback can be used.
The execCallBack method explains the details of a user defined callback method.

Details:
The functionality of the exec method is similar to that of the sglite3_exec®® SQLite API.

Example:

This example shows the exec method invoction to use the internal callback of the coSQLite
framework. The format of the returned result set is specified to be an array of arrays:

dbName = 'ooFoods.rdbx'
dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

sql = 'SELECT * FROM foods ORDER BY name;'
resultSet = dbConn~exec(sql, .true, .o00SQLite~00_ARRAY_OF_ARRAYS)

z = printResultSet(resultSet)

% http://www.sqlite.org/c3ref/exec.html

59


http://www.sqlite.org/c3ref/exec.html
http://www.sqlite.org/c3ref/exec.html

exec

3.3.25.1. execCallBack

>>--execCallBack(--row--, --rowNum--, --userData--)--------------- ><

The execCallBack method is an example of a user callback method for the exec method. Here the
method name of execCallBack is used because it is the default method name if the programmer does
not specify her own name in the exec method. Any method name can be used by specifying it as the
fifth argument to exec.

Note: there is no execCallBack method in any 00SQLite class. This method is just used to illustrate
how to define a user callback method.

Arguments:
The arguments sent to the callback method are:
row

The current result row produced by executing the SQL statement(s) passed to the exec
method. The exact format of this argument is dependent on the result set format in use. See
the remarks for details.

rowNum
The current result row number.

userData
The user data object specified by the programmer as the sixth argument to the exec method.
If the programmer did not specify a user data argument, this argument is omitted when
invoking the callback.

Return value:

The programmer must return a value from the callback. This value can by any of the ooSQLite
result code constants, but if it is not the OK constant, then the SQLite database engine aborts
without invoking the callback again and without running any subsequent SQL statements. Note
that returning some other result code than OK allows the callback to halt the processing of the
result rows at an early stage.

Remarks:

The value of the row argument is dependent on the default result set format in use for the
invocation of the exec method that generates the callback invocation. These are the possible
formats:

OO_ARRAY_OF_ARRAYS:

The row argume will be an array with exactly 2 indexes. Index 1 will be an array of the column
names for the result row. Index 2 will be an array for the corresponding values of the column.

OO_ARRAY_OF_DIRECTORIES:

The row argument will be a Directory object where the indexes of the directory are the
column names and the value of the index is the value of the column.

OO _STEM_OF_STEMS:

The row argument will be a Stem object where the indexes of the stem are the column names
and the value of the index is the value of the column.

Example:
This example is just used to show the principles of a user defined callback. The actual processing
has no benefit over usin the internal callback. A user class is defined with a callback method. This

60



extendedErrCode

is passed to the exec method. The default record format is OO_0OO_ARRAY_OF_DIRECTORIES.
In the callback method, each record is added to the user data object, which in this case is an
array. On return from the exec method, if there were no errors, the resultObj array will contain all
the result rows produced by executing the SQL statement:

dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

resultObj = .array~new(500)
chObj = .UserCallBack~new

sql
ret

'SELECT * FROM foods ORDER BY name;'
dbConn~exec(sql, .true, , ch0Obj, , resultObj)

::class 'UserCallBack' inherit ooSQLiteConstants

::method execCallBack
use arg row, rowNum, userObj

userObj[rowNum] = row

return self~0K

3.3.26. extendedErrCode

>>--extendedErrCode------------------------------ ><

Returns the numeric result code for the most recent failed SQLite API call associated with this
database connection. The extendedErrCode and the errCode methods are functionally equivalent, see
the remarks.

Arguments:
This method takes no arugments

Return value:
Returns a numeric result code.

Remarks:
The errMsg method provides an English-language description of the current value of
extendedErrCode. If a previous SQLite API call failed, but the most recent call succeeded, the
return from extendedErrCode and errMsg is undefined. If a SQLite API fails with a result code of
MISUSE, that means the API was invoked incorrectly by the program. In that case, the error code
and message may or may not be set.

In SQLite, extended result codes are turned off by default, so the SQLite API provides an
extended error code API that returns the extended result codes even if extended result codes
are turned off. In 00SQLite however, the extended result codes are turned on during compilation.
This makes the errCode method and the extendedErrCode method exactly equivalent. The
extendedErrCode method is provided for completeness.

61



extendedResultCodes

Details:

The functionality of the extendedErrCode method is similar to that of the SQLite
sqlite3_extended_errcode® API.

3.3.27. extendedResultCodes

>>--extendedResultCodes(--on0ff--)--------------- ><

This is a nop in 00SQLite, extended result codes are always on.

Arguments:
The single argument is:
onOff
True or false to turn extended result codes on or off. However, this arugment is currently
ignored, extended result codes are always on in 00SQLite.

Return value:
Returns OK, always.

Remarks:

The method is provided for completeness. In SQLite, extended result code are off by default for
historical reasons. 00SQLite, however, has no history to make this applicable, so extended result
code are always on.

Details:

The functionality of the extendedResultCode method is similar to that of the SQLite
sq/iteSfextendedfresultfcodes41 API.

3.3.28. getAutocommit

>>--getAutocommit----------------------------__-- ><

Determines if this database connection is, or is not, in autocommit mode.

Arguments:
This method does not take any arguments.

Return value:
Returns true if the connection is in autocommit mode, otherwise false.

Remarks:
Autocommit mode is on by default. Autocommit mode is disabled by a BEGIN statement.
Autocommit mode is re-enabled by a COMMIT or ROLLBACK. If certain kinds of errors happen
on a statement within a multi-statement transaction then the transaction might be rolled back
automatically. The only way to find out whether SQLite automatically rolled back the transaction
after an error is to use this function.

40 http://www.sglite.org/c3ref/errcode.html
! http:/mwww.sglite.org/c3ref/extended_result_codes.html

62


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/extended_result_codes.html
http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/extended_result_codes.html

interrupt

Details:
The functionality of the getAutoCommit method is similar to that of the SQLite
sqlite3_get autocommit™ API.

3.3.29. interrupt

>>--interrupt-----------------oooee - ><

Interrupt causes any pending database operation to abort and return at the earliest opportunity.

Arguments:
There are no arguments to this method.

Return value:
XX

Remarks:
This method is safe to call from a different thread than the thread that is currently running
the database operation. But it is not safe to call this routine with a database connection that
might close before interrupt returns. If a SQL operation is very nearly finished at the time
when interrupt is invoked, then it might not have an opportunity to be interrupted and might
continue to completion. A SQL operation that is interrupted will return INTERRUPT result code.
If the interrupted SQL operation is an INSERT, UPDATE, or DELETE that is inside an explicit
transaction, then the entire transaction will be rolled back automatically.

The interrupt call is in effect until all currently running SQL statements on this database connection
complete. Any new SQL statements that are started after the interrupt call and before the running
statement count reaches zero are interrupted as if they had been running prior to the interrupt

call. New SQL statements that are started after the running statement count reaches zero are not
effected by the interrupt. A call to interrupt that occurs when there are no running SQL statements
is a no-op and has no effect on SQL statements that are started after the interrupt call returns.

If this database connection closes while interrupt is running then bad things will likely happen.

Details:
The functionality of the interrupt method is similar to that of the SQLite sqlite3_interrupt® API.

3.3.30. lastinsertRowlID

>>--lastInsertROWID----------cmmmmmmm oo ><

Returns the rowid of the most recent successful INSERT into the database from this database
connection.

Arguments:
This method has no arguments.

42 http://lwww.sglite.org/c3ref/get_autocommit.html
4 http://www.sqlite.org/c3ref/interrupt.html

63


http://www.sqlite.org/c3ref/get_autocommit.html
http://www.sqlite.org/c3ref/interrupt.html
http://www.sqlite.org/c3ref/get_autocommit.html
http://www.sqlite.org/c3ref/interrupt.html

limit

Return value:
Returns the unique whole number rowid of the most recent, successful INSERT statement on this
database connection

Remarks:
Every row of every SQLite table has a 64-bit signed integer key that uniquely identifies the row
within its table. This integer is usually called the rowid. The rowid value can be accessed using
one of the special case-independent names rowid, oid, or _rowid_ in place of a column name.
If a table contains a user defined column named using any of these 3 special names, then that
name always refers the explicitly declared column and cannot be used to retrieve the integer rowid
value.

The SQLite documentation contains very detailed and complete documentation concerning the
last™ rowid and the rowid® itself. That documentation should be consulted to fully understand the
rowid concept.

Details:
The functionality of the lastinsertRowID method is similar to that of the SQLite
sqlite3_last _insert rowid™® API.

3.3.31. limit

>>--limit(--id--,--value--)---------------------- ><

Queries or sets the limiting size of various constructs on this database connection.

Arguments:
The arguments are:
id [required]
One of the run time limitconstants. This identifies the limit construct that is to be size limited.

value [required]
The new value of the limit. If this value is negative, then the limit is unchanged.

Return value:
Returns the exsiting limit at the time /imit is invoked, even if the invocation does not change the
limit. Because of this, the way to query the current value of a limit is to invoke the method with a
negative number.

Remarks:
For each limit there is a hard upper bound set when 00SQLite is built. Attempts to increase a
limit above its hard upper bound are silently truncated by the database engine to the hard upper
bound. The limit method can be used by an application that allows an untrusted source to enter
data into the database to lower the built in limits. Perhaps to prevent denial of service attacks.
Programmers may also want to use the setAuthorizer method and / or limiting database size using
the max_page_count PRAGMA when the application works with untrusted sources.

New run time limits may be introduced by SQLite in the future.

4 http://www.sqlite.org/c3ref/last_insert_rowid.html
45 http://lwww.sglite.org/lang_createtable.html#rowid
46

64


http://www.sqlite.org/c3ref/last_insert_rowid.html
http://www.sqlite.org/lang_createtable.html#rowid
http://www.sqlite.org/c3ref/last_insert_rowid.html
http://www.sqlite.org/lang_createtable.html#rowid

nextStmt

Details:
The functionality of the limit method is similar to that of the SQLite sqlite3_limit*" API.

3.3.32. nextStmt

>>--nextStmt(--+-------- ) ><
+--stmt--+

Returns the next prepared statement object after the specified statement, or the first prepared
statement if stmt is omitted or the . nil object.

Arguments:
The single argument is:
stmt [optional]
A ooSQLiteStmt object specifying the starting point of the search. If this argument is
omitted, or the .nil object then the search starts from the beginnging of the prepared
statement list.

Return value:
Returns the found statement, or .nil if no next prepared statement is found.

Remarks:
The search finds the first statement after the specified stmt. It is okay to use a statement that
has been finalized as the starting point of the search. Omitting the stmt argument or using .nil
essentially finds the first prepared statement.

Details:
The functionality of the nextStmt method is similar to that of the SQLite sqliteé’_next_sl‘mt48 API.

3.3.33. profile

>>--profile(--callBackObj--+------------ R T T +--)----><
+-, -mthName--+ +-, -userData-+

Registers an user callback method that can be used for profiling. The callback method is invoked is
invoked as each SQL statement finishes.

Arguments:
The arguments are:

callBackObj [required]
An instantiated object with a method that will be invoked for profiling.

However, this argument can also be .nil to indicate that any installed profile callback is to be
removed.

7 http://www.sqlite.org/c3ref/limit.html
8 http://www.sqlite.org/c3ref/next_stmt.html

65


http://www.sqlite.org/c3ref/limit.html
http://www.sqlite.org/c3ref/next_stmt.html
http://www.sqlite.org/c3ref/limit.html
http://www.sqlite.org/c3ref/next_stmt.html

profile

mthName [optional]
The method name that will be invoked during a call back. By default, the method invoked will
be profileCallBack(). However, the user can specify an alternative method if desired. This
argument is ignored when the callbackObj argument is .nil.

userData [optional]
This can be any Rexx object the user desires. The object will be sent as the third argument to
the profile callback method when it is invoked. This argument is ignored when the callbackObj
argument is .nil.

Return value:
The userData argument to a previous invocation of the trace method on the same database
connection, or .nil if there has not been a previous invocation or the userData argument was not
used on the previous invocation.

Remarks:
By default, there is no profile callback installed. There can only be one profile callback per
database connection. Setting a new profile callback automatically clears any previously installed
callback.

The callback method is invoked as each SQL statement finishes. The profile callback contains the
original statement text and an estimate of wall-clock time of how long that statement took to run.
The example profileCallBack method has complete details.

Details;
The functionality of the profile method is similar to that of the SQLite sq/itex’:.’JJrofile49 API.

3.3.33.1. profileCallBack

>>--profileCallBack(--sgl--,--nanoSeconds--, --userData--)-------- ><

The profileCallBack method is an example of a user callback method for the profile method. Here the
method name of profileCallBack is used, because it is the default method name if the programmer
does not specify his own name in the profile method. Any method name can be used by specifying it
as the second argument to the profile method.

The profile callback is invoked as each SQL statement finishes executing.

Note: there is no profileCallBack method in any 00oSQLite class. This method is just used to illustrate
how to define a user callback method to be used with when profiling.

Arguments:
The arguments sent to the callback method are:

sql [required]
The original SQL statement text.

nanoSeconds [required]
The wall clock time it took to execute the SQL statement. See the remarks section.

49 http://www.sqlite.org/c3ref/profile.html

66


http://www.sqlite.org/c3ref/profile.html
http://www.sqlite.org/c3ref/profile.html

progressHandler

userData [required]

The user data object specified by the programmer as the third argument to the trace method.
If the programmer did not specify a user data argument, this will be the .nil object.

Return value:

The programmer must return a whole number value from the callback, the exact number does not
matter.

Remarks;
Although the wall clock time is in nanoseconds, the current SQLite implementation is only capable
of millisecond resolution making the six least significant digits in the time are meaningless. Future
versions of SQLite might provide greater resolution on the profiler callback. The sqlite3_profile()
function is considered experimental and is subject to change in future versions of SQLite.

Details:
The implementation of a profile callback method is is discussed on the SQLite sqlite3_proﬁle5°
page.

3.3.34. progressHandler

>>--progressHandler(--callBackObj--+------------- L e L +--)---><
+-,-instrcts-+ +-, -mName--+ +-,-urData-+

Registers an user callback method that is invoked periodically during long running calls to exec, and
step for this database connection. An example use for this interface is to keep a GUI updated during a
large query.

Arguments:
The arguments are:

callBackObj [required]

An instantiated object with a method that will be invoked during long running exec or step
methods.

However, this argument can also be .nil to indicate that any installed progress handler is to be
removed.

instrcts [required]
The number of virtual machine instructions that are evaluated between successive invocations
of the callback. If this argument is less than 1, it also has the effect of removing any installed
callback.

mName [optional]
The method name that will be invoked during a call back. By default, the method invoked will
be progressCallBack(). However, the user can specify an alternative method if desired. This
argument is ignored when the callbackObj argument is .nil.

%0 http://www.sqlite.org/c3ref/profile.html

67


http://www.sqlite.org/c3ref/profile.html
http://www.sqlite.org/c3ref/profile.html

progressHandler

uData [optional]
This can be any Rexx object the user desires. The object will be sent as the first and only
argument to the progress handler callback method when it is invoked. This argument is
ignored when the callbackObj argument is .nil.

Return value:
Returns a SQLite result code.

Remarks:
By default, there is no progress handler installed. There can only be one progress handler per
database connection. Setting a new progress handler automatically clears any previously installed
handler.

Details:
The functionality of the progressHandler method is similar to that of the SQLite
sqlite3_progress_handler51 API.

3.3.34.1. progressCallBack

>>--progressCallBack(--userData--)--------------- ><

The progressCallBack method is an example of a user callback method for the progressHandler
method. Here the method name of progressCallBack is used, because it is the default method name
if the programmer does not specify his own name in the progressHandler method. Any method name
can be used by specifying it as the second argument to the progressHandler method.

The progressHandler callback is invoked periodically after a number of virtual machine code
instructions are evaluated. This number is specified by the second argument to the progressHandler
method.

Note: there is no progressCallBack method in any ooSQLite class. This method is just used to
illustrate how to define a user callback method to be used as a progress handler.

Arguments:
The single argument sent to the callback method is:

userData [required]
The user data object specified by the programmer as the fourth argument to the
progressHandler method. If the programmer did not specify a user data argument, this will be
the .nil object.

Return value:

The programmer must return a whole number value from the callback. If the progress handler
returns non-zero, the SQLite operation is interrupted. If O is returned the operation continues.

Remarks;
The progress handler must not do anything that will modify the database connection that invoked
the progress handler. Note that both instantiating a new 0oSQLiteStmt and the step method
modify their database connections.

5t http://www.sqlite.org/c3ref/progress_handler.html

68


http://www.sqlite.org/c3ref/progress_handler.html
http://www.sqlite.org/c3ref/progress_handler.html

pragma

Details:
The implementation of a progressHandler callback method is is discussed on the SQLite
sq/ite37progressfhandler52 page.

3.3.35. pragma

>>--pragma(--name--+---------- R e ><
+-,-value--+

Executes a PRAGMA statement. A PRAGMA statement is a SQLite specific SQL extension, probably
unknown to any other database engine. The pragma method implements the functionality of the
SQLite PRAGMA® statement. The SQLite documentation should be read to understand how
PRAGMASs work

The pragma method is intended to be a convenience method for the Rexx programmer. For any
specific PRAGMA, the pragma method could be replaced by using a prepared statement, or by using
the exec method. When a PRAGMA is executed using a prepared statement or the exec method, a
result set is returned. However, executing the vast majority of PRAGMAs returns either a single value
or no value. As a convenience, the pragma method returns a single value for those cases. A result set
is only returned when necessary.

In addition, some PRAGMAS require an argument, some only work with no argument, and SQLite
ignores unknown PRAGMA keywords. In all these cases of mistaken usage, no error messages or
error codes are generated by the SQLite engine. This means if there is mistaken usage of a PRAGMA
statement SQLite does not inform the user of the fact. However, the 00SQLite framework attempts to
detect any errors when using the pragma method and raises an exception when it does. Because of
this, the Rexx programmer is informed of incorrect usage the first time he tests his program.

Pragmas can have an optional database name before the pragma name. The form is: the database
name, a dot characeter, and the pragma name. The database name is the name of an attached
database or it can be main or temp for the main and the TEMP databases. If the optional database
name is omitted, main is assumed. In some pragmas, the database name is meaningless and is
simply ignored. An example for the secure_delete pragma could be: main.secure_delete

Arguments:
The arguments are:

name [required]
The name of the pragma to be executed. Case is not significant for the name. Each
recognized pragma is listed in the remarks section, along with details on what to expect for
that pragma.

value [optional]
Most PRAGMASs accept, or use, an argument. The second value argument to the pragma
method is used as the argument to a PRAGMA. When a pragma is used to set a value,
the value argument is the value to set. For these pragmas, the existence of the argument
determines if a query or a set is done. When the argument is omitted, a query is done. When
the argument is used, a set is done.

52 http://lwww.sglite.org/c3ref/progress_handler.html
53 http://www.sqlite.org/pragma.html

69


http://www.sqlite.org/c3ref/progress_handler.html
http://www.sqlite.org/pragma.html
http://www.sqlite.org/c3ref/progress_handler.html
http://www.sqlite.org/pragma.html

pragma

In some cases the PRAGMA argument is a qualifier and the value argument is passed on to
the PRAGMA as that qualifier. In some cases, a PRAGMA does not accept an argument, and
in others an arugment is required. See the remarks section for the details on each individual
PRAGMA.

Return value:
The return is dependent on the pragma in use. Some pragmas return result sets, some return
a single value, and others return a SQLite result code. In all cases a value is returned. See the
remarks section for the type of return to expect for each individual PRAGMA.

Although an error is unlikely when using the pragma method, errors are always possible. In many
cases, an error return is not distiguishable from a valid return. For instance, the page_count
pragma could return 21 pages. 21 is also the value of the MISUSE result code. In all cases,

the programmer should check the value of the last error code attribute to detemine if an error
occurred. The value of the attribute will always be .o0oSQLiteConstants~OK if no error
happended. The value will never be OK if there was an error.

Remarks:
PRAGMA statement can be used to set / configure database values, to trigger an action, and to
guery most of the configurable database values. SQLite deprecated and debug only PRAGMAs
are not recognized in 00SQLite.

The following lists all PRAGMASs that are recognized, with details for each PRAGMA following.
Return values are categorized as single values (the most common,) result codes, or result sets.
When a result set is returned, it could be an empty result set. That is it could contain no rows. Both
single value returns and empty result sets could also be an error return. See the Return value
section above for a discussion of error retuns. For each pragma the return category is listed for the
prama with no value argument and with a value argument.

application_id freelist_count quick_check
auto_vacuum fullfsync read_uncommitted
automatic_index ignore_check_constraints recursive_triggers
busy_timeout incremental_vacuum reverse_unordered_selects
cache_size index_info schema_version
cache_spill index_list secure_delete
case_sensitive_like integrity_check shrink_memory
checkpoint_fullfsync journal_mode soft_heap_limit
collation_list journal_size_limit synchronous
compile_options legacy_file_format table_info
database_list locking_mode temp_store
defer_foreign_keys max_page_count user_version
encoding mmap_size wal_autocheckpoint
foreign_key check page_count wal_checkpoint
foreign_key _list page_size writable_schema
foreign_keys query_only

application_id
Queries or sets the 32-bit unsigned big-endian Application ID integer. Consult the SQLite
application_id>* documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.

5 http://www.sqlite.org/pragma.html#pragma_application_id

70


http://www.sqlite.org/pragma.html#pragma_application_id
http://www.sqlite.org/pragma.html#pragma_application_id

pragma

value: integer

auto_vacum

Queries or sets the auto-vacuum status in the database. Consult the SQLite auto_vacum®
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: 0 | NONE | 1| FULL | 2 | INCREMENTA

automatic_index
Queries, sets, or clears the automatic indexing capability. Consult the SQLite
automatic_index>® documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true | false

busy_timeout
Queries or changes the setting of the busy timeout. This pragma is an alternative to the
busyTimeOut method. SQLite makes the pragma available as a pragma for use with language
bindings that do not provide direct access to the sqlite3_busy_timeout() API.

00SQLite of course does provide direct access through both the busyTimeOut method and
the oosql/BusyTimeOut routine. The pragma is included here for completeness. Consult the
SQLite busy_l‘imeoul‘57 documentation for complete details.

No value argument returns: single value.
With value argument returns: single value.
value: milliseconds

cache_size
Queries or changes the suggested maximum number of database disk pages that SQLite
will hold in memory at once per open database file. Consult the SQLite cache_size®®
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: pages | -kibibytes

cache_spill
Enables or disables the ability of the pager to spill dirty cache pages to the database file in
the middle of a transaction. Cache_spill is enabled by default and most applications should
leave it that way as cache spilling is usually advantageous. Consult the SQLite cachefspill59
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

55 http://lwww.sglite.org/pragma.html#pragma_auto_vacuum

% http://www.sqlite.org/pragma.html#pragma_automatic_index
57 http://www.sqlite.org/pragma.html#pragma_busy_timeout

58 http://lwww.sglite.org/pragma.html#pragma_cache_size

%9 http://www.sqlite.org/pragma.html#pragma_cache_spill

71


http://www.sqlite.org/pragma.html#pragma_auto_vacuum
http://www.sqlite.org/pragma.html#pragma_automatic_index
http://www.sqlite.org/pragma.html#pragma_busy_timeout
http://www.sqlite.org/pragma.html#pragma_cache_size
http://www.sqlite.org/pragma.html#pragma_cache_spill
http://www.sqlite.org/pragma.html#pragma_auto_vacuum
http://www.sqlite.org/pragma.html#pragma_automatic_index
http://www.sqlite.org/pragma.html#pragma_busy_timeout
http://www.sqlite.org/pragma.html#pragma_cache_size
http://www.sqlite.org/pragma.html#pragma_cache_spill

pragma

case_sensitive_like
Installs a new application-defined LIKE function that is either case sensitive or insensitive
depending on the value of the case_sensitive_like pragma. By default LIKE is case-
insensitive. Consult the SQLite case_sensitive_like® documentation for complete details.

No value argument: invalid, condition raised.
With value argument: single value
value: true or false

checkpoint_fullfsync
Query or change the fullfsync flag for checkpoint operations. Consult the SQLite
checkpoint_fullfsync®* documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

collation_list
Returns a list of the collating sequences defined for the current database connection. Consult
the SQLite collation_list** documentation for complete details.

No value argument returns: result set.
With value argument: invalid, condition raised
value: invalid

compile_options
Returns the names of compile-time options used when building SQLite, one option per
row. The SQLITE_ prefix is omitted from the returned option names. Consult the SQLite
compile_options® documentation for complete details.

No value argument returns: result set.
With value argument: invalid, condition raised
value: invalid

database_list
Works like a query to return one row for each database attached to the current database
connection. Consult the SQLite database_list** documentation for complete details.

No value argument returns:; result set.
With value argument: invalid, condition raised
value: invalid

defer_foreign_keys
When the defer_foreign_keys PRAGMA is on, enforcement of all foreign key constraints is
delayed until the outermost transaction is committed. The defer_foreign_keys pragma defaults
to OFF so that foreign key constraints are only deferred if they are created as "DEFERRABLE
INITIALLY DEFERRED". This pragma is only meaningful if foreign key constraints are
enabled, of course. Consult the SQLite database_list®> documentation for complete details.

60 http://www.sqlite.org/pragma.html#pragma_case_sensitive_like
61 http://lwww.sglite.org/pragma.html#pragma_checkpoint_fullfsync
62 http://www.sqlite.org/pragma.html#pragma_collation_list

&3 http://www.sqlite.org/pragma.html#pragma_compile_options

b4 http://lwww.sglite.org/pragma.html#pragma_database_list

% http://www.sglite.org/pragma. html#pragma_database_list

72


http://www.sqlite.org/pragma.html#pragma_case_sensitive_like
http://www.sqlite.org/pragma.html#pragma_checkpoint_fullfsync
http://www.sqlite.org/pragma.html#pragma_collation_list
http://www.sqlite.org/pragma.html#pragma_compile_options
http://www.sqlite.org/pragma.html#pragma_database_list
http://www.sqlite.org/pragma.html#pragma_database_list
http://www.sqlite.org/pragma.html#pragma_case_sensitive_like
http://www.sqlite.org/pragma.html#pragma_checkpoint_fullfsync
http://www.sqlite.org/pragma.html#pragma_collation_list
http://www.sqlite.org/pragma.html#pragma_compile_options
http://www.sqlite.org/pragma.html#pragma_database_list
http://www.sqlite.org/pragma.html#pragma_database_list

pragma

No value argument returns: single value.
With value argument returns: result code.
value: true or false

encoding
When used as a query, if the main database has already been created, then this pragma
returns the text encoding used by the main database, one of "UTF-8", "UTF-16le" (little-
endian UTF-16 encoding) or "UTF-16be" (big-endian UTF-16 encoding). If the main database
has not already been created, then the value returned is the text encoding that will be used
to create the main database, if it is created by this session. Consult the SQLite encoding®®
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: UTF-8 | UTF-16 | UTF-16le | UTF-16be

foreign_key_check
Checks the database, or the table specified, for foreign key constraints that are violated
and returns one row of output for each violation. Consult the SQLite foreignfkeyfcheck67
documentation for complete details.

No value argument returns: result set.
With value argument returns: result set.
value: table_name, not required

foreign_key _list
Returns one row for each foreign key that references a column in the argument table. Consult
the SQLite foreignfkeyf/isl‘68 documentation for complete details.

No value argument: invalid, condition raised.
With value argument returns: result set.
value: table_name

foreign_keys
Query, set, or clear the enforcement of foreign key constraints. Consult the SQLite
foreign_keys®® documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

freelist_count

Returns the number of unused pages in the database file. Consult the SQLite freelist_count™
documentation for complete details.

No value argument returns: single value.
With value argument: invalid, condition raised.
value: invalid

6 http://lwww.sglite.org/pragma.html#pragma_encoding

&7 http://www.sqlite.org/pragma.html#pragma_foreign_key_check
68 http://www.sqlite.org/pragma.html#pragma_foreign_key_list

89 http://lwww.sglite.org/pragma.html#pragma_foreign_keys

7 http://www.sqlite.org/pragma.html#pragma_freelist_count

73


http://www.sqlite.org/pragma.html#pragma_encoding
http://www.sqlite.org/pragma.html#pragma_foreign_key_check
http://www.sqlite.org/pragma.html#pragma_foreign_key_list
http://www.sqlite.org/pragma.html#pragma_foreign_keys
http://www.sqlite.org/pragma.html#pragma_freelist_count
http://www.sqlite.org/pragma.html#pragma_encoding
http://www.sqlite.org/pragma.html#pragma_foreign_key_check
http://www.sqlite.org/pragma.html#pragma_foreign_key_list
http://www.sqlite.org/pragma.html#pragma_foreign_keys
http://www.sqlite.org/pragma.html#pragma_freelist_count

pragma

fullfsync

Query or change the fullfsync flag. Consult the SQLite fu/lfsync71 documentation for complete
details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

ignore_check_constraints
Enables or disables the enforcement of CHECK constraints. The default setting is
off, meaning that CHECK constraints are enforced by default. Consult the SQLite
ignore_check_constraints’ documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

incremental_vacuum
Causes up to N pages to be removed from the freelist. The database file is truncated by the
same amount. If there are fewer than N pages on the freelist, N is omitted, or N is less than 1,
all pages are removed. Consult the SQLite incremental_vacuum’ documentation for complete
details.

No value argument returns: result code.
With value argument returns: result code.
value: N, not required

index_info
Returns one row each column in the named index. The first column of the result is the rank of
the column within the index. The second column of the result is the rank of the column within
the table. The third column of output is the name of the column being indexed. Consult the
SQLite index_info™ documentation for complete details.

No value argument: invalid, condition raised.
With value argument returns: result set
value: index_name, required

index_list
Returns one row for each index associated with the given table. Columns of the result set
include the index name and a flag to indicate whether or not the index is UNIQUE. Consult the
SQLite index_list”> documentation for complete details.

No value argument: invalid, condition raised.
With value argument returns: result set
value: table_name, required

integrity_check
Does an integrity check of the entire database. It looks for out-of-order records, missing
pages, malformed records, and corrupt indices. If any problems are found, then strings are

s http://lwww.sglite.org/pragma.html#pragma_fullfsync

5 http://www.sqlite.org/pragma.html#pragma_ignore_check_constraints
& http://www.sqlite.org/pragma.html#pragma_incremental_vacuum

s http://lwww.sglite.org/pragma.html#pragma_index_info

S http://www.sqlite.org/pragma.html#pragma_index_list

74


http://www.sqlite.org/pragma.html#pragma_fullfsync
http://www.sqlite.org/pragma.html#pragma_ignore_check_constraints
http://www.sqlite.org/pragma.html#pragma_incremental_vacuum
http://www.sqlite.org/pragma.html#pragma_index_info
http://www.sqlite.org/pragma.html#pragma_index_list
http://www.sqlite.org/pragma.html#pragma_fullfsync
http://www.sqlite.org/pragma.html#pragma_ignore_check_constraints
http://www.sqlite.org/pragma.html#pragma_incremental_vacuum
http://www.sqlite.org/pragma.html#pragma_index_info
http://www.sqlite.org/pragma.html#pragma_index_list

pragma

returned (as multiple rows with a single column per row) which describe the problems. At most
N errors will be reported before the analysis quits. The default value for N is 100. If no errors
are found, a single row with the value ok is returned. Consult the SQLite integrity check’®
documentation for complete details.

No value argument returns: result set.
With value argument returns: result set.
value: N, not required

journal_mode
Queries or sets the journal mode for databases associated with the current database
connection. Consult the SQLite journal_mode’’ documentation for complete details.

No value argument returns: single value.
With value argument returns: single value
value: DELETE | TRUNCATE | PERSIST | MEMORY | WAL | OFF

journal_size_limit
This pragma can be used to limit the size (N bytes) of rollback-journal and WAL files left in
the file-system after transactions or checkpoints. Consult the SQLite journalfsizef/imit78
documentation for complete details.

No value argument returns: single value.
With value argument returns: single value.
value: N or -1, no limit

legacy_file_format
Sets or queries the value of the legacy_file_format flag. When this flag is on, new SQLite
databases are created in a file format that is readable and writable by all versions of SQLite
going back to 3.0.0. When the flag is off, new databases are created using the latest file
format which might not be readable or writable by versions of SQLite prior to 3.3.0. Consult
the SQLite Iegacy_file_format79 documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

locking_mode
Sets or queries the database connection locking-mode. The locking-mode is either NORMAL
or EXCLUSIVE. Consult the SQLite Iockingfmode80 documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: NORMAL | EXCLUSIVE

max_page_count
Queries or set the maximum number of pages (N) in the database file. Both forms of the
pragma return the maximum page count. The set form attempts to modify the maximum page

S http://lwww.sglite.org/pragma.html#pragma_integrity_check

" http://www.sglite.org/pragma. html#pragma_journal_mode

8 http://www.sqlite.org/pragma.html#pragma_journal_size_limit
S http://lwww.sglite.org/pragma.html#pragma_legacy_file_format
8 http://www.sqlite.org/pragma.html#pragma_locking_mode

75


http://www.sqlite.org/pragma.html#pragma_integrity_check
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_journal_size_limit
http://www.sqlite.org/pragma.html#pragma_legacy_file_format
http://www.sqlite.org/pragma.html#pragma_locking_mode
http://www.sqlite.org/pragma.html#pragma_integrity_check
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_journal_size_limit
http://www.sqlite.org/pragma.html#pragma_legacy_file_format
http://www.sqlite.org/pragma.html#pragma_locking_mode

pragma

count. The maximum page count cannot be reduced below the current database size. Consult
the SQLite maxfpagefcoum‘81 documentation for complete details.

No value argument returns: single value.
With value argument returns: single value.
value: N

mmap_size
Query or change the maximum number of bytes (N) that are set aside for memory-mapped 1/0
on a single database. Consult the SQLite page_count82 documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: N

page_count
Returns the total number of pages in the database file. Consult the SQLite page count®®
documentation for complete details.

No value argument returns: single value.
With value argument returns: invalid, condition raised.
value: invalid

page_size
Queries or sets the page size (N) of the database. The page size must be a power of two
between 512 and 65536 inclusive. Consult the SQLite page_size84 documentation for
complete details.

No value argument returns: single value.
With value argument returns: result code.
value: N

query_only
Prevents all changes to database files when enabled. Consult the SQLite query only®®
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

quick_check
Performs an integrity check, like the integrity check pragma, except that it does not verify
that index content matches table content. By skipping the verification of index content,
quick_check is able to run much faster than integrity_check. At most N errors will be reported
before the analysis quits. The default value for N is 100. If no errors are found, a single row
with the value ok is returned. Otherwise the two pragmas are the same. Consult the SQLite
quiclgchecl(86 documentation for complete details.

81 http://www.sqlite.org/pragma.html#pragma_max_page_count
82 http://lwww.sglite.org/pragma.html#pragma_mmap_size

8 http://www.sqlite.org/pragma.html#pragma_page_count

84 http://www.sqlite.org/pragma.html#pragma_page_size

8 http://lwww.sglite.org/pragma.html#pragma_query_only

# http://www.sglite.org/pragma. htmi#pragma_quick_check

76


http://www.sqlite.org/pragma.html#pragma_max_page_count
http://www.sqlite.org/pragma.html#pragma_mmap_size
http://www.sqlite.org/pragma.html#pragma_page_count
http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_query_only
http://www.sqlite.org/pragma.html#pragma_quick_check
http://www.sqlite.org/pragma.html#pragma_max_page_count
http://www.sqlite.org/pragma.html#pragma_mmap_size
http://www.sqlite.org/pragma.html#pragma_page_count
http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_query_only
http://www.sqlite.org/pragma.html#pragma_quick_check

pragma

No value argument returns: result set.
With value argument returns: result set.
value: N, not required

read_uncommitted
Query, set, or clear READ UNCOMMITTED isolation. Consult the SQLite read_uncommitted®”
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

recursive_triggers
Query, set, or clear the recursive trigger capability. Consult the SQLite recursive;triggers88
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

reverse_unordered_selects
When enabled, this pragma causes SELECT statements without an ORDER BY clause
to emit their results in the reverse order of what they normally would. This can help debug
applications that are making invalid assumptions about the result order. Consult the SQLite
reverse_unordered_selects®® documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: true or false

schema_version
Used to set or get the value of the schema-version. The pragmas schema_version and
user_version are used to set or get the value of the schema-version and user-version,
respectively. The schema-version and the user-version are big-endian 32-bit signed integers
stored in the database header.

The schema-version is usually only manipulated internally by SQLite. Using the
schema_version pragma to modify the schema-version is potentially dangerous and may lead
to program crashes or database corruption. Use with caution.

The user-version is not used internally by SQLite. It may be used by applications for any
purpose. Consult the SQLite schema_version®® documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: 32-bit integer

& http://www.sqlite.org/pragma.html#pragma_read_uncommitted

8 http://www.sqlite.org/pragma.html#pragma_recursive_triggers

8 http://lwww.sglite.org/pragma.html#pragma_reverse_unordered_selects
9 http://www.sqlite.org/pragma.html#pragma_schema_version

77


http://www.sqlite.org/pragma.html#pragma_read_uncommitted
http://www.sqlite.org/pragma.html#pragma_recursive_triggers
http://www.sqlite.org/pragma.html#pragma_reverse_unordered_selects
http://www.sqlite.org/pragma.html#pragma_schema_version
http://www.sqlite.org/pragma.html#pragma_read_uncommitted
http://www.sqlite.org/pragma.html#pragma_recursive_triggers
http://www.sqlite.org/pragma.html#pragma_reverse_unordered_selects
http://www.sqlite.org/pragma.html#pragma_schema_version

pragma

secure_delete
Queries or changes the secure-delete setting. When secure-delete on, SQLite overwrites
deleted content with zeros. Consult the SQLite secure_delete®™ documentation for complete
details.

No value argument returns: single value.
With value argument returns: single value.
value: true or false

shrink_memory
Causes the database connection on which it is invoked to free up as much memory as it can.
Consult the SQLite shrinlgmemory92 documentation for complete details.

No value argument returns: result code.
With value argument: invalid, condition raised
value: invalid

soft_heap_limit
This pragma invokes the softHeapLimit64 method with the argument N, if N is specified
and is a non-negative integer. The soft_heap_limit pragma always returns the same integer
that would be returned by the softHeapLimit64 method with an argument of -1. C-language
function. Consult the SQLite shrink_memory® documentation for complete details.

No value argument returns: single value.
With value argument returns: single value
value: N

synchronous
Queries or changes the setting of the "synchronous" flag. Consult the SQLite synchronous94
documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: 0| OFF | 1 | NORMAL | 2 | FULL

table_info
Returns a row for each column in the named table. Columns in the result set include the
column name, data type, whether or not the column can be NULL, and the default value for
the column. Consult the SQLite table_info® documentation for complete details.

No value argument: invalid, condtion raised
With value argument returns: result set.
value: table_name, required

temp_store

Queries or changes the setting of the temp_store parameter. Consult the SQLite tempfstore96
documentation for complete details.

o1 http://www.sqlite.org/pragma.html#pragma_secure_delete
92 http://lwww.sglite.org/pragma.html#pragma_shrink_memory
9 http://www.sqlite.org/pragma.html#pragma_soft_heap_limit
o4 http://www.sqlite.org/pragma.html#pragma_synchronous

9 http://lwww.sglite.org/pragma.html#pragma_table_info

9 http://www.sqlite.org/pragma.html#pragma_temp_store

78


http://www.sqlite.org/pragma.html#pragma_secure_delete
http://www.sqlite.org/pragma.html#pragma_shrink_memory
http://www.sqlite.org/pragma.html#pragma_soft_heap_limit
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_table_info
http://www.sqlite.org/pragma.html#pragma_temp_store
http://www.sqlite.org/pragma.html#pragma_secure_delete
http://www.sqlite.org/pragma.html#pragma_shrink_memory
http://www.sqlite.org/pragma.html#pragma_soft_heap_limit
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_table_info
http://www.sqlite.org/pragma.html#pragma_temp_store

pragma

No value argument returns: single value.
With value argument returns: result code.
value: 0 | DEFAULT | 1 | FILE | 2 | MEMORY

user_version
Used to set or get the value of the user-version. The pragmas schema_version and
user_version are used to set or get the value of the schema-version and user-version,
respectively. The schema-version and the user-version are big-endian 32-bit signed integers
stored in the database header.

The schema-version is usually only manipulated internally by SQLite. Using the
schema_version pragma to modify the schema-version is potentially dangerous and may lead
to program crashes or database corruption. Use with caution.

The user-version is not used internally by SQLite. It may be used by applications for any
purpose. Consult the SQLite schema_version® documentation for complete details.

No value argument returns: single value.
With value argument returns: result code.
value: 32-bit integer

wal_autocheckpoint
Queries or sets the write-ahead log auto-checkpoint interval. When the write-ahead log is
enabled (via the journal_mode pragma) a checkpoint will be run automatically whenever the
write-ahead log equals or exceeds N pages in length. Setting the auto-checkpoint size (N) to
zero or a negative value turns auto-checkpointing off.Consult the SQLite Wal_autocheckpoint98
documentation for complete details.

No value argument returns: single value.
With value argument returns: single value.
value: N

wal_checkpoint
If the write-ahead log is enabled (via the journal_mode pragma), this pragma causes a
checkpoint operation to run on the named database database, or on all attached databases
if database is omitted. If write-ahead log mode is disabled, this pragma is a harmless no-op.
Consult the SQLite Wal_checkpoim‘99 documentation for complete details.

No value argument returns: result set.
With value argument returns: result set.
value: PASSIVE | FULL | RESTART

writable_schema
When this pragma is on, the SQLITE_MASTER tables in the database can be changed using
ordinary UPDATE, INSERT, and DELETE statements. Warning: misuse of this pragma can
easily result in a corrupt database file. Consult the SQLite writable schema*® documentation
for complete details.

No value argument returns: singel value.
With value argument returns: result code.

o7 http://www.sqlite.org/pragma.html#pragma_schema_version

o8 http://www.sqlite.org/pragma.html#pragma_wal_autocheckpoint
99 http://lwww.sglite.org/pragma.html#pragma_wal_checkpoint

100 http://www.sqlite.org/pragma.html#pragma_writable_schema

79


http://www.sqlite.org/pragma.html#pragma_schema_version
http://www.sqlite.org/pragma.html#pragma_wal_autocheckpoint
http://www.sqlite.org/pragma.html#pragma_wal_checkpoint
http://www.sqlite.org/pragma.html#pragma_writable_schema
http://www.sqlite.org/pragma.html#pragma_schema_version
http://www.sqlite.org/pragma.html#pragma_wal_autocheckpoint
http://www.sqlite.org/pragma.html#pragma_wal_checkpoint
http://www.sqlite.org/pragma.html#pragma_writable_schema

rollbackHook

value: true or false

Example:

This example uses the table_info pragma to get information on the food_types table and then print
it to the screen:

dbName = 'ooFoods.rdbx'
tablename = 'food_types'

dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)
resultSet = dbConn~pragma('table_info', tablename)
z = printResultSet(resultSet)

/* Output might be for example:

cid name type notnull dflt_value pk
0 id integer (0] NULL 1

1 name text €] NULL 0

*/

3.3.36. rollbackHook

>>--rollbackHook(--callBackObj--+------------ tooto - S R ><
+-,-mthName--+ +-,-userData-+

Registers a callback method to be invoked whenever a transaction is rolled back.

Arguments:
The arguments are:

callBackObj [required]

An instantiated object with a method that will be invoked whenever a transaction is rolled
back.

However, this argument can also be .nil to indicate that any installed rollback hook is to be
removed.

mthName [optional]

The method name that will be invoked during a call back. By default, the method invoked will
be rollbackHookCallBack(). However, the user can specify an alternative method if desired.
This argument is ignored when the callbackObj argument is .nil.

userData [optional]

This can be any Rexx object the user desires. The object will be sent as the first and only
argument to the rollback hook callback method when it is invoked. This argument is ignored
when the callbackObj argument is .nil.

Return value:

The userData argument to a previous invocation of the rollbackHook method on this database
connection, or .nil if there has not been a previous invocation or the userData argument was not
used on the previous invocation.

80



setAuthorizer

Details:

The functionality of the rollbackHook method is similar to that of the SQLite

sqlite3_rollback hook™®* API.

3.3.36.1. rollbackHookCallBack

>>--rollbackHookCallBack( --userData--)------------ ><

The rollbackHookCallBack method is an example of a user callback method for the rollbackHook
method. Here the method name of rollbackHookCallBack is used, because it is the default method
name if the programmer does not specify his own name in the rollbackHook method. Any method
name can be used by specifying it as the second argument to the rollbackHook method.

Note: there is no rollbackHookCallBack method in any 00SQLite class. This method is just used to
illustrate how to define a user callback method to be used with the rollback hook.

Arguments:
The single argument sent to the callback method is:

userData [required]

The user data object specified by the programmer as the third argument to the rollbackHook
method. If the programmer did not specify a user data argument, this will be the .nil object.

Return value:

The programmer must return a whole number value from the callback. However, the actual value

returned makes no difference to the SQLite database engine. Typically, the programmer would just
return O.

Remarks:

The callback method must not do anything that will modify the database connection that invoked
the callback. Any actions to modify the database connection must be deferred until after the
completion of the step invocation that triggered the rollback hook to begin with. Running any other
SQL statements, including SELECT statements, or merely instantiating a new statement object, or
executing another step method will modify the database connection.

For the purposes of this method, a transaction is said to have been rolled back if an explicit
ROLLBACK statement is executed, or an error or constraint causes an implicit rollback to occur.
However, the callback is not invoked if a transaction is automatically rolled back because the
database connection is closed.

Details:

The implementation of a rollback hook method is is discussed on the SQLite

sq/ite37rol/b('alckfhook102 page.

3.3.37. setAuthorizer

>>--setAuthorizer(--callBackObj--+------------ R e T D R T ><

101
102

http://www.sqglite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/lcommit_hook.html

81


http://www.sqlite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/commit_hook.html

setAuthorizer

+-, -mthName--+ +-, -userData-+

Registers an authorizer callback method that is invoked as SQL statements are being compiled by
instantiating an coSQLiteStmt object. The callback allows the Rexx program to disallow certain actions
of the SQL, or reject the SQL statemen entirely.

Arguments:
The arguments are:

callBackObj [required]

An instantiated object with a method that will be invoked during the compilation of a SQL
statement

However, this argument can also be .nil to indicate that any installed update hook is to be
removed.

mthName [optional]
The method name that will be invoked during a call back. By default, the method invoked will
be authorizerCallBack(). However, the user can specify an alternative method if desired. This
argument is ignored when the callbackObj argument is .nil.

userData [optional]
This can be any Rexx object the user desires. The object will be sent as the last argument

to the authorizer callback method when it is invoked. This argument is ignored when the
callbackObj argument is .nil.

Return value:

Returns a SQLite result code. Currently, it appears that the SQLite database engine always
returns OK.

Remarks:
At various points during the compilation process of a statement, as logic is being created to
perform various actions, the authorizer callback is invoked to see if those actions are allowed.
The authorizer callback should return OK to allow the action, IGNORE to disallow the specific
action but allow the SQL statement to continue to be compiled, or DENY to cause the entire SQL
statement to be rejected with an error. If the authorizer callback returns any value other than
IGNORE, OK, or DENY then the instantiation of the ooSQLiteStmt object that triggered the
authorizer will fail with an error message .

An authorizer is used when preparing SQL statements from an untrusted source, to ensure that
the SQL statements do not try to access data they are not allowed to see, or that they do not try to
execute malicious statements that damage the database. For example, an application may allow a
user to enter arbitrary SQL queries for evaluation by a database. But the application does not want
the user to be able to make arbitrary changes to the database. An authorizer could then be put

in place while the user-entered SQL is being prepared that disallows everything except SELECT
statements.

Programs that need to process SQL from untrusted sources might also consider lowering resource
limits using the limit method and / or limiting database size using the max_page_count PRAGMA
in addition to using an authorizer.

82



setAuthorizer

Details:

The functionality of the setAuthorizer method is similar to that of the SQLite
sq/ite()Lsetfauthorizer103 API.

3.3.37.1. authorizerCallBack

>>--authorizerCallBack(--code--,--strl--,--str2--,--str3--,--str4--,--userData--)-><

The authorizerCallBack method is an example of a user callback method for the setAuthorizer method.
Here the method name of authorizerCallBack is used, because it is the default method name if the
programmer does not specify his own name in the setAuthorizer method. Any method name can be
used by specifying it as the second argument to the setAuthorizer method.

Note: there is no authorizerCallBack method in any ooSQLite class. This method is just used to
illustrate how to define a user callback method to be used with the set authorizer hook.

Arguments:
The arguments sent to the callback method are:

code [required]
One of the authorizer constants that specifies the particular action to be authorized.

strl [required]
String 1 that contains additional details about the action to be authorized. The string varies
depending on the action that triggered the callback. See the table in the Remarks section for
possible values.

str2 [required]
String 2 that contains additional details about the action to be authorized. The string varies
depending on the action that triggered the callback. See the table in the Remarks section for
possible values.

str3 [required]
The name of the database (main, temp, etc.,) if applicable. If not applicable, the empty string.

str4 [required]
The name of the inner-most trigger or view that is responsible for the access attempt or the
empty string if this access attempt is directly from top-level SQL code.

userData [required]

The user data object specified by the programmer as the third argument to the setAuthorizer
method. If the programmer did not specify a user data argument, this will be the .nil object.

Return value:

The programmer must return 1 of the 3 authorizer return code constants. Any other reuturn will
cause the instantiation of the coSQLiteStmt object to fail with an error.

Remarks:

At various points during the compilation process of a statement, as logic is being created to
perform various actions, the authorizer callback is invoked to see if those actions are allowed.

108 http://www.sqlite.org/c3ref/set_authorizer.html

83


http://www.sqlite.org/c3ref/set_authorizer.html
http://www.sqlite.org/c3ref/set_authorizer.html

setAuthorizer

In ooSQLite, the compilation process of a statement takes place during the initialization of an
00SQLijteStmt object.

The authorizer callback should return OK to allow the action, IGNORE to disallow the specific
action but allow the SQL statement to continue to be compiled, or DENY to cause the entire SQL
statement to be rejected with an error. If the authorizer callback returns any value other than
IGNORE, OK, or DENY then the instantiation of the ooSQLiteStmt object that triggered the
authorizer will fail with an error message .

If the action code is READ and the callback returns IGNORE then the prepared statement
statement is constructed to substitute a NULL value in place of the table column that would have
been read if OK had been returned. The IGNORE return can be used to deny an untrusted user
access to individual columns of a table. If the action code is DELETE and the callback returns
IGNORE then the DELETE operation proceeds but the truncate optimization is disabled and all
rows are deleted individually.

The callback method must not do anything that will modify the database connection that invoked
the callback. Any actions to modify the database connection must be deferred until after the
completion of the step invocation that triggered the update hook to begin with. Running any other
SQL statements, including SELECT statements, or merely instantiating a new statement object, or
executing another step method will modify the database connection.

The following table lists the values for str1 and str2 for each of the possible action codes, the value
of the code argument

Table 3.5. The Authorizer Callback Arguments

Code Strl Str2
CREATE_INDEX Index Name Table Name
CREATE_TABLE Table Name Empty String
CREATE_TEMP_INDEX Index Name Table Name
CREATE_TEMP_TABLE Table Name Empty String
CREATE_TEMP_TRIGGER Trigger Name Table Name
CREATE_TEMP_VIEW View Name Empty String
CREATE_TRIGGER Trigger Name Table Name
CREATE_VIEW View Name Empty String
DELETE Table Name Empty String
DROP_INDEX Index Name Table Name
DROP_TABLE Table Name Empty String
DROP_TEMP_INDEX Index Name Table Name
DROP_TEMP_TABLE Table Name Empty String
DROP_TEMP_TRIGGER Trigger Name Table Name
DROP_TEMP_VIEW View Name Empty String
DROP_TRIGGER Trigger Name Table Name
DROP_VIEW View Name Empty String
INSERT Table Name Empty String
PRAGMA Pragma Name userData arg or Empty String
READ Table Name Column Name
SELECT Empty String Empty String

84




tableColumnMetadata

Code Strl Str2
TRANSACTION Operation Empty String
UPDATE Table Name Column Name
ATTACH Filename Empty String
DETACH Database Name | Empty String
ALTER_TABLE Database Name | Table Name
REINDEX Index Name Empty String
ANALYZE Table Name Empty String
CREATE_VTABLE Table Name Module Name
DROP_VTABLE Table Name Module Name
FUNCTION Empty String Function Name
SAVEPOINT Operation Savepoint Name
Details:

The implementation of an authorizer callback method is is discussed on the SQLite
sq/ite:;’fsetfauthorizer104 page.

3.3.38. tableColumnMetadata

>>--tableColumnMetadata(--tableName--, --colName--, --results--+----------- +--)--><
+-, -dbName- -+

Retrieves metadata about a specific column of a specific table of this database connection.

Arguments:
The arguments are:

tableName [required]
The name of the table containing the column whose metadata is being sought.

[required]
The name of the column whose metadata is being sought.

results [required]
A Directory object whose indexes will hold the metadata on return. On success the
following indexes in the object will be valid:

DATATYPE
The data type of the column.

COLLATIONSEQUNCE
The name of the default collation sequence for the column.

NOTNULL
True if the column has a NOT NULL constraint, otherwise false.

104 http://www.sqlite.org/c3ref/set_authorizer.html

85


http://www.sqlite.org/c3ref/set_authorizer.html
http://www.sqlite.org/c3ref/set_authorizer.html

totalChanges

PRIMARYKEY
True if the column is part of the PRIMARY KEY, otherwise false.

AUTOINCREMENT
True if the column is AUTOINCREMENT, otherwise false.

dbName[optional]
The name of the database (main, temp, etc..) If this argument is omitted, then all attached
databases are searched for the table by the database engine, using the same algorithm as is
used by SQLite to resolve unqualified table references.

Return value:
Returns a SQLite result code, OK on success, otherwise an error code.

Remarks:
If this methods fails, the results object is unchanged.

If the specified table is actually a view, an error code is returned. If the specified column is rowid,
oid, or _rowid_ and an INTEGER PRIMARY KEY column has been explicitly declared, then the
output parameters are set for the explicitly declared column. If there is no explicitly declared
INTEGER PRIMARY KEY column, then the output parameters are set as follows:

« Data type: "INTEGER"

» Collation sequence: "BINARY"

Not null: false
* Primary key: true
* Auto increment false

Details:
The functionality of the tableColumnMetadata method is similar to that of the SQLite
sqlite3_table_column_metadata™® API. Note that the arguments to tableColumnMetadata are in
a slightly different order than in the SQLite API. This is to place the optional database name at the
end of the argument list.

3.3.39. totalChanges

>>--totalChanges-------------------~-----~-~-~------- ><

Determines the number of row changes caused by INSERT, UPDATE or DELETE statements since
the database connection was opened.

Arguments:
There are no arguments to this method.

Return value:
Returns the number of row changes caused by INSERT, UPDATE or DELETE statements since
the database connection was opened.

108 http://www.sqlite.org/c3ref/table_column_metadata.html

86


http://www.sqlite.org/c3ref/table_column_metadata.html
http://www.sqlite.org/c3ref/table_column_metadata.html

trace

Remarks:
The count returned by totalChanges includes all changes from all trigger contexts and changes
made by foreign key actions. But, the count does not include changes used to implement
REPLACE constraints, do rollbacks or ABORT processing, or DROP TABLE processing. The
count does not include rows of views that fire an INSTEAD OF trigger, though if the INSTEAD OF
trigger makes changes of its own, those changes are counted.

The changes method can be used to get the number of changes caused by the most recent
completion of a single SQL statement.

Details;
The functionality of the totalChanges method is similar to that of the SQLite
sqlite3_total changes106 API.

3.3.40. trace

>>--trace(--callBackObj--+------------ R e +--)------ ><
+-,-mthName--+ +-, -userData-+

Registers an user callback method that can be used for tracing. The callback method is invoked at
various times when an SQL statement is being run by step.

Arguments:
The arguments are:

callBackObj [required]
An instantiated object with a method that will be invoked for tracing.

However, this argument can also be .nil to indicate that any installed trace hook is to be
removed.

mthName [optional]
The method name that will be invoked during a call back. By default, the method invoked
will be traceCallBack(). However, the user can specify an alternative method if desired. This
argument is ignored when the callbackObj argument is .nil.

userData [optional]
This can be any Rexx object the user desires. The object will be sent as the second
argument to the trace callback method when it is invoked. This argument is ignored when the
callbackObj argument is .nil.

Return value:
The userData argument to a previous invocation of the trace method on the same database
connection, or .nil if there has not been a previous invocation or the userData argument was not
used on the previous invocation.

Remarks:
By default, there is no trace callback installed. There can only be one trace callback per database
connection. Setting a new trace callback automatically clears any previously installed callback.

106 http://www.sqlite.org/c3ref/total_changes.html

87


http://www.sqlite.org/c3ref/total_changes.html
http://www.sqlite.org/c3ref/total_changes.html

updateHook

The callback method is invoked at various times when an SQL statement is being executed by
either step or exec. The trace callback is invoked with the SQL statement text as the statement
first begins executing. Additional trace callbacks might occur as each triggered subprogram is
entered. The callbacks for triggers contain a SQL comment that identifies the trigger.

Details:
The functionality of the trace method is similar to that of the SQLite sqlitea’_tracelo7 API.

3.3.40.1. traceCallBack

>>--commitHookCallBack(--sql--, --userData--)----- ><

The traceCallBack method is an example of a user callback method for the trace method. Here the
method name of traceCallBack is used, because it is the default method name if the programmer does
not specify his own name in the trace method. Any method name can be used by specifying it as the
second argument to the trace method.

Note: there is no traceCallBack method in any 0oSQLite class. This method is just used to illustrate
how to define a user callback method to be used with when tracing

Arguments:
The arguments sent to the callback method are:

sql [required]
When the statement first begins executing, sq/ will be the SQL statement text. Additional
trace callbacks could occur if a triggered subprogram is entered. In these cases, sq/ will be a
comment that identifies the trigger.

userData [required]
The user data object specified by the programmer as the third argument to the trace method.
If the programmer did not specify a user data argument, this will be the .nil object.

Return value:

The programmer must return a whole number value from the callback, the exact number does not
matter.

Details:
The implementation of a trace callback method is is discussed on the SQLite sq/ites’ftracem8
page.

3.3.41. updateHook

>>--updateHook(--callBackObj--+------------ S O S O ><
+-,-mthName--+ +-, -userData-+

Registers a callback method to be invoked whenever a row is updated, inserted, or deleted.

107
108

http://www.sqlite.org/c3ref/profile.html
http://www.sqlite.org/c3ref/profile.html

88


http://www.sqlite.org/c3ref/profile.html
http://www.sqlite.org/c3ref/profile.html
http://www.sqlite.org/c3ref/profile.html
http://www.sqlite.org/c3ref/profile.html

updateHook

Arguments:
The arguments are:

callBackObj [required]

An instantiated object with a method that will be invoked whenever a row is updated, inserted,
or deleted.

However, this argument can also be .nil to indicate that any installed update hook is to be
removed.

mthName [optional]
The method name that will be invoked during a call back. By default, the method invoked will
be updateHookCallBack(). However, the user can specify an alternative method if desired.
This argument is ignored when the callbackObj argument is .nil.

userData [optional]

This can be any Rexx object the user desires. The object will be sent as the last argument
to the update hook callback method when it is invoked. This argument is ignored when the
callbackObj argument is .nil.

Return value:

The userData argument to a previous invocation of the updateHook method on this database
connection, or .nil if there has not been a previous invocation or the userData argument was not
used on the previous invocation.

Details:

The functionality of the updateHook method is similar to that of the SQLite sqlite3_update_hook
API.

109

3.3.41.1. updateHookCallBack

>>--updateHookCallBack(--op--, --dbName--, --tableName--, --rowID--, --userData--)-><

The updateHookCallBack method is an example of a user callback method for the updateHook
method. Here the method name of updateHookCallBack is used, because it is the default method
name if the programmer does not specify his own name in the updateHook method. Any method name
can be used by specifying it as the second argument to the updateHook method.

Note: there is no updateHookCallBack method in any 00SQLite class. This method is just used to
illustrate how to define a user callback method to be used with the update hook.

Arguments:
The arguments sent to the callback method are:

op [required]
One of 3 authorizer constants that indicate what the update operation was. Either INSERT,
DELETE, or UPDATE.

dbName [required]
The database name of the database containing the affected row.

109 http://www.sqlite.org/c3ref/lcommit_hook.html

89


http://www.sqlite.org/c3ref/commit_hook.html
http://www.sqlite.org/c3ref/commit_hook.html

The ooSQLiteMutex Class

tableName [required]
The table name of the table containing the affected row.

rowlD [required]
The row ID of the affected row. Every row of every SQLite table has a whole number key that
uniquely identifies the row within its table. In the case of an update, this is the rowid after the
update takes place.

userData [required]
The user data object specified by the programmer as the third argument to the updateHook
method. If the programmer did not specify a user data argument, this will be the .nil object.

Return value:
The programmer must return a whole number value from the callback. However, the actual value
returned makes no difference to the SQLite database engine. Typically, the programmer would just
return O.

Remarks:
The callback method must not do anything that will modify the database connection that invoked
the callback. Any actions to modify the database connection must be deferred until after the
completion of the step invocation that triggered the update hook to begin with. Running any other
SQL statements, including SELECT statements, or merely instantiating a new statement object, or
executing another step method will modify the database connection.

The update hook is not invoked when internal SQLite system tables are modified (i.e.
sglite_master and sqlite_sequence). In the current SQLite database enginge implementation,

the update hook is not invoked when duplicate rows are deleted because of an ON CONFLICT
REPLACE clause. Nor is the update hook invoked when rows are deleted using the truncate
optimization. The exceptions defined in this paragraph might change in a future release of SQLite.

Details:

The implementation of a update hook method is is discussed on the SQLite

sqlite3_update_hook™° page.

3.4. The ooSQLiteMutex Class

text

text

3.4.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with mutex objects using the 00oSQLiteMutex class.

Table 3.6. 00SQLiteMutex Methods and Attributes

Method Documentation

Class Methods

new Instantiates a new 00SQLite mutex

Attribute Methods

10 http:/amww. sgllite.org/c3refiupdate_hook.html

90


http://www.sqlite.org/c3ref/update_hook.html
http://www.sqlite.org/c3ref/update_hook.html

new (Class method)

Method Documentation

Instance Methods

3.4.2. new (Class method)

>>--new(--+-------- ) R T ><
+--type--+
XX
Arguments:

The single argument is:

type [optional]
One of the SQLite >muxtex type constants. However this can only be: MUTEX_RECURSIVE
or MUTEX_FAST. This argument defaults to MUTEX_FAST

Return value:
XX

Remarks:
Additional comments.

Details
Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

3.4.3. closed (Attribute)

>>--CloSed------ - oo s ><
>>--closed-=-varName------------------- - ><
XX
closed get:

details about get

closed set:
details about set

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

91



isNull (Attribute)

3.4.4. isNull (Attribute)

b K= 1 B B

>>--isNull-=-varName---------------omom oo

XX

isNull get:
details about get

isNull set:
details about set

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.4.5. enter

>>--enter(--+-------- L R e ><

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

92



free

3.4.6. free

>>--free(--+-------- B R e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.4.7. leave

>>--leave(--+-------- ) e e T T ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

93



try

3.4.8. try

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5. The 00SQLiteStmt Class

The ooSQLiteStmt class represents a prepared statement in SQLite. An instance of this object
represents a single SQL statement. This object is usually referred to as a prepared statement, a
compiled SQL statement or simply as a statement.

The life time of a statement object generally goes like this:
* Instantiate a new statement.

» Bind values to host parameters using one of the bind methods such as bindText, bindint, or bindNull.
» Execute the SQL by step one or more times.
» Possibly, reset the statement using reset, then go back to step 2. Do this zero or more times.

* Release the system resources used by the statement by invoking finalize.

3.5.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with prepared statement objects using the 00SQLiteStmt class.

Table 3.7. 00SQLiteStmt Methods and Attributes

Method Documentation

Class Methods

new Instantiates a new 00SQLite prepared statement.
Attribute Methods

94



new (Class method)

Method Documentation

finalized Reflects the finialized state of this statement.

null Reflects the representation for the SQL NULL value that is returned by the
interpreter, for this statment, for database values that are NULL.

Instance Methods

3.5.2. new (Class method)

>>--new(--dbConn--,--sql--+---------- ) ><
+-,-format-+

Instantiates a new ooSQLiteStmt object and prepares the statement SQL to be executed.

Arguments:
The arguments are:
dbConn [required]
The open connection to the database that the statement will be executed on.

sql
The SQL statement to be prepared for execution

format [optional]

This argument can be used to specify the default format of the result row(s) coming out of the
execution of this statement. This argument sets the recordFormat attribute. If this argument is
omitted the default format value of the dbConn argument is used to set the attribute.

If specified, it must be one of the 00SQLite Result Set Format Constants that define how a
result set is formatted.

Return value:
Returns a newly instatiated ooSQLiteConnection

Remarks:
Additional comments.

Details
Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

3.5.3. initCode (Attribute)

b 1 b o o o [ ><
>>--ipitCode-=-varName---------------------- - ><
XX

95



finalized (Attribute)

initCode get:
details about get

initCode set:
details about set

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.4. finalized (Attribute)

>>--finalized-------------ommomo oo ><

>>--fipalized-=-varName----------------------- - ><

Reflects the finialized state of this statement.

finalized get:
Returns true if this statement has been finialized, otherwise false.

finalized set:
details about set

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.5. lastErrCode (Attribute)

>>--1aStErrCode------- - - oo oo oo oo oo oo ><

>>--lastErrCode-=-varName------------oooom oo ><

The lastErrCode attribute reflects the last error code recorded by ooSQLite.

lastErrCode get:

The value of this attribute is the last error code recorded by ooSQLite for this prepared statement.

96



lastErrMsg (Attribute)

lastErrCode set:
The Rexx programmer can not set the value of the last error code, it is set internally by ooSQLite.

Remarks:
The last error code attribute is similar to the /astErrMsg attribute. Its value is the last status
code recorded by 0oSQLite. The lastErrCode and the lastErrMsg attributes are always updated
together. The error message is always the message that goes with the error code.

Each of the three major o0SQLite objects, an c0SQLiteConnection, an ooSQLiteStmt, and an
ooSQLiteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by ooSQLite.

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

Details
Anything?

Example:
This example ...

3.5.6. lastErrMsg (Attribute)

>>--1aStErrMsSg---------mmm oo o oo ><
>>--lastErrMsg-=-varName------------cccccoooooooo ><
XX
errMsg get:

This attribute holds the value of the last error message recorded by 0oSQLite.

errMsg set:
The programmer can not set the value of this attribute. It is set internally by ooSQLite.

Remarks:
The last error message attribute is similar to the /astErrCode attribute. Its value is the last status
message recorded by ooSQLite. The lastErrCode and the lastErrMsg attributes are always
updated together. The error message is always the message that goes with the error code.

Each of the three major ooSQLite objects, an coSQLiteConnection, an 0oSQLiteStmt, and an
00SQLiteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by ooSQLite.

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

97



null (Attribute)

Details
In some circumstances, the error message from the SQLite sqlil‘eS’ferrmsg111 API is copied into
the lastErrMsg. At other times the error message is specific to ooSQLite.

Example:
This example initializes a new 0oSQLiteStmt object. When the initCode attribute is checked, it is
seen that an error ocurred, and the last error message is printed to the screen:

stmt = .ooSQLiteStmt~new(dbConn, 'SELECT * FROM fooods ORDER BY name;')
if stmt~initCode <> 0 then do

say 'ooSQLiteStmt initialization error:' stmt~initCode

say ' Error code:' stmt~initCode '('stmt~lastErrMsg')'

/* output would be similar to:

ooSQLiteStmt initialization error: 1
Error code: 1 (no such table: fooods)

*/

3.5.7. null (Attribute)

D 1 LU B R ><

>>--nU1L = NULLODJ - - - =mmm s e e ><

Reflects the representation for the SQL NULL value that is returned by the interpreter, for this
statment, for database values that are NULL.

null get:
Returns the current object the interpreter uses for this statement for the SQL NULL value. If
the programmer has not changed this attribute, its value is the value of the null attribute of the
database connection this statement is assigned to. Normally this is the .nil object.

null set:
Set this attribute to either the .nil object, or some alternative string value.

Remarks:
By default, 00SQLite uses the .nil object to represent the SQL NULL value. Queries for values
stored in the database will return the .nil object for any value that is SQL NULL. However, by
changing the value of the null attribute, the Rexx programmer can change the value the interpreter
returns for NULL when this statement is executed. Typically this would be done when the returned
values are going to be displayed as text and the programmer would prefer to work with a string
directly. Perhaps NULL, or no value.

When a ooSQLiteStmt object is instantiated, the null attribute is assigned the value of the null
object that is used to instantiate the statement.

Note that this attribute does not affect the value the programmer must use to assign a SQL NULL
to the database. The programmer must use the .nil object for that.

m http://www.sqlite.org/c3ref/errcode.html

98


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html

recordFormat (Attribute)

Details
Raises syntax errors when incorrect usage is detected.

This attribute is provided by ooSQLite, there is no similar feature provided by SQLite.

Example:
This example sets the null attribute of the statment to no value. This allows the application to
invoke the left method on the returned value without having to check that the return is the .nil
object. Note that invoking the /eft method on the .nil object will raise a syntax condition:

dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

sql = '"SELECT * FROM foods ORDER BY name;'
stmt = .ooSQLiteStmt~new(dbConn, sql)
stmt~null = 'no value'

say stmt~columnName(1)~left(25) || stmt~columnName(2)~left(25) ||
stmt~columnName(3)~left(25)
say '='~copies(80)

do while stmt~step == stmt~ROW

say stmt~columnText(1)~left(25) || stmt~columnText(2)~left(25) ||
stmt~columnText(3)~left(25)
end

3.5.8. recordFormat (Attribute)

>>--recordFormat----------------o oo ><
>>--recordFormat-=-varName------------ -« -o oo ><
XX

recordFormat get:
details about get

recordFormat set:
details about set

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.9. bindBlob

>>--bindBlob(--4-------- g ><

99



bindDouble

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.10. bindDouble

>>--pindDouble(--+-------- B e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.11. bindInt

>>--bindInt(--+-------- o ) e ><

100



bindInt64

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.12. bindint64

>>--pindInt64(--+-------- B e R ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.13. bindNull

>>--DANANULL(--4-------- g ><

101



bindParameterCount

+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.14. bindParameterCount

>>--pindParameterCount(--+-------- ) T T

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.15. bindParameterindex

>>--pindParameterIndex(--+-------- Fom )

---------------------- ><

---------------------- ><

102



bindParameterName

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.16. bindParameterName

>>--pindParameterName(--+-------- B e e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.17. bindText

>>--bindText(--+-------- o ) e ><

103



bindValue

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.18. bindValue

>>--pindvalue(--+-------- B e R ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.19. bindZeroBlob

>>--pindZeroBlob(--+-------- ) e ><

104



clearBindings

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.20. clearBindings

>>--clearBindings(--+-------- B e e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.21. columnBlob

>>--columnBlob(--+-------- ) e ><

105



columnBytes

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.22. columnBytes

>>--columnBytes(--+-------- B e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.23. columnCount

>>--columnCount(--+-------- ) R e ><

106



columnDataBaseName

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.24. columnDataBaseName

>>--columnDataBaseName(--+-------- B e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.25. columnDeclIType

>>--columnDeclType(--+-------- ) R e ><

107



columnDouble

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.26. columnDouble

>>--columnDouble(--+-------- B e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.27. columnindex

>>--columnIndex(--+-------- ) R e ><

108



columnint

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.28. columnint

>>--columnInt(--+-------- B e R ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.29. columnint64

>>--columnInt64(--+-------- ) R e ><

109



columnName

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.30. columnName

>>--columnName(--+-------- B e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.31. columnOriginName

>>--columnOriginName(--+-------- ) R e ><

110



columnTableName

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.32. columnTableName

>>--columnTableName(--+-------- B e e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.33. columnText

>>--columnText(--+-------- ) e ><

111



columnType

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.34. columnType

>>--columnType(--+-------- B e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.35. columnValue

>>--columnvValue(--+-------- ) R e ><

112



dataCount

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.36. dataCount

>>--dataCount(--+-------- B e R ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.37. dbHandle

>>--dbHandle(--+-------- g ><

113



finalize

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.38. finalize

>>--finalize(--+-------- +--)
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.39. reset

>>--reset(--+-------- +--)---

--------------------------------------------- ><

------------------------------------------ ><

114



step

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.40. step

>>--step(--+-------- B R e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.41. stmtBusy

>>--stmtBusy(--+-------- ) R e ><

115



stmtReadonly

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.42. stmtReadonly

>>--stmtReadonly(--+-------- B e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.43. stmtStatus

>>--stmtStatus(--+-------- ) e ><

116



value

+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

3.5.44. value

>>--value(--+-------- L e e T T ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

117



Chapter 4.

User Defined Extension Classes

SQLite has the ability to load extensions (including new application-defined SQL functions, collating
sequences, virtual tables, and VFSes) at run-time. This feature allows the code for extensions to be
developed and tested separately from the application and then loaded on an as-needed basis. An
SQLite extension is a shared library or DLL and typically coded in C / C++.

00SQLite provides complete support for loading and using these external extensions. In addition, the
object orientated interface includes enhancements to using external extensions, such as automatic
registration when any database connection is opened. The classes related to using and working with
external extensions are documented in this chapter. Most of the work to use the SQLite database
engine is done through the primary ooSQLite classes which are documented in their own chapter.

Support for user defined extensions written in Rexx are also part of 00SQLite. This support is done
through the createCollation and createFunction. In the future support for user defined virtual tables is
intended to be added to 0coSQLite through a createModule method.

The following table lists the classes used to work with user defined external extensions and the
classes needed to implement user defined extensions in Rexx code:

Table 4.1. 0oSQLite External Extensions Class Listing

Class Description

The ooSQLCollation Class | Some text.

The Some text.
00SQLCollationNeeded

Class

The 00SQLEXxtenisons Some text.
Class

The 00SQLFunction Class | Some text.
The 00SQLLibrary Class Some text.

The o0SQLPackage Class | Some text.

The 00SQLResult Class Some text. This class is used in the implementation of user defined
extensions in Rexx

The 00SQLValue Class Some text. This class is used in the implementation of user defined
extensions in Rexx

4.1. The ooSQLCollation Class

text

text

4.1.1. new (Class method)

>>--new(--+-------- L e E T T ><

XX

118



The ooSQLCollationNeeded Class

Remarks:
Additional comments.

Details
Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

4.2. The ooSQLCollationNeeded Class

text

text

4.2.1. new (Class method)

>>--new(--+-------- R R R T ><
+--type--+
XX
Remarks:

Additional comments.

Details
Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

4.3. The 00SQLEXxtensions Class

The 00SQLExtensions class provides utilities to work with user defined SQLite extensions written in
native code, typically C / C++. In general these extensions are packaged in external shared libraries,
although there are a few extensions that are statically linked in to the 0oSQLite library. The class can

be thought of as a manager of these extensions.

text

4.3.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in

working with ?2?2?

119



lastErrCode (Attribute)

Table 4.2. 00SQLExtensions Methods and Attributes

Method Documentation

Class Attribute
Methods

lastErrCode

lastErrMsg
Class Methods

autoBuiltin

autoCollationNeeded

autoCollation

autoFunction

autoPackage

CancelAutoBuiltin

getLibrary

getPackage

listBuiltins

loadLibrary

loadPackage

resetAutoBuiltin

registerBuiltin

4.3.2. lastErrCode (Attribute)

>>--1aStErrCode---------- oo oo oo ><

>>--lastErrCode = varName----------------- - ><

Reflects the last error code set by for the ooSQLPackage object.

lastErrCode get:

The value of the lastErrCode attribute will be a SQLite result code or one of the 00SQLite specific
result codes.

lastErrCode set:

The programmer can not set the value of this attribute, it is set internally by the 00SQLite
framework.

Remarks:
The last error code attribute is similar to the /astErrMsg attribute. Its value is the last status
code recorded by ooSQLite. The lastErrCode and the lastErrMsg attributes are always updated
together. The error message is always the message that goes with the error code.

Each of the three major coSQLite objects, an 00SQLPackage, an 00SQLiteStmt, and an
00SQLiteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by 0oSQLite.

120



lastErrMsg (Attribute)

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

Example:

This example uses the lastErrCode attribute to produce a meaningful error message when a
database connection fails to open:

dbName = 'ooFoods.rdbx'
dbConn = .ooSQLiteConnection~new(dbName, .00SQLite~OPEN_READWRITE)

-- Load the package and automatically register everything in the package for
-- our open database connection.
success = .00SQLExtensions~loadPackage('myPackage', dbConn)
if \ success then do
say 'Failed to load package'
say ' Error code: ' .00SQLExtensions~lastErrCode
say ' Error message:' .00SQLExtensions~lastErrMsg

return .00SQLExtensions~lastErrCode
end

4.3.3. lastErrMsg (Attribute)

b - Lo o S g g oo ><
>>--1astErrMsg = varName-----------------mm oo ><
XX

lastErrMsg get:
details about get

lastErrMsg set:
details about set

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.4. autoBuiltin (Class method)

>>--autoBuiltin(--+-------- ) e e GG E L L LR L LR LR ><
+--type--+

XX

121



autoCollationNeeded (Class method)

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.5. autoCollationNeeded (Class method)

>>--autoCollationNeeded(--+-------- B R e T ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.6. autoCollation

>>--autoCollation(--+-------- ) e ><
+--type--+

XX

122



autoFunction

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.7. autoFunction

>>--autoFunction(--+-------- B e ><
+--type--+

XX

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.8. autoPackage

>>- -autoPackage(--+-------- ) R e R LR T TP T ><
+--type--+

XX

123



cancelAutoBuiltin

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.9. cancelAutoBuiltin

>>--cancelAutoBuiltin(--+-------- B R e e ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.10. getLibrary

>>--getLibrary(--+-------- ) e ><
+--type--+

XX

124



getPackage

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.11. getPackage

>>--getPackage(--+-------- B R e e ><
+--type--+

XX

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.12. listBuiltins

>>--1listBuiltins(--+-------- ) R e e LR T P TP ><
+--type--+

XX

125



loadLibrary

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.13. loadLibrary

>>--loadLibrary(--+-------- ) e T T T ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.14. loadPackage

>>--loadPackage(--+-------- B R e ><

+--type--+

126



resetAutoBuiltin

XX

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.15. resetAutoBuiltin

>>--resetAutoBuiltin(--+-------- ) e ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.3.16. registerBuiltin

>>--registerBuiltin(--+-------- ) e L LT T ><

127



The 00SQLFunction Class

+--type--+

XX

Arguments:
The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.4. The 00SQLFunction Class

An 00SQLFunction object represents a user defined function that has been loaded from an external
shared library and is usable in the 00SQLite program that loaded it. The Rexx programmer can not
instantiate the object, it is instantiated internally by ooSQLite through the 00SQLEXxtensions class.

text

4.4.1. new (Class method)

>>--new(--+-------- LR e ><
+--type--+
XX
Remarks:

Additional comments.

Details

Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

4.5. The ooSQLLibrary Class

128



Method Table

text

text

4.5.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with mutex objects using the ooSQLLibrary class.

Table 4.3. 00SQLLibrary Methods and Attributes

Method Documentation

Class Methods

new Instantiates a new 00SQLite mutex
Attribute Methods

Instance Methods

4.5.2. new (Class method)

>>--new(--+-------- R R R T ><
+--type--+
XX
Remarks:

Additional comments.

Details
Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

4.5.3. lastErrCode (Attribute)

>>--lastErrCode--------------------o oo ><

>>--lastErrCode = varName------------------------ ><

Reflects the last error code set by for the ooSQLLibrary object.

lastErrCode get:

The value of the lastErrCode attribute will be a SQLite result code or one of the 00SQLite specific
result codes.

lastErrCode set:

The programmer can not set the value of this attribute, it is set internally by the 00SQLite
framework.

129



lastErrMsg (Attribute)

Remarks:
The last error code attribute is similar to the /astErrMsg attribute. Its value is the last status
code recorded by ooSQLite. The lastErrCode and the lastErrMsg attributes are always updated
together. The error message is always the message that goes with the error code.

Each of the three major ooSQLite objects, an 00SQLLibrary, an 00SQLiteStmt, and an
00SQLiteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by ooSQLite.

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

Example:

This example uses the lastErrCode attribute to produce a meaningful error message when a
database connection fails to open:

dbName
dbConn

'ooFotods.rdbx'
.00SQLLibrary~new(dbName, .ooSQLite~OPEN_READWRITE)

if dbConn~initCode <> 0 then do
errRC = dbConn~lastErrCode
errMsg = dbConn~lastErrMsg

say 'ooSQLLibrary initialization error:' dbConn~initCode
say ' Error code:' errRC '('errMsg')'

dbConn~close
return errRC
end

4.5.4. lastErrMsg (Attribute)

>>--1aStErrMsg------------------ommee oo ><

>>--lastErrMsg = varName------------------------- ><

Reflects a human readable explanation, a message, of the last error code recorded by the connection
object.

lastErrMsg get:
Returns a string message that corresponds to the last error code.

lastErrMsg set:
The programmer can not set this attribute, it is set internally by the ooSQLite framework.

Remarks:
The last error message attribute is similar to the lastErrCode attribute. Its value is the last status
message recorded by ooSQLite. The lastErrCode and the lastErrMsg attributes are always
updated together. The error message is always the message that goes with the error code.

Each of the three major ooSQLite objects, an 00SQLLibrary, an 00SQLiteStmt, and an
00SQLiteBackup object have a lastErrMsg and a lastErrCode attribute. These attributes all serve
the same basic purpose, to hold the last error message and code recorded by ooSQLite.

130



The ooSQLPackage Class

The attributes are most useful when the invocation of new fails to initialize the object correctly due
to an error. The lastErrMsg and lastErrCode attributes are always updated during new. In general,
these objects do not update the attributes after every method invocation.

Example:
This example ...

4.6. The ooSQLPackage Class

text

text

4.6.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with mutex objects using the ooSQLPackage class.

Table 4.4. ooSQLPackage Methods and Attributes

Method Documentation

Class Methods

new Instantiates a new 00SQLite mutex

Attribute Methods
lastErrCode

lastErrMsg

Instance Methods

getCollation

getCollationNeeded

getFunction

register

4.6.2. new (Class method)

An ooSQLPackage object can not be instantiated from Rexx code. Rather, the programmer uses the
getPackage method of the 00SQLExtensions class to get a package object.

Remarks:
In general an external coSQLite package is loaded through the loadPackage method of the
00SQLExtensions class. For many use cases, this may be sufficient. Some use cases, such
as registering a single function from the package to a specific database connection, require the
package object. The loaded package object can be obtained through the getPackage method.

Details
Raises an error condition if invoked from Rexx code.

131



lastErrCode (Attribute)

Example:
This example is from a program where only a single function in an coSQLite package is needed to
be registered with a database connection:

-- Load the package
success = .00SQLExtensions~loadPackage(packageFile)
if \ success then do
say 'Failed to load package'
say ' Error code: ' .00SQLExtensions~lastErrCode
say ' Error message:' .00SQLExtensions~lastErrMsg

return .o00SQLExtensions~lastErrCode
end

dbConn = .ooSQLiteConnection~new(dbName, .o0o0SQLite~OPEN_READWRITE)

-- Get the package and register a single function
package = .00SQLExtensions~getPackage('examplePackage')

function = package~getFunction('half')

if function == .nil then do
say 'Failed to get function: half'
say ' Error code: ' package~lastErrCode
say ' Error message:' package~lastErrMsg

return package~lastErrCode
end

dbConn~createFunction('half', function)

4.6.3. lastErrCode (Attribute)

>>--lastErrCode------------------------------_--- ><

>>--lastErrCode = varName------------------------ ><

Reflects the last error code set by for the ooSQLPackage object.

lastErrCode get:
The value of the lastErrCode attribute will be a SQLite result code or one of the 00SQLite specific
result codes.

lastErrCode set:
The programmer can not set the value of this attribute, it is set internally by the ooSQLite
framework.

Remarks:
The last error code attribute is similar to the /astErrMsg attribute. Its value is the last status
code recorded by ooSQLite. The lastErrCode and the lastErrMsg attributes are always updated
together. The error message is always the message that goes with the error code.

Example:
This example uses the lastErrCode attribute as part of producing a meaningful error message
when an 00SQLFunction object can not be retrieved from a package:

function = package~getFunction('half')

132



lastErrMsg (Attribute)

if function == .nil then do
say 'Failed to get function: half'
say ' Error code: ' package~lastErrCode
say ' Error message:' package~lastErrMsg

return package~lastErrCode
end

4.6.4. lastErrMsg (Attribute)

>>--1aStErrMsg-------ccccccooooc oo ><

>>--lastErrMsg = varName------------------------- ><

Reflects a human readable explanation, a message, of the last error code recorded by the connection
object.

lastErrMsg get:
Returns a string message that corresponds to the last error code.

lastErrMsg set:
The programmer can not set this attribute, it is set internally by the 0oSQLite framework.

Remarks:

The last error message attribute is similar to the /astErrCode attribute. Its value is the last status
message recorded by 00SQLite. The lastErrCode and the lastErrMsg attributes are always
updated together. The error message is always the message that goes with the error code.

Example:

This example uses the lastErrMsg attribute to produce a meaningful error message when an
00SQLFunction object can not be retrieved from a package:

function = package~getFunction('half')

if function == .nil then do
say 'Failed to get function: half'
say ' Error code: ' package~lastErrCode
say ' Error message:' package~lastErrMsg

return package~lastErrCode
end

4.6.5. getCollation

>>--getCollation(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:

TERM
XX

133



getCollationNeeded

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.6.6. getCollationNeeded

>>--getCollationNeeded(--+-------- ) ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.6.7. getFunction

>>--getFunction(--+-------- ) e e ><
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

134



register

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

4.6.8. register

>>--register(--+-------- +--)
+--type--+
XX
Arguments:

The arguments are:

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Anything?

Example:
This example ...

--------------------------------------------- ><

4.7. The 00SQLResult Class

text

text

4.7.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in

working with ?2?2?

135



blob (Class method)

Table 4.5. 00SQLResult Methods and Attributes

Method Documentation

Class Methods
blob

4.7.2. blob (Class method)

>>--blob(--+-------- LR R e e T ><
+--type--+
XX
Arguments:

The single argument is:
type [optional]

Return value:
XX

Remarks:
Additional comments.

Details
Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

4.8. The ooSQLValue Class

text

text

4.8.1. Method Table

The following table provides links to the documentation for the primary methods and attributes used in
working with mutex objects using the ooSQLValue class.

Table 4.6. 00SQLValue Methods and Attributes

Method Documentation

Class Methods
blob

4.8.2. blob (Class method)




blob (Class method)

+--type--+

XX

Arguments:

The single argument is:

type [optional]

Return value:
XX

Remarks:
Additional comments.

Details

Raises syntax errors when incorrect arguments are detected.

Example:
This example ...

137



Chapter 5.

The 00SQLite Constants

00SQLite provides a number of constant values that are used to interact with the SQLite database
engine. These constants are needed in both the object orientated and classical Rexx interafaces, so
they have been documented separately in this chapter. Although the constants are provided through
a class object, the syntax for using an ooRexx constant is extremely simple and should present no
problem for the ooSQLite programmer that is unfamiliar with classes and objects. The classic Rexx
programmer need simply prefix each constant value with: . ooSQLite~.

This rule is absolute for every constant listed in this chapter. If the classic Rexx programmer wants to
use the constant CORRUPT in her Rexx code, the prefix .00SQLite~ is added to CORRUPT like so

dbConn = "'
ret = oosqglOpen('ooFoods.rdbx', 'dbConn')

if ret == .00SQLite~CORRUPT then do

-- handle error in some fashion

say 'Error return:' .o00SQLite~CORRUPT

say 'The "ooFoods.rdbx" database file has been corrupted.'
end

/* Output wouled be, if the file was indeed detected to be corrunt:

Error return: 11
The "ooFoods.rdbx" database file has been corrupted.

2y
The ooSQLiteConstants class a mixin class that provides constant values defined using the

: :constant directive. Each constant maps to a SQLite constant and all SQLite constants have a
corresponding 0oSQLite constant.

Each ooSQLite constant is named the same as the SQLite constant, minus the SQLITE_ part of the
name. For instance, the SQLite constant, SQLITE_OK is the OK constant in the ooSQLiteConstant
class.

All of the 00SQLite objects supplied by ocoSQLite inherit the ooSQLiteConstant class.

5.1. All Constants Table

The following table lists all of the constant values provided by the ooSQLiteConstants class. Additional
tables list subsets of the constant values grouped by purpose.

Table 5.1. The ooSQLite Constants

Constant Meaning

Compile-Time Version Constants

VERSION "3.8.1" The value of this constant will vary depending

on the exact version of the SQLite database engine
embedded in 00SQLite. Typically this documentation

is updated when ooSQLite is upgraded to use a new
version of the SQLite library so that the value shown here
is current.

VERSION_NUMBER 3008001 The value of this constant will vary depending
on the exact version of the SQLite database engine
embedded in ooSQLite. Typically this documentation

138



All Constants Table

Constant Meaning

is updated when 00SQLite is upgraded to use a new
version of the SQLite library so that the value shown here
is current.

SOURCE_ID

"2013-10-17 12:57:35
c78be6d786¢19073b3a6730dfe3fblbe54f5657a" The
value of this constant will vary depending on the exact
version of the SQLite database engine embedded in
00SQLite. Typically this documentation is updated when
00SQLite is upgraded to use a new version of the SQLite
library so that the value shown here is current.

ooSQLite Specific Result Code Constants

OO_INTERNAL_ERR

The 0oSQLite framework encountered an error internally
that it is unprepared to handle. It was not considered
possible for the error to happen.

OO_WRONG_ARG_TYPE

An argument to a method or function is not the correct
type. For instance the argument requires a number, but
the supplied argument is not a number.

OO_UNEXPECTED_RESULT

The SQLite database engine returned a result that was
considered to be impossible to produce.

0O0_BACKUP_IN_PROGRESS

A method was invoked on this database connection
object when the database is the destnation of a backup in
progress.

OO_BACKUP_DB_ERRSTATE

The specified source or destination database for a
backup operation is in an error state.

00SQLite Specific Result Set Format Constants

OO_ARRAY_OF ARRAYS

Result sets are returned as an array where each item in
the array is an array. The array at item 1 is an array of the
column names. The following items are the records of the
result set.

OO_ARRAY_OF_DIRECTORIES

Result sets are returned as an array where each item in
the array is a Directory object. Each directory in the array
contains the values of the columns in a row, where the
indexes are the names of the columns.

0O_STEM_OF_STEMS

Result sets are returned as a stem with the tails O through
the number of rows. Tail O contains the number rows and
tails 1 through n contain a stem for each row. The tails of
stem of a row are the column names for the rows.

OO_CLASSIC_STEM

Result sets are returned as a stem with the tails 0 through
the number of rows. Tail 0 contains the number rows and
tails 1 through n contain compound tails for each row.
The compound tails consists of the row number combined
with each column name of the row.

Result Code Constants

OK Successful result
ERROR SQL error or missing database
INTERNAL Internal logic error in SQLite

139



All Constants Table

Constant Meaning

PERM Access permission denied

ABORT Callback routine requested an abort
BUSY The database file is locked

LOCKED A table in the database is locked
NOMEM A malloc() failed

READONLY Attempt to write a readonly database
INTERRUPT Operation terminated by sqlite3_interrupt()
IOERR Some kind of disk 1/O error occurred
CORRUPT The database disk image is malformed
NOTFOUND Unknown opcode in sqlite3_file_control()
FULL Insertion failed because database is full
CANTOPEN Unable to open the database file
PROTOCOL Database lock protocol error

EMPTY Database is empty

SCHEMA The database schema changed
TOOBIG String or BLOB exceeds size limit
CONSTRAINT Abort due to constraint violation
MISMATCH Data type mismatch

MISUSE Library used incorrectly

NOLFS Uses OS features not supported on host
AUTH Authorization denied

FORMAT Auxiliary database format error

RANGE 2nd parameter to sqlite3_bind out of range
NOTADB File opened that is not a database file
ROW sqlite3_step() has another row ready
DONE sqlite3_step() has finished executing
IOERR_READ

IOERR_SHORT_READ

IOERR_WRITE

IOERR_FSYNC

IOERR_DIR_FSYNC

IOERR_TRUNCATE

IOERR_FSTAT

IOERR_UNLOCK

IOERR_RDLOCK

IOERR_DELETE

IOERR_BLOCKED

IOERR_NOMEM

140



All Constants Table

Constant Meaning

IOERR_ACCESS
IOERR_CHECKRESERVEDLOCK
IOERR_LOCK

IOERR_CLOSE
IOERR_DIR_CLOSE
IOERR_SHMOPEN
IOERR_SHMSIZE
IOERR_SHMLOCK
IOERR_SHMMAP
IOERR_SEEK
IOERR_DELETE_NOENT
IOERR_MMAP
IOERR_GETTEMPPATH
IOERR_CONVPATH
LOCKED_SHAREDCACHE
BUSY_RECOVERY
BUSY_SNAPSHOT
CANTOPEN_NOTEMPDIR
CANTOPEN_ISDIR
CANTOPEN_FULLPATH
CANTOPEN_CONVPATH
CORRUPT_VTAB
READONLY_RECOVERY
READONLY_CANTLOCK
READONLY_ROLLBACK
READONLY_DBMOVED
ABORT_ROLLBACK
CONSTRAINT_CHECK
CONSTRAINT_COMMITHOOK
CONSTRAINT_FOREIGNKEY
CONSTRAINT_FUNCTION
CONSTRAINT_NOTNULL
CONSTRAINT_PRIMARYKEY
CONSTRAINT_TRIGGER
CONSTRAINT_UNIQUE
CONSTRAINT _VTAB
NOTICE_RECOVER_WAL
NOTICE_RECOVER_ROLLBACK

141



All Constants Table

Constant Meaning

WARNING_AUTOINDEX

File Open Constants

OPEN_READONLY

Ok for sqlite3_open_v2(). The database is opened in
read-only mode. If the database does not already exist,
an error is returned.

OPEN_READWRITE

Ok for sqlite3_open_v2(). The database is opened for
reading and writing if possible, or reading only if the file
is write protected by the operating system. In either case
the database must already exist, otherwise an error is
returned

OPEN_CREATE

Ok for sqlite3_open_v2(). When merged with
OPEN_READWRITE, the database is opened for reading
and writing, and is created if it does not already exist.

OPEN_DELETEONCLOSE VES only
OPEN_EXCLUSIVE VFES only
OPEN_AUTOPROXY VFS only
OPEN_URI Ok for sqlite3_open_v2()
OPEN_MAIN_DB VFS only
OPEN_TEMP_DB VFS only
OPEN_TRANSIENT_DB VES only
OPEN_MAIN_JOURNAL VFES only
OPEN_TEMP_JOURNAL VFS only
OPEN_SUBJOURNAL VES only
OPEN_MASTER_JOURNAL VFES only

OPEN_NOMUTEX

Ok for sqlite3_open_v2()

OPEN_FULLMUTEX

Ok for sqlite3_open_v2()

OPEN_SHAREDCACHE

Ok for sqlite3_open_v2()

OPEN_PRIVATECACHE

Ok for sqlite3_open_v2()

OPEN_WAL

VES only

Authorizer Action Constants

CREATE_INDEX

CREATE_TABLE

CREATE_TEMP_INDEX

CREATE_TEMP_TABLE

CREATE_TEMP_TRIGGER

CREATE_TEMP_VIEW

CREATE_TRIGGER

CREATE_VIEW

DELETE

DROP_INDEX

DROP_TABLE

142



All Constants Table

Constant Meaning

DROP_TEMP_INDEX
DROP_TEMP_TABLE
DROP_TEMP_TRIGGER
DROP_TEMP_VIEW
DROP_TRIGGER
DROP_VIEW

INSERT

PRAGMA

READ

SELECT
TRANSACTION
UPDATE

ATTACH

DETACH

ALTER_TABLE
REINDEX

ANALYZE
CREATE_VTABLE
DROP_VTABLE

FUNCTION
SAVEPOINT
RECURSIVE

Authorizer Return Code Constants
DENY Abort the SQL statement with an error
IGNORE Don't allow access, but don't generate an error

xAccess VFS Method Constants

ACCESS_EXISTS
ACCESS_READWRITE Used by PRAGMA temp_store_directory
ACCESS_READ Unused

Checkpoint Operation Parameter Constants

CHECKPOINT_PASSIVE
CHECKPOINT_FULL
CHECKPOINT_RESTART

Configuration Option Constants

CONFIG_SINGLETHREAD nil
CONFIG_MULTITHREAD nil
CONFIG_SERIALIZED nil
CONFIG_MALLOC sqlite3_mem_methods*

143



All Constants Table

Constant Meaning

CONFIG_GETMALLOC sqlite3_mem_methods*
CONFIG_SCRATCH void*, int sz, int N
CONFIG_PAGECACHE void*, int sz, int N
CONFIG_HEAP void*, int nByte, int min
CONFIG_MEMSTATUS boolean
CONFIG_MUTEX sqglite3_mutex_methods*
CONFIG_GETMUTEX sqlite3_mutex_methods*
CONFIG_LOOKASIDE int int
CONFIG_PCACHE no-op
CONFIG_GETPCACHE no-op
CONFIG_LOG xFunc, void*
CONFIG_URI int
CONFIG_PCACHE2 sqlite3_pcache_methods2*
CONFIG_GETPCACHE2 sqlite3_pcache_methods2*
CONFIG_COVERING_INDEX_SCAN |int
CONFIG_SQLLOG xSqllog, void*
CONFIG_MMAP_SIZE sqlite3_int64, sqlite3_int64
CONFIG_WIN32_HEAPSIZE int nByte

DB Connection Configuration Constants
DBCONFIG_LOOKASIDE void* int int
DBCONFIG_ENABLE_FKEY int int*
DBCONFIG_ENABLE_TRIGGER int int*

DB Status Parameter Constants

DBSTATUS_LOOKASIDE_USED
DBSTATUS_CACHE_USED
DBSTATUS_SCHEMA_USED
DBSTATUS_STMT_USED
DBSTATUS_LOOKASIDE_HIT
DBSTATUS_LOOKASIDE_MISS_SIZE
DBSTATUS_LOOKASIDE_MISS_FULL
DBSTATUS_CACHE_HIT
DBSTATUS_CACHE_MISS
DBSTATUS_CACHE_WRITE
DBSTATUS_MAX Largest defined DBSTATUS

File Control Opcode Constants

FCNTL_LOCKSTATE
GET_LOCKPROXYFILE
SET_LOCKPROXYFILE

144



All Constants Table

Constant Meaning

LAST_ERRNO
FCNTL_SIZE_HINT
FCNTL_CHUNK_SIZE
FCNTL_FILE_POINTER
FCNTL_SYNC_OMITTED
FCNTL_WIN32_AV_RETRY
FCNTL_PERSIST_WAL
FCNTL_OVERWRITE
FCNTL_VFSNAME
FCNTL_POWERSAFE_OVERWRITE
FCNTL_PRAGMA
FCNTL_BUSYHANDLER
FCNTL_TEMPFILENAME
FCNTL_MMAP_SIZE
FCNTL_TRACE
FCNTL_HAS_MOVED
FCNTL_SYNC
FCNTL_COMMIT_PHASETWO

Fundamental Datatype Constants

INTEGER
FLOAT
BLOB
SQLNULL
TEXT

Device Characteristic Constants

IOCAP_ATOMIC
IOCAP_ATOMIC512
IOCAP_ATOMIC1K
IOCAP_ATOMIC2K
IOCAP_ATOMIC4K
IOCAP_ATOMIC8K
IOCAP_ATOMIC16K
IOCAP_ATOMIC32K
IOCAP_ATOMIC64K
IOCAP_SAFE_APPEND
IOCAP_SEQUENTIAL
IOCAP_UNDELETABLE_WHEN_OPEN
IOCAP_POWERSAFE_OVERWRITE

145



All Constants Table

Constant Meaning

Run-Time Limit Constants

LIMIT_LENGTH

LIMIT_SQL_LENGTH

LIMIT_COLUMN

LIMIT_EXPR_DEPTH

LIMIT_COMPOUND_SELECT

LIMIT_VDBE_OP

LIMIT_FUNCTION_ARG

LIMIT_ATTACHED

LIMIT_LIKE_PATTERN_LENGTH

LIMIT_VARIABLE_NUMBER

LIMIT_TRIGGER_DEPTH

File Locking Constants

LOCK_NONE

LOCK_SHARED

LOCK_RESERVED

LOCK_PENDING

LOCK_EXCLUSIVE

Mutex Type Constants

MUTEX_FAST

MUTEX_RECURSIVE

MUTEX_STATIC_MASTER

MUTEX_STATIC_MEM

sqlite3_malloc()

MUTEX_STATIC_OPEN

sqlite3BtreeOpen()

MUTEX_STATIC_PRNG

sqlite3_random()

MUTEX_STATIC_LRU

Iru page list

MUTEX_STATIC_PMEM

sqlite3PageMalloc()

xShmLock VFS Constants

SHM_UNLOCK

SHM_LOCK

SHM_SHARED

SHM_EXCLUSIVE

Destructor Behavior Constants

STATIC

TRANSIENT

Status Parameter Constants

STATUS_MEMORY_USED

STATUS_PAGECACHE_USED

146



All Constants Table

Constant Meaning

STATUS_PAGECACHE_OVERFLOW

STATUS_SCRATCH_USED

STATUS_SCRATCH_OVERFLOW

STATUS_MALLOC_SIZE

STATUS_PARSER_STACK

STATUS_PAGECACHE_SIZE

STATUS_SCRATCH_SIZE

STATUS_MALLOC_COUNT

Status Parameter Constants (Stmt)

STMTSTATUS_FULLSCAN_STEP

This is the number of times that SQLite has stepped
forward in a table as part of a full table scan. Large
numbers for this counter may indicate opportunities for
performance improvement through careful use of indices.

STMTSTATUS_SORT

This is the number of sort operations that have occurred.
A non-zero value in this counter may indicate an
opportunity to improvement performance through careful
use of indices.

STMTSTATUS_AUTOINDEX

This is the number of rows inserted into transient indices
that were created automatically in order to help joins

run faster. A non-zero value in this counter may indicate
an opportunity to improvement performance by adding
permanent indices that do not need to be reinitialized
each time the statement is run.

STMTSTATUS_VM_STEP

This is the number of virtual machine operations
executed by the prepared statement if that number is

less than or equal to 2147483647. The number of virtual
machine operations can be used as a proxy for the total
work done by the prepared statement. If the number of
virtual machine operations exceeds 2147483647 then the
value returned by this statement status code is undefined.

Synchronization Constants

SYNC_NORMAL

SYNC_FULL

SYNC_DATAONLY

Text Encoding Constants

UTF8

UTF16LE

UTF16BE

UTF16 Use native byte order
ANY Deprecated

UTF16_ALIGNED

sqlite3_create_collation only

DETERMINISTIC

Virtual Table Config Option Constants

147




Compile Time Version Constants

Constant Meaning
VTAB_CONSTRAINT_SUPPORT

5.2. Compile Time Version Constants

The following table lists the compile time version constants:

Table 5.2. The Compile Time Version Constants

Constant Meaning

VERSION "3.8.3" The value of this constant will vary depending on the exact version
of the SQLite database engine embedded in 00oSQLite. Typically this
documentation is updated when 0oSQLite is upgraded to use a new
version of the SQLite library so that the value shown here is current.

VERSION_NUMBER 3008003 The value of this constant will vary depending on the exact
version of the SQLite database engine embedded in 0oSQLite. Typically
this documentation is updated when ooSQLite is upgraded to use a new
version of the SQLite library so that the value shown here is current.

SOURCE_ID "2014-02-03 14:04:11 6c643e45c274e755dc5a1a65673df79261c774be"
The value of this constant will vary depending on the exact version

of the SQLite database engine embedded in 00SQLite. Typically this
documentation is updated when 0oSQLite is upgraded to use a new
version of the SQLite library so that the value shown here is current.

5.3. 00SQLite Specific Constants

The following table lists constants specific to 00SQLite. These constants have no counterpart in
SQLite:

Table 5.3. The 00SQLite Specific Constants

Constant Meaning

00SQLite Result Set Format Constants

OO_ARRAY_OF_ARRAYS Result sets are returned as an array where each item in the
array is an array. The array at item 1 is an array of the column
names. The following items are the records of the result set.

OO_ARRAY_OF _DIRECTORIES Result sets are returned as an array where each item in
the array is a Directory object. Each directory in the array
contains the values of the columns in a row, where the
indexes are the names of the columns.

OO_STEM_OF_STEMS Result sets are returned as a stem with tails O through the
number of rows. Tail O contains the number rows and tails 1
through n contain a stem for each row. The tails of the stem of
a row are the column names for the rows.

OO_CLASSIC_STEM Result sets are returned as a stem with tails O through the
number of rows. Tail 0 contains the number rows and tails 1
through n contain a compound index, n.columnName for each
row. The value of each stm.n.columnName variable is the
value of the columnName column for the nth row.

148



00SQLite Specific Result Code Constants

5.4. 00SQL.ite Specific Result Code Constants

The following table lists result code constants specific to 00SQLite. These constants have no
counterpart in SQLite:

Table 5.4. The 00SQLite Specific Result Code Constants

Constant Meaning

00SQLite Result Code Constants 00SQLite Result Code Constants

OO_INTERNAL_ERR The 00SQLite framework encountered an error internally that
it is unprepared to handle. It was not considered possible for
the error to happen.

OO_WRONG_ARG_TYPE An argument to a method or function is not the correct
type. For instance the argument requires a number, but the
supplied argument is not a number.

OO_UNEXPECTED_RESULT The SQLite database engine returned a result that was
considered to be impossible to produce.

OO_BACKUP_IN_PROGRESS A method was invoked on this database connection object
when the database is the destnation of a backup in progress.

OO_BACKUP_DB_ERRSTATE The specified source or destination database for a backup

operation is in an error state.

5.5. Result Code Constants

The following table lists the result code constants. Note that these result code constants also contain
what the SQLite documentation referes to as the extended result codes. 00SQLite has the extended
result codes enabled at compile time, so there is no distinction between the result codes and the
extended result codes:

Table 5.5. The Result Code Constants

Constant Meaning

OK Successful result

ERROR SQL error or missing database
INTERNAL Internal logic error in SQLite

PERM Access permission denied

ABORT Callback routine requested an abort
BUSY The database file is locked

LOCKED A table in the database is locked
NOMEM A malloc() failed

READONLY Attempt to write a readonly database
INTERRUPT Operation terminated by sqlite3_interrupt()
IOERR Some kind of disk I/O error occurred
CORRUPT The database disk image is malformed
NOTFOUND Unknown opcode in sqlite3_file_control()
FULL Insertion failed because database is full
CANTOPEN Unable to open the database file
PROTOCOL Database lock protocol error

149



Result Code Constants

Constant Meaning

EMPTY Database is empty

SCHEMA The database schema changed
TOOBIG String or BLOB exceeds size limit
CONSTRAINT Abort due to constraint violation
MISMATCH Data type mismatch

MISUSE Library used incorrectly

NOLFS Uses OS features not supported on host
AUTH Authorization denied

FORMAT Aucxiliary database format error

RANGE 2nd parameter to sqlite3_bind out of range
NOTADB File opened that is not a database file
NOTICE Noatifications from sqlite3_log()
WARNING Warnings from sqlite3_log()

ROW sqlite3_step() has another row ready
DONE sqlite3_step() has finished executing
IOERR_READ

IOERR_SHORT_READ

IOERR_WRITE

IOERR_FSYNC

IOERR_DIR_FSYNC
IOERR_TRUNCATE
IOERR_FSTAT

IOERR_UNLOCK
IOERR_RDLOCK
IOERR_DELETE
IOERR_BLOCKED
IOERR_NOMEM
IOERR_ACCESS
IOERR_CHECKRESERVEDLOCK
IOERR_LOCK

IOERR_CLOSE
IOERR_DIR_CLOSE
IOERR_SHMOPEN
IOERR_SHMSIZE
IOERR_SHMLOCK
IOERR_SHMMAP

IOERR_SEEK
IOERR_DELETE_NOENT

150



File Open Constants

Constant Meaning

IOERR_MMAP
IOERR_GETTEMPPATH
IOERR_CONVPATH
LOCKED_SHAREDCACHE
BUSY_RECOVERY
BUSY_SNAPSHOT
CANTOPEN_NOTEMPDIR
CANTOPEN_ISDIR
CANTOPEN_FULLPATH
CANTOPEN_CONVPATH
CORRUPT_VTAB
READONLY_RECOVERY
READONLY_CANTLOCK
READONLY_ROLLBACK
READONLY_DBMOVED
ABORT_ROLLBACK
CONSTRAINT_CHECK
CONSTRAINT_COMMITHOOK
CONSTRAINT_FOREIGNKEY
CONSTRAINT_FUNCTION
CONSTRAINT_NOTNULL
CONSTRAINT_PRIMARYKEY
CONSTRAINT_TRIGGER
CONSTRAINT_UNIQUE
CONSTRAINT_VTAB
NOTICE_RECOVER_WAL
NOTICE_RECOVER_ROLLBACK
WARNING_AUTOINDEX

5.6. File Open Constants

The following table lists the file open constants:

Table 5.6. The File Open Constants

Constant Meaning

OPEN_READONLY Ok for sqlite3_open_v2(). The database is opened in read-only
mode. If the database does not already exist, an error is returned.
OPEN_READWRITE Ok for sqlite3_open_v2(). The database is opened for reading and

writing if possible, or reading only if the file is write protected by
the operating system. In either case the database must already
exist, otherwise an error is returned

151



Authorizer Action Constants

Constant Meaning

Ok for sqlite3_open_v2(). When merged with
OPEN_READWRITE, the database is opened for reading and
writing, and is created if it does not already exist.

OPEN_CREATE

OPEN_DELETEONCLOSE VES only
OPEN_EXCLUSIVE VFES only
OPEN_AUTOPROXY VFS only
OPEN_URI Ok for sqlite3_open_v2()
OPEN_MAIN_DB VFES only
OPEN_TEMP_DB VFS only
OPEN_TRANSIENT_DB VFS only
OPEN_MAIN_JOURNAL VFES only
OPEN_TEMP_JOURNAL VFS only
OPEN_SUBJOURNAL VES only
OPEN_MASTER_JOURNAL VFES only

OPEN_NOMUTEX

Ok for sqlite3_open_v2()

OPEN_FULLMUTEX

Ok for sqlite3_open_v2()

OPEN_SHAREDCACHE

Ok for sqlite3_open_v2()

OPEN_PRIVATECACHE

Ok for sqlite3_open_v2()

OPEN_WAL

VFS only

5.7. Authorizer Action Constants

The following table lists the authorizer action constants:

Table 5.7. The Authorizer Action Constants

Constant Meaning

CREATE_INDEX

CREATE_TABLE

CREATE_TEMP_INDEX

CREATE_TEMP_TABLE

CREATE_TEMP_TRIGGER

CREATE_TEMP_VIEW

CREATE_TRIGGER

CREATE_VIEW

DELETE

DROP_INDEX

DROP_TABLE

DROP_TEMP_INDEX

DROP_TEMP_TABLE

DROP_TEMP_TRIGGER

DROP_TEMP_VIEW

152



Authorizer Return Code Constants

Constant Meaning

DROP_TRIGGER
DROP_VIEW
INSERT
PRAGMA

READ

SELECT
TRANSACTION
UPDATE
ATTACH

DETACH
ALTER_TABLE
REINDEX
ANALYZE
CREATE_VTABLE
DROP_VTABLE
FUNCTION
SAVEPOINT
RECURSIVE

5.8. Authorizer Return Code Constants

The following table lists the authorizer return code constants:

Table 5.8. The Authorizer Return Code Constants

Constant Meaning

DENY Abort the SQL statement with an error
IGNORE Don't allow access, but don't generate an error
OK The operation requested is ok

5.9. xAccess VFS Method Constants

The following table lists the authorizer return code constants:

Table 5.9. The xAccess VFS Method Constants

Constant Meaning

ACCESS_EXISTS
ACCESS READWRITE Used by PRAGMA temp_store_directory
ACCESS_READ Unused

5.10. Checkpoint Operation Parameter Constants
The following table lists the checkpoint operation parameter constants:

153



Configuration Option Constants

Table 5.10. The Checkpoint Operation Parameter Constants

Constant Meaning

CHECKPOINT_PASSIVE
CHECKPOINT_FULL
CHECKPOINT_RESTART

5.11. Configuration Option Constants

The following table lists the configuration options constants:

Table 5.11. The Configuration Options Constants

Constant Meaning

CONFIG_SINGLETHREAD nil
CONFIG_MULTITHREAD
CONFIG_SERIALIZED
CONFIG_MALLOC
CONFIG_GETMALLOC
CONFIG_SCRATCH
CONFIG_PAGECACHE
CONFIG_HEAP
CONFIG_MEMSTATUS
CONFIG_MUTEX
CONFIG_GETMUTEX

nil

nil

sglite3_mem_methods*

sglite3_mem_methods*

void*, int sz, int N

void*, int sz, int N

void*, int nByte, int min

boolean

sqglite3_mutex_methods*

sglite3_mutex_methods*

CONFIG_LOOKASIDE int int
CONFIG_PCACHE no-op
CONFIG_GETPCACHE no-op
CONFIG_LOG xFunc, void*
CONFIG_URI int

CONFIG_PCACHE2 sqlite3_pcache_methods2*

CONFIG_GETPCACHE?2

sqlite3_pcache_methods2*

CONFIG_COVERING_INDEX_S

CAN

CONFIG_SQLLOG

xSqllog, void*

CONFIG_MMAP_SIZE

sqlite3_int64, sqlite3_int64

CONFIG_WIN32_HEAPSIZE

int nByte

5.12. DB Connection Configuration Constants

The following table lists the DB connection configuration constants:

Table 5.12. The DB Connection Configuration Constants

Constant Meaning

DBCONFIG_LOOKASIDE

void* int int

DBCONFIG_ENABLE_FKEY

int int*

154




DB Status Parameter Constants

Constant Meaning
DBCONFIG_ENABLE_TRIGGER int int*

5.13. DB Status Parameter Constants

The following table lists the DB status parameter constants:

Table 5.13. The DB Status Parameter Constants

Constant Meaning

DBSTATUS_LOOKASIDE_USED

The number of lookaside memory slots currently checked
out.

DBSTATUS_LOOKASIDE_HIT

The number of malloc attempts that were satisfied
using lookaside memory. Only the high-water value is
meaningful; the current value is always zero.

DBSTATUS_LOOKASIDE_MISS_SIZE

The number malloc attempts that might have been
satisfied using lookaside memory but failed due to
the amount of memory requested being larger than
the lookaside slot size. Only the high-water value is
meaningful, the current value is always zero.

DBSTATUS_LOOKASIDE_MISS_FULL

The number malloc attempts that might have been
satisfied using lookaside memory but failed due to all
lookaside memory already being in use. Only the high-
water value is meaningful, the current value is always
zero.

DBSTATUS_CACHE_USED

The approximate number of of bytes of heap memory
used by all pager caches associated with the database
connection. The highwater mark associated with
DBSTATUS_CACHE_USED is always 0.

DBSTATUS_SCHEMA_USED

The approximate number of of bytes of heap memory
used to store the schema for all databases associated
with the connection, main, temp, and any ATTACH-

ed databases. The full amount of memory used by

the schemas is reported, even if the schema memory

is shared with other database connections due to
shared cache mode being enabled. The highwater mark
associated with DBSTATUS_SCHEMA_USED is always
0.

DBSTATUS_STMT_USED

the approximate number of of bytes of heap and
lookaside memory used by all prepared statements
associated with the database connection. The highwater
mark associated with DBSTATUS _STMT_USED is
always 0.

DBSTATUS_CACHE_HIT

The number of pager cache hits that have
occurred. The highwater mark associated with
DBSTATUS_CACHE_HIT is always 0.

DBSTATUS_CACHE_MISS

The number of pager cache misses that have
occurred. The highwater mark associated with
DBSTATUS CACHE_MISS is always 0.

155



File Control Opcode Constants

Constant Meaning

DBSTATUS _CACHE_WRITE The number of dirty cache entries that have been written
to disk. Specifically, the number of pages written to the
wal file in wal mode databases, or the number of pages
written to the database file in rollback mode databases.
Any pages written as part of transaction rollback or
database recovery operations are not included. If an

10 or other error occurs while writing a page to disk,

the effect on subsequent DBSTATUS_CACHE_WRITE
requests is undefined. The highwater mark associated
with DBSTATUS CACHE_WRITE is always 0.

DBSTATUS_MAX Largest defined DBSTATUS

5.14. File Control Opcode Constants

The following table lists the file control opcode constants:

Table 5.14. The File Control Opcode Constants

Constant Meaning

FCNTL_LOCKSTATE
GET_LOCKPROXYFILE
SET_LOCKPROXYFILE
LAST_ERRNO
FCNTL_SIZE_HINT
FCNTL_CHUNK_SIZE
FCNTL_FILE_POINTER
FCNTL_SYNC_OMITTED
FCNTL_WIN32_AV_RETRY
FCNTL_PERSIST_WAL
FCNTL_OVERWRITE
FCNTL_VFSNAME
FCNTL_POWERSAFE_OVERWRITE
FCNTL_PRAGMA
FCNTL_BUSYHANDLER
FCNTL_TEMPFILENAME
FCNTL_MMAP_SIZE
FCNTL_TRACE
FCNTL_HAS_MOVED
FCNTL_SYNC
FCNTL_COMMIT_PHASETWO

5.15. Fundamental Datatype Constants

The following table lists the fundamental datatype constants:

156



Device Characteristic Constants

Table 5.15. The Fundamental Datatype Constants

Constant Meaning

INTEGER
FLOAT
BLOB
NULL
TEXT

5.16. Device Characteristic Constants

The following table lists the device characteristic constants:

Table 5.16. The Device Characteristic Constants

Constant Meaning

IOCAP_ATOMIC
IOCAP_ATOMIC512
IOCAP_ATOMICIK
IOCAP_ATOMIC2K
IOCAP_ATOMIC4K
IOCAP_ATOMIC8K
IOCAP_ATOMIC16K
IOCAP_ATOMIC32K
IOCAP_ATOMIC64K
IOCAP_SAFE_APPEND
IOCAP_SEQUENTIAL
IOCAP_UNDELETABLE_WHEN_OPEN
IOCAP_POWERSAFE_OVERWRITE

5.17. Run-Time Limit Constants
The following table lists the run-time limit constants:

Table 5.17. The Run-Time Limit Constants

Constant Meaning

LIMIT_LENGTH The maximum size of any string or BLOB or table row, in
bytes.

LIMIT_SQL_LENGTH The maximum length of an SQL statement, in bytes.

LIMIT_COLUMN The maximum number of columns in a table definition or

in the result set of a SELECT or the maximum number of
columns in an index or in an ORDER BY or GROUP BY

clause.
LIMIT_EXPR_DEPTH The maximum depth of the parse tree on any expression.
LIMIT_COMPOUND_SELECT The maximum number of terms in a compound SELECT
statement.

157



File Locking Constants

Constant Meaning

LIMIT_VDBE_OP The maximum number of instructions in a virtual machine
program used to implement an SQL statement. This limit is
not currently enforced, though that might be added in some
future release of SQLite.

LIMIT_FUNCTION_ARG The maximum number of arguments on a function.
LIMIT_ATTACHED The maximum number of attached databases.

LIMIT_LIKE_PATTERN_LENGTH The maximum length of the pattern argument to the LIKE or
GLOB operators.

LIMIT_VARIABLE_NUMBER The maximum index number of any parameter in an SQL
statement.
LIMIT_TRIGGER_DEPTH The maximum depth of recursion for triggers.

5.18. File Locking Constants

The following table lists the file locking constants:

Table 5.18. The File Locking Constants

Constant Meaning

LOCK_NONE
LOCK_SHARED
LOCK_RESERVED
LOCK_PENDING
LOCK_EXCLUSIVE

5.19. Mutex Type Constants

The following table lists the mutex type constants:

Table 5.19. The Mutex Type Constants

Constant Meaning

MUTEX_FAST
MUTEX_RECURSIVE
MUTEX_STATIC_MASTER

MUTEX_STATIC_MEM sqglite3_malloc()
MUTEX_STATIC_OPEN sqlite3BtreeOpen()
MUTEX_STATIC_PRNG sqlite3_random()
MUTEX_STATIC_LRU Iru page list
MUTEX_STATIC_PMEM sqlite3PageMalloc()

5.20. xShmLock VFS Constants

The following table lists the xShmLock VFS constants:

158



Destructor Behavior Constants

Table 5.20. The xShmLock VFS Constants
Constant Meaning

SHM_UNLOCK
SHM_LOCK
SHM_SHARED
SHM_EXCLUSIVE

5.21. Destructor Behavior Constants

The following table lists the destructor behavior constants:

Table 5.21. The Destructor Behavior Open Constants

STATIC
TRANSIENT

5.22. Status Parameter Constants
The following table lists the status parameter constants:

Table 5.22. The Status Parameter Constants
Constant Meaning

STATUS_MEMORY_USED This parameter is the current amount of memory checked
out using the SQLite malloc routine, either directly

or indirectly. The figure includes calls made to the

routine by the application and internal memory usage

by the SQLite library. Scratch memory controlled by
CONFIG_SCRATCH and auxiliary page-cache memory
controlled by CONFIG_PAGECACHE is not included

in this parameter. The amount returned is the sum of

the allocation sizes as reported by the xSize method in
sqlite3_mem_methods.

STATUS_PAGECACHE_USED
STATUS_PAGECACHE_OVERFLOW
STATUS_SCRATCH_USED
STATUS_SCRATCH_OVERFLOW
STATUS_MALLOC_SIZE
STATUS_PARSER_STACK
STATUS_PAGECACHE_SIZE
STATUS_SCRATCH_SIZE
STATUS_MALLOC_COUNT

5.23. Status Parameter (stmt) Constants

The following table lists the status parameter (stmt) constants:

159



Synchronization Constants

Table 5.23. The Status Parameter (stmt) Constants

Constant Meaning

STMTSTATUS_FULLSCAN_STEP

This is the number of times that SQLite has stepped forward
in a table as part of a full table scan. Large numbers for

this counter may indicate opportunities for performance
improvement through careful use of indices.

STMTSTATUS_SORT

This is the number of sort operations that have occurred. A
non-zero value in this counter may indicate an opportunity to
improvement performance through careful use of indices.

STMTSTATUS_AUTOINDEX

This is the number of rows inserted into transient indices that
were created automatically in order to help joins run faster. A
non-zero value in this counter may indicate an opportunity to
improvement performance by adding permanent indices that
do not need to be reinitialized each time the statement is run.

STMTSTATUS_VM_STEP

This is the number of virtual machine operations executed
by the prepared statement if that number is less than or
equal to 2147483647. The number of virtual machine
operations can be used as a proxy for the total work done
by the prepared statement. If the number of virtual machine
operations exceeds 2147483647 then the value returned by
this statement status code is undefined.

5.24. Synchronization Constants

The following table lists the synchronization constants:

Table 5.24. The Synchronization Constants

Constant Meaning

SYNC_NORMAL

SYNC_FULL

SYNC_DATAONLY

5.25. Text Encoding Constants

The following table lists the text encoding constants:

Table 5.25. The Text Encoding Constants

Constant Meaning

UTF8

UTF16LE

UTF16BE

UTF16 Use native byte order

ANY Deprecated

UTF16_ALIGNED sqlite3_create_collation only

DETERMINISTIC

160



Virtual Table Config Option Constants

5.26. Virtual Table Config Option Constants

The following table lists the virtual table config option constants:

Table 5.26. The Virtual Table Config Option Constants
Constant Meaning

VTAB_CONSTRAINT_SUPPORT

5.27. merge (Class method)

+--,--+
v I
>>--merge(--value--+--)------------ommmmm oo ><

Performs a bit-wise or operation on the arguments and returns the result.

Arguments:
The arguments are:
value
One or more whole numbers that will be merged together. The value argument can repeat any
number of times, but the series of values can not omit an argument in the middle of the series.
Although this method will work with any numbers, it is intended to be used with values that are
ooSQLiteConstant values.

Return value:
Returns the result of performing a bit-wise or operation on the supplied numbers.

Remarks:
In some cases when the SQLite constants are used as arguments to a method or function, the
constants are actually bit flags that are meant to be or'd together. The opts argument in the new
method of the ooSgliteConnection class is an example of this. This is a common practice in
C / C++ programming, not so common in Rexx. The merge method is provided as a convenience
to the Rexx programmer.

Example:
This example

dbName = 'ooFoods.rdbx'
openOpts = .ooSQLite~merge(.00SQLite~OPEN_READWRTITE, .00SQLite~OPEN_CREATE)

dbConn = .ooSQLiteConnection~new(dbName, openOpts)

161



Chapter 6.

The Classic Rexx Interface to SQL.ite

The classic Rexx interface to SQLite provides a complete functional inteface to SQLite. This allows the
Rexx programmer who prefers to not program with objects the same access to the SQLite database
engine as the object-orientated Rexx programmer.

The intent is for the classic Rexx interface to allow access to the complete functionality and feature set
of SQLite. The first release of 00SQLite will not meet, and is not intended to meet, that goal. Lesser
used functionality will be added over time.

The object-orientated and classic Rexx interfaces are developed in tandem. As each new feature or
functionality of SQLite is added to 00SQLite, access to the feature is added to both interfaces at the
same time. There is no SQLite functionality in the classic Rexx interface that can not be accessed
through the object-orientated interface. And, vice versa.

The following table lists all of the routines used in the functional (classic Rexx) interface of the
00SQLite package:

Table 6.1. 00SQLite Routine Listing

Routine Description

00SQLiteEnquote() Converts the supplied Rexx value(s) into SQL literals.
00SQLiteMerge() description

00SQLiteRegisterBuiltin()description

00SQLiteVersion() description

oosqlAutoExtension()

oosqlBackupFinish()

oosqlBackuplnit()

oosqlBackupPageCounty).

oosqlBackupRemaining

oosqlBackupStep()
00sqIBindBlob()
00sqIBindDouble()
00sqIBindInt()
00sqIBindInt64()
00sqIBindNull()

oosqIBindParameterCoupt()

oosqlBindParameterindgx()

oosqlBindParameterName()

00sqIBindText()

oosqlBindValue()
00sqIBindZeroBlob()
00sqlIBusyHandler()

00sqlBusyTimeOut()

00sqlChanges()

00sqlClearBindings()

162



Routine Description

00sqlClose()

00sqlColumnBIlob()

00sqlColumnBytes()

oosqlColumnCount()

oosqlColumnDatabaseNgme()

oosqlColumnDeclType()| .

oosqlColumnDouble()

oosqlColumnindex()

oosqlColumnint()

00sqlColumnint64()

oosqlColumnName()

oosqlColumnQriginName()

oosqlColumnTableName|()

oosqlColumnText()

oosqlColumnType()

oosqlColumnValue()

oosqlCollationNeeded()

oosqlCommitHook()

oosqlCompileOptionGet().

00sqlCompileOptionUsefl()

oosqlComplete()

oosqlCreateCollation()

oosqlCreateFunction()

oosqlDataCount()
oosqlDbFileName()
oosqlDbHandle()
o0osqlDbMutex()
00sqIDbReadOnly()
oosqlDbReleaseMemory()
oosqlDbStatus()

oosqlEnableLoadExtensian()

00sqlErrCode()

00sqlErrMsg()

00sqlErrStr() Retrieves the English language descriptive string for a result code.

00sqlExec()

oosqlExtendedErrCode() .

oosqlExtendedResultCogles()

oosqlFinalize()

163



Online Backup Feature

6.1. Online Backup Feature

SQLite provides an online backup feature and the classic Rexx interface of ooSQLite provides the
functions neccessary to make complete use of this feature. To effectively use the online backup
feature with the classic Rexx interface, the Rexx programmer should read the SQLite documentation*
for the Online Backup API.. SQLite also provides an article® with two examples and commentary
showing how to use the online backup API. Readers may also find useful the information in the object
orientated interface's support for this feature.

These functions in 00SQLite provide the access to the online backup feature of SQLite:
» 0osqlBackupFinish.

» o0osqlBackuplnit.
e 0o0sqlPageCount.
e o0osqlBackupRemaining.

» oosqlBackupStep.

! http://www.sglite.org/c3ref/backup_finish.html
2 http://www.sqlite.org/backup.html

164


http://www.sqlite.org/c3ref/backup_finish.html
http://www.sqlite.org/backup.html
http://www.sqlite.org/c3ref/backup_finish.html
http://www.sqlite.org/backup.html

Chapter 7.

00SQL.ite Specific Functions

Almost all of the fuctions in the Classic Rexx interface of 00SQLite have a one-to-one mapping with
the SQLite API functions. A few functions are unique to ooSQLite. These functions are used to provide
SQLite functionality that does not directly translate into Rexx. All functions of this type use a naming
convention of 00SQLiteXxxxx(), while all functions that map directly to SQLite functions use a haming
convention of oosqlXxxx(). The ooSQLite unique functions are documented in this chapter.

7.1. ooSQLiteEnquote

>>--o00SQLiteEnquote(--+---------- D e ><
+--values--+

Converts the supplied Rexx value(s) into SQL literals. This function is useful to help construct SQL
statements. The specified Rexx object(s) are converted to SQL literals by adding single quotes to the
beginning and end of the string value of the object, escaping single quotes within the string value of
the object, and changing the .nil object to SQL NULL.

Arguments:
The single argument is:
values [optional]
A Rexx object, or an array-like stem of Rexx objects, to be converted to SQL literals. If this
argument is omitted then NULL is returned.

Return value:

The string value of the specified object(s) as a SQL literal, or a comma separated list of SQL
literals.

Remarks:
The 00SQLiteEnquote function accepts a single argument values. If values is a stem, then it must
be a stem containing tails that are positive whole number indexes. The stem can contain tails 1
through N where N is the count of values to convert, and must contain the tail 0 whose value is
N. Any tail 1 through N that is not assigned a value is converted to SQL NULL. Any tail 1 through
N whose assigned value is the .nil object is also converted to SQL NULL. For all other tails 1
through N, the value assigned to the tail is converted to a string enclosed in single quotes. If the
string contains single quotes, those single quotes are escaped. If the stem contains any other tails,
other than 0 through N, those tails are ignored. If N is greater than 1, then each converted value is
added to the string with a comma used as a separator.

If values is not a stem, then it is taken to be a single value to be converted, and is converted in
the same manner as a single tail of a stem is converted, as described above. This implies that if
values is omitted altogether, it is converted to SQL NULL.

Details
The functionality of the coSQLiteEnQuote function is similar to that of the sq/il‘e37mprintf1 SQLite
API

! http://www.sqlite.org/c3ref/mprintf.html

165


http://www.sqlite.org/c3ref/mprintf.html
http://www.sqlite.org/c3ref/mprintf.html

00SQLiteMerge

Example:

This example shows how the enquote function can be ussed to create SQL INSERT statements
that are not prone to SQL Injection flaws:

ri.0 = 4

ri.1 = "Tom"

ri.2 = "Hanks"
ri.4 = "male"
r2.0 = 4

r2.1 = "Mike"
r2.3 = "555-9988"
r2.4 = .nil

sgll = "INSERT INTO my_table (fName, 1Name, phone, gender)
VALUES("ooSQLiteEnquote(ri1.)");"

sgl2 = "INSERT INTO my_table (fName, 1Name, phone, gender)
VALUES("ooSQLiteEnquote(r2.)");"

say sqli
say sql2

/* Output would be:

INSERT INTO my_table (fName, 1lName, phone, gender) VALUES('Tom', 'Hanks', NULL, 'male');
INSERT INTO my_table (fName, 1Name, phone, gender) VALUES('Mike', NULL, '555-9988',
NULL);

2/
This example shows a conversion for a single string that has an apostrophe within it:

str = "It's a happy day!"
say ooSQLiteEnquote(str)

/* Output would be:
'It''s a happy day!'

*/
7.2. ooSQLiteMerge

>>--00SQLiteMerge(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

166



00SQLiteRegisterBuiltin

Details
Additional details

Example:
This example ...

7.3. ooSQLiteRegisterBuiltin

>>--o00SQLiteRegisterBuiltin(--+-------- ) e L LT T ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

7.4. ooSQLiteVersion

>>--00SQLitevVersion(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

167



00SQLiteVersion

Details
Additional details

Example:
This example ...

168



Chapter 8.

00SQL.ite Functions A - F
8.1. oosglAutoExtension

>>--00sqlAutoExtension(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.2. oosqlBackupFinish

>>--00sglBackupFinish(--buHandle--)-------------- ><

Called to release all resources associated with the backup operation. This function is part of the
support for the online backup feature of SQLite.

Arguments:
The arguments are:
buHandle [required]
The non-null handle to the backup returned from oosqlBackuplinit.

Return value:
Returns .00SQLite~OK if no errors occurred during a call to oosq/BackupStep, whether or not
the backup operation completed. If an out-of-memory condition or 10O error occurred during any
prior call of oosqlBackupStep using the buHandle argument, then oosqlBackupFinish returns the
corresponding error code.

Remarks:
There should be exactly one call to oosqlBackupFinish for each successful call of oosq/Backupinit.
Once oosqlBackupFinish has been called, buHandle is no longer valid and must not be used in
any other call to a function.

169



oosqlBackuplnit

Details

The functionality of the oosq/BackupFinish routine is similar to that of the sq/ite37bacl<upﬁfinishl
SQLite API

Example:
This example shows part of the code that performs an online backup of a very large database
which is concurrently in heavy use. If the backup does not finish in four hours, the application
abandons the backup and reschedules it to a different time:

-- This function will return DONE if completed and BUSY if abandoned. Any other
-- return would be a fatal error.
::routine backupwithTimeLimit

use strict arg buHandle, limit

count = 0
do while .true
ret = oosqglBackupStep(buHandle, 2)
if ret == .ooSQLite~DONE then do
say 'Backup finished with no error.'
outcome = .00SQLite~DONE
leave
end

if ret <> .ooSQLite~OK, ret <> .o00SQLite~BUSY, ret <> .o00SQLite~LOCKED then do
say 'Fatal error during back up.'
outcome = ret
leave

end

if count * 2 > limit then do
say
say "Backup has not completed within the time limit, going to abandon the
operation."
say
outcome = .00SQLite~BUSY
leave
end

j = SysSleep(.5)
count += 1

end
ret = oosglBackupFinish(buHandle)

return outcome

8.3. oosqlBackuplnit

>>--o00sglBackupInit(--dstConn-,-srcConn--+------------ Footoomooa oo +--)------ ><
+-,-dstName--+ +-,srcName--+

Called once to initialize an online backup. This function is part of the support for the online backup
feature of SQLite.

170



oosqlBackupPageCount

Arguments:
The arguments are:
dstConn [required]
An open database connection. This database is used as the destination of the backup.

srcConn [required]
An open database connection. This database is used as the source of the backup.

dstName [optional]
The name of the destination backup. This is not the file name but rather the main, temp, or
attached as name. If omitted, main is used.

srcName [optional]
The name of the source backup. Again, this is not the file name but rather the main, temp, or
attached as name. If omitted, main is used.

Return value:
Returns a handle that is used in the calls to other functions that are part of the online backup
feature. This handle may be null if an error ocurred. See the remarks for a discussion on this.

Remarks:
If an error occurs within the call to oosqlBackuplnit, then the handle returned will be null. Use
the oosqllsHandleNull routine to check for this. On error, an error code and error message are
stored in the destination database connection. This error code and message can be retrieved
using the oosqlErrCode and oosqlErrMsg functions A successful call to oosg/Backuplnit returns
a non-null handle. The handle may be used with the oosqg/BackupStep and oosqlBackupFinish,
functions to perform the specified backup operation. The non-null handle is also used in the
oosqlBackupPageCount and oosqlBackupRemaining functions.

Details
The functionality of the oosq/Backuplnit routine is similar to that of the sqliz‘e37backup7init2 SQLite
API

Example:
This example initializes a backup and checks for error:

buHandle = oosglBackupInit(destDB, srcDB)
if oosqlIsHandleNull(buHandle) then do
say 'Error initializing backup. Error code:' oosqlErrCode(destDB)
00sqlErrMsg(destDB)
r = oosqlClose(srcDB)
r = oosqglClose(destDB)
return 99.
end

8.4. oosqglBackupPageCount

>>--o00sqlBackupPageCount ( --buHandle--)----------- ><

2 http://www.sqlite.org/c3ref/backup_finish.html#sglite3backupinit

171


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupinit
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupinit

oosglBackupRemaining

Returns the total number of pages in the source database file. This function is part of the support for
the online backup feature of SQLite.

Arguments:
The single argument is:
buHandle [required]
The non-null handle to the backup returned from oosql/Backuplinit.

Return value:
The total number of pages in the source database file.

Details
The functionality of the oosq/BackupPageCount routine is similar to that of the
sq/ite:;Lbacku,tLpagecoum‘3 SQLite API.

8.5. oosqlBackupRemaining

>>--00sglBackupRemaining( - -buHandle--)----------- ><

Returns the number of pages still to be backed up in the source database file. This function is part of
the support for the online backup feature of SQLite.

Arguments:
The single argument is:
buHandle [required]
The non-null handle to the backup returned from oosq/Backuplinit.

Return value:
The number of pages in the source database file that still need to be backed up.

Details
The functionality of the oosqlBackupRemaining routine is similar to that of the
sq/ite3_backup_remaining4 SQLite API .

Example:
This example shows how to calculate the percentage complete of a backup. The code snippet
would be executed after a call to oosqglBackupStep(). Maybe every call, or every 5th call, ...

remain = oosqlBackupRemaining(buHandle)
pages = oosqglBackupPageCount(buHandle)

percentComplete = 100 * (pages - remain) / pages
say "Backup" percentComplete "percent complete..."
/* Output might be:

Backup 8 percent complete...

Backup 16 percent complete...

Backup 24 percent complete...
Backup 32 percent complete...

8 http://www.sglite.org/c3ref/backup_finish.html#sqlite3backupfinish
4 http://www.sqlite.org/c3ref/backup_finish.html#sglite3backupfinish

172


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

oosqlBackupStep

Backup 40 percent complete...
Backup 48 percent complete...

*/

8.6. oosqglBackupStep

>>--00sqlBackupStep(--buHandle--, --count--)----- ><

Copies up to count pages between the source and destination databases specified by the buHandle
argument. This function is part of the support for the online backup feature of SQLite.

Arguments:
The arguments are:
buHandle [required]
The non-null handle to the backup returned from oosql/Backuplinit.

count
The whole number count of database pages to copy. If count is negative, all of the remaining
pages are copied. If count is omitted it defaults to 5.

Return value:
If count pages are successfully copied, and there are still more pages to be copied, then OK
(.0o0SQLite~OK) is returned. If oosqlBackupStep successfully finishes copying all pages from
source to destination, then DONE (.00SQLite~DONE) is returned. Otherwise an error code is
returned. Some errors are fatal and some are not. The remarks section further discusses this.

Remarks:
If the database engine can not obtain a required lock then oosqlBackupStep returns BUSY
(.00SQLite~BUSY.) If the source database connection is being used to write to the source
database when oosgl/BackupStep is called, then LOCKED is returned. The return code can
also be NOMEM, READONLY, or one of the I0O_ERR_XXX codes. After BUSY or LOCKED,
oosqlBackupStep can be tried again. But NOMEM, READONLY, and I0_ERR_XXX are
considered fatal. There is no point in retrying if any of those codes are returned. The application
must accept that the backup operation has failed and call finish to release associated resources.

Details
The functionality of the oosg/Step routine is similar to that of the sqlil‘e3_backup_step5 SQLite API.

Example:
This example initializes a backup, copies everything in one step, checks for error, and cleans up:

buObj = oosqlBackupInit(srcConn, dstConn)

if oosqglIsHandleNull(buObj) then do
-- handle error

end

s http://www.sqlite.org/c3ref/backup_finish.html#sglite3backupfinish

173


http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish
http://www.sqlite.org/c3ref/backup_finish.html#sqlite3backupfinish

00sqIBindBlob

ret = oosglBackupStep(buObj, -1)
if ret \== .o0SQLite~DONE then do
-- back up failed, handle error

ret = oosglBackupFinish(buObj)

end

-- Backup okay, we are done with the connections
-- and the backup handle, close everything ...

ret = oosglBackupFinish(buObj)

ret = oosglClose(dstConn)
ret = oosglClose(srcConn)
return 0

8.7. oosgliBindBlob

>>--00sgqlBindBlob(--+-------- ) e e ><

XX

+--type--+

Arguments:
The arguments are:
TERM

XX

Return value:

XX

Remarks:
Additional comments.

Details

Additional details

Example:
This example ...

8.8. oosqlBindDouble

>>--00sqlBindDouble(--+-------- ) R e L ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

174



oosqIBindInt

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.9. oosqiBindint

>>--00sqlBindInt(--+-------- ) e ><
+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.10. oosgiBindInt64

>>--00sqlBindInt64(--+-------- R ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

175



00sqIBindNull

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.11. oosqlIBindNuli

>>--00sqlBindNull(--+-------- ) e ><
+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.12. oosgliBindParameterCount

>>--o0o0sglBindParameterCount(--+-------- ) e R R T TR ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

176



oosglBindParameterindex

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.13. oosqiBindParameterindex

>>--00sglBindParameterIndex(--+-------- S R

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.14. oosgiBindParameterName

>>--00sglBindParameterName(--+-------- ) R

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

----------------------------- ><

---------------------------- ><

177



oosqIBindText

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.15. oosqIBindText

>>--00sqlBindText(--+-------- ) e ><
+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.16. oosgliBindValue

>>--00sglBindvalue(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

178



0osqlBindZeroBlob

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.17. oosqlBindZeroBlob

>>--00sqlBindZeroBlob(--+-------- ) e ><

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.18. oosglBusyHandler

>>--00sqlBusyHandler(--+-------- +--)
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

--------------------------------------------- ><

179



00sqIBusyTimeOut

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.19. oosqlBusyTimeOut

>>--00sqlBusyTimeOut(--+-------- ) e E L PR P T T

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.20. oosglCancelAutoBuiltin

>>--oosqlCancelAutoBuiltin(--+-------- Fo-)ommmm -
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

--------------------- ><

--------------------------- ><

180



oosglChanges

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.21. oosqlChanges

>>--00sglChanges(--+-------- ) e ><
+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.22. oosqlClearBindings

>>--00sgqlClearBindings(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

181



oosqlClose

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.23. oosqlClose

>>--00sqlClose(--+-------- ) e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.24. oosglColumnBlob

>>--00sglColumnBlob(--+-------- ) e ><

+--type--+
XX
Arguments:
The arguments are:
TERM
XX

182



oosglColumnBytes

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.25. oosqlColumnBytes

>>--00sqlColumnBytes(--+-------- ) e ><

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.26. oosglColumnCount

>>--00sgqlColumnCount(--+-------- ) R e e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

183



oosglColumnDatabaseName

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.27. oosqlColumnDatabaseName

>>--00sglColumnDatabaseName(--+-------- ) e ><

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.28. oosglColumnDeclType

>>--00sgqlColumnDeclType(--+-------- ) R ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

184



oosglColumnDouble

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.29. oosqlColumnDouble

>>--00sgqlColumnDouble(--+-------- ) e e LT T ><

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.30. oosqlColumnindex

>>--00sqlColumnIndex(--stmt--, --colName--)-------------mmmm - ><

Returns the index of the column with the specified column name in the result set of a SELECT

statement.

Arguments:
The arguments are:
stmt [required]

The handle to the prepared statement to be queried. The handle must not be null and the

statement must not have been finalized.

185



oosqlColumnint

colName [required]
The name of the column whose index is desired. The name is case-insensitive because
SQLite does not allow column names that differ only by case.

Return value:
Returns the one-based index of the column that matches the specified name, or 0 if there is no
match.

Details
This function does not access any of the SQLite APIs. It is specific to ooSQLite.

Example:
This example uses the oosq/Columnindex function to get the index of the name column in the
foods table:

dbConn = "'
ret = oosqglOpen('ooFoods.rdbx', 'dbConn')

stmt = "'
ret = oosglPrepare(dbConn, "SELECT * FROM foods", 'stmt')
index = oosqlColumnIndex(stmt, 'name')

do while oosglStep(stmt) == .ooSQLite~ROW
say oosglColumnText(stmt, index)
end

dbConn~close
stmt~finalize

8.31. oosqlColumnint

>>--o0o0sgqlColumnInt(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

186



0o0sqlColumnint64

8.32. oosqlColumnint64

>>--00sgqlColumnInt64(--+-------- ) R e e T T T T T

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.33. oosqlColumnName

>>--00sglColumnName(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

------------------- ><

------------------ ><

187



00sglColumnOriginName

8.34. oosqlColumnOriginName

>>--00sglColumnOriginName(--+-------- ) R e e T

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.35. oosqlColumnTableName

>>--00sglColumnTableName(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

--------------------------- ><

-------------------------- ><

188



oosglColumnText

8.36. oosglColumnText

>>--00sgqlColumnText(--+-------- ) R e e e E T R T T

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.37. oosqlColumnType

>>--00sgqlColumnType(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

------------------ ><

------------------ ><

189



oosglColumnValue

8.38. oosglColumnValue

>>--00sgqlColumnvalue(--+-------- ) R e e T T T T T

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.39. oosqlCollationNeeded

>>--00sglCollationNeeded(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

------------------- ><

----------------------- ><

190



oosglCommitHook

8.40. oosglCommitHook

>>--00sgqlCommitHook(--+-------- ) R e e e E T R T T

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.41. oosqlCompileOptionGet

>>--00sglCompileOptionGet(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

------------------ ><

------------------------ ><

191



oosglCompileOptionUsed

8.42. oosglCompileOptionUsed

>>--00sglCompileOptionUsed(--+-------- ) R e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.43. oosqlComplete

>>--o00sgqlComplete(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

192



oos(ICreateCollation

8.44. oosqlCreateCollation

>>--00sqlCreateCollation(--+-------- +--)
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.45. oosqlCreateFunction

>>--00sglCreateFunction(--+-------- +--)-
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

--------------------------------------------- ><

-------------------------------------------- ><

193



oosqglDataCount

8.46. oosglDataCount

>>--o0osglDataCount(--+-------- +--)-
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.47. oosqlDbFileName

>>--00sglDbFileName(--+-------- +--)
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

-------------------------------------------- ><

--------------------------------------------- ><

194



oosqlDbHandle

8.48. oosglDbHandle

>>--00sgqlDbHandle(--+-------- ) R e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.49. oosqlDbMutex

>>--00sqlDbMutex(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

195



00sglDbReadOnly

8.50. oosqiDbReadOnly

>>--00sglDbReadOnly(--+-------- ) R e e e E T R T T

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.51. oosqlDbReleaseMemory

>>--00sglDbReleaseMemory(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

------------------ ><

----------------------- ><

196



oosqIDbStatus

8.52. oosglDbStatus

>>--00sgqlDbStatus(--+-------- ) R e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.53. oosqlEnableLoadExtension

>>--00sglEnableLoadExtension(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

197



oosqlErrCode

8.54. oosglErrCode

>>--00sqlErrCode(--+-------- ) R e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.55. oosqlErrMsg

>>--00SqlErrMsg(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

198



00SqlErrStr

8.56. oosqlErrStr

>>--00SqlErrStr(--resultCode--)------------------ ><

Retrieves the English language descriptive string for a result code.

Arguments:
The arguments are:

resultCode [required]
One of the result code constants, or one of the 00SQLite specific result code, whose
descriptive sting is to be retrieved.

Return value:
Returns the descriptive, English language, string for the specified result code.

Remarks:
This routine is useful for getting the description of a result code without needing a open database
connection. The oosqlErrMsg routine will return the descriptive string for the most recent result
code associated with the database connection, but the routine requires a handle to an open
database connection. The oosqlErrStr routine can be used at any time to get the descriptive string
for a result code.

Details
The functionality of the oosqlErrStr function is similar to that of the sq/iteSLerrsl‘r6 SQLite API

Example:
This example is a small snippet of code to print out the description of the first 27 result codes.
Inspection of the ooSQLite.cls file shows us that the first 27 result code constants are in
numerically consecutive order:

first
last

.00SQLite~0K
.00SQLite~NOTADB

do i = first to last
say 00SQlErrStr(i)

end

say

/* Output would be:

not an error

SQL logic error or missing database
unknown error

access permission denied

callback requested query abort
database is locked

database table is locked

out of memory

attempt to write a readonly database
interrupted

disk I/0 error

database disk image is malformed
unknown operation

® http://mww.sglite.org/c3refferrcode.html

199


http://www.sqlite.org/c3ref/errcode.html
http://www.sqlite.org/c3ref/errcode.html

00sglExec

database or disk is full

unable to open database file

locking protocol

table contains no data

database schema has changed

string or blob too big

constraint failed

datatype mismatch

library routine called out of sequence
large file support is disabled
authorization denied

auxiliary database format error

bind or column index out of range

file is encrypted or is not a database

*/

8.57. oosqlExec

>>--00sqlExec(--+-------- ) e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.58. oosqlExtendedErrCode

>>--00sqlExtendedErrCode(--+-------- ) e T ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

200



oosqlExtendedResultCodes

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.59. oosqlExtendedResultCodes

>>--00sgqlExtendedResultCodes(--+-------- to-)omm e

+--type--+

XX

Arguments:

The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

8.60. oosglFinalize

>>--00sqlFinalize(--+-------- ) R T

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

------------------------------ ><

------------------- ><

201



oosglFinalize

Return value:
XX

Remarks:

Additional comments.

Details
Additional details

Example:
This example ...

202



Chapter 9.

00SQLite Functions G - R

9.1. oosqlGetAutocommit

>>--00sqlGetAutocommit(--+-------- B R e T ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.2. oosqlinterrupt

>>--00sqlInterrupt(--+-------- B e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

203



oosglisHandleNull

9.3. oosqlisHandleNull

>>--00sqlIsHandleNull(--handle--)---------------- ><

This routine provides a way for the programmer to check if a handle is null. The functions in 00SQLite
that return handles will return a null handle on error. A null handle should never be used as an
argument to any function.

Arguments:
The single argument is:
handle
The handle to check.

Return value:
Returns true if the handle is null, false if it is not null.

Remarks:

The oosqlBackuplnit(), oosqlOpen(), oosqglPrepare() and several other functions return handles.
These handles will be null on error.

If the programmer is not completely adverse to using object methods, the isNull() method can
be invoked on a handle to test for null, rather than use the oosqlisHandleNull() function. E.g

-- The following code snippet:
if handle~isNull then ...

-- 1s equivalent to this snippet using the oosglIsHandleNull() function:
if oosqlIsHandleNull(handle) then ...

Details
This function does not access any of the SQLite APIs. It is specific to 00SQLite.

Example:
This example opens a database connection and checks to be sure the returned handle is not null:

dbConn = oosglOpen('contacts.rdbx')

if oosglIsHandleNull(dbConn) then do
-- handle the error ...

end

9.4. oosqlLastinsertRowlD

>>--o0o0sglLastInsertRowID(--+-------- ) e ><
+--type--+
XX
Arguments:

The arguments are:

204



oosglLibVersion

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.5. oosqlLibVersion

>>--oo0sglLibVersion(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.6. oosqlLibVersionNumber

>>--00sglLibVersionNumber(--+-------- R e e e ><
+--type--+
XX
Arguments:

The arguments are:

205



oosqlLimit

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.7. oosqlLimit

>>--o0osqlLimit(--+-------- ) ><

+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.8. oosqlLoadExtension

>>--00sglLoadExtension(--+-------- ) e e ><
+--type--+
XX
Arguments:

The arguments are:




oosglMemoryHighWater

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.9. oosqlMemoryHighWater

>>--00sglMemoryHighWater(--+-------- ) ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.10. oosqlMemoryUsed

>>--00sqlMemoryUsed(--+-------- ) b e T ><
+--type--+
XX
Arguments:

The arguments are:

207



oosglMutexAlloc

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.11. oosqlMutexAlloc

>>--00sqlMutexAlloc(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.12. oosqlMutexEnter

>>--00sqlMutexEnter(--+-------- ) e
+--type--+
XX
Arguments:

The arguments are:

----------------- ><

----------------- ><

208



oosqlMutexFree

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.13. oosqlMutexFree

>>--00sqlMutexFree(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.14. oosqlMutexLeave

>>--00sqlMutexLeave(--+-------- )
+--type--+
XX
Arguments:

The arguments are:

---------------- ><

----------------- ><

209



oosqlIMutexTry

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.15. oosqlMutexTry

>>--00sqlMutexTry(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.16. oosqINextStmt

>>--00sqlNextStmt(--+-------- ) b e T ><
+--type--+
XX
Arguments:

The arguments are:

210



00s(lOpen

TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.17. oosglOpen

>>--00sqlOpen(--dbFileName--,--"dbConn'--+-------------- R T +--)--><
+-,-openFlags--+ +-,-reserved--+

Opens a database connection.

Arguments:
The arguments are:
dbFileName [required]
The file name of the database to open. The special string :memory: can be used to open an
in memory database. The dbFileName argument can also be an URI. Refer to the SQLite
documentation for details.

dbConn [required]
The string name of a variable in the Rexx program that will be set to the handle to the
database connection. Note that this is the string name of the variable, not the variable itself.
The variable may, but does not need to, already exist in the program.

openFlags [optional]
One or more of the file open constants. This flag controls how the database is opened. Do
not use any constant marked as VFS only. Use 0oSQLiteMerge() to merge two or more of the
constant values to together, if needed.

The 3 common flags are OPEN_READWRITE, OPEN_READONLY, and OPEN_CREATE.
If this argument is omitted, the OPEN_READWRITE merged with OPEN_CREATE flags are
used.

reserved [optional]
This argument is reserved for future enhancement. It is completely ignored in the current
implementation.

Return value:
Returns one of the SQLite result codes. OK on success, otherwise an error code.

When the function returns, the variable named by the dbConn argument will always be set to a
handle to the database connection. This is true even if the return code indicates and error.

211



oosqlPrepare

Remarks:
On success, the database connection handle can be used as an argument in any other function
that requires a database connection handle. To prevent resource leaks, oosq/Close must be called
on each database connection returned by oosq/Open. This is true even if oosq/Open returns an
error. Never use the database connection after oosq/Close has been called. This many crash the
SQLite database engine.

On error, the handle can be used in the oosqlErrMsg function to obtain a description of the error. It
can also be used in the oosqlErrCode function, although at this point the return from oosqlErrCode
will be the same as the return code from 0osq/Open. There is one exception to this. If the error
return is NOMEM the handle will be null. Do not use a null handle in any other function.

The oosqllsHandleNull() function can be used to test for a null handle. However testing for a return
of NOMEM is sufficient. The handle will always be null when the return is NOMEM and not null for
any other return.

The openFlags argument is the binary or value of the individual open constants. If the programmer
is comfortable with the binary or operation, that can be used instead of the 00SQLiteMerge()
function.

Details
The functionality of the 00sq/Open() routine is similar to that of the s<:1lil‘e::’70pen7v2l SQLite API

Example:
This example opens the ooFoods . rdbx database and checks for any errors:

ret = oosqglOpen('ooFoods.rdbx', 'db')

if ret == .ooSQLite~NOMEM then do
say 'Unrecoverable error, quitting.'
return 99

end

if oosqglErrCode(db) <> .ooSQLite~OK then do
-- handle the error ..
oosqglClose(db)

end

-- We have a good connection, use the database.

9.18. oosqlPrepare

>>--o00sqlPrepare(--db--,--sql--,--'_stmt'--+------------ L R e T ><
+-,-'_tail'--+

Prepares a SQL statement to be executed by the database engine. To execute a SQL statement,
SQLite first compiles the statement into a byte-code program. This can be thought of as preparing, or
initializing the statement.

Arguments:
The arguments are:

! http://www.sqlite.org/c3ref/open.html

212


http://www.sqlite.org/c3ref/open.html
http://www.sqlite.org/c3ref/open.html

oosqlPrepare

db [required]
The handle to an open database connection. The handle can not be null and the connection
can not have been closed.

sql [required]
The SQL statement to prepare.

_stmt [required]
The string name of a variable in the Rexx program that will be set to the handle to the
prepared statement. Note that this is the string name of the variable, not the variable itself.
The variable may, but does not need to, already exist in the program.

_tail [optional]
The string name of a variable in the Rexx program that will be set to the value of the tail to the
prepared statement. Note that this is the string name of the variable, not the variable itself.
The variable may, but does not need to, already exist in the program.

SQLite only compiles the first SQL statement in sql. That is up to the first semi-colon in sql.
If _tail is not omitted, the the variable named by _ tail to the substring that follows the first
semicolon. This may of course be the empty string.

Return value:
Returns one of the SQLite result codes. OK on success, otherwise an error code.

Remarks:
The variable named by the _stmt argument will always be set on return from this function call. On
success this will be a handle to a prepared statement which can be used in any function requiring
a prepared statement. On an error return this handle will always be null. Never use a null handle in
any function.

Each successful call to oosgl/Prepare must be matched with a call to finalize to prevent resource
leaks. oosqlFinalize can be called at any time after oosq/Prepare. Normally it would be called
when the program is done with the prepared statement. Note that oosqlFinalize is one exception
to never use a null handle in a function call. It is a harmless no-op to call oosqlFinalize with a null
handle.

Never use the prepared statement after it has been finalized. It is a grievous error for the
application to try to use a prepared statement after it has been finalized. Any use of a prepared
statement after it has been finalized can result in undefined and undesirable behavior such as
segfaults and heap corruption.

Note that if the sql argument is the empty string or contains only a comment the handle to the
prepared statement will be null. Experimentation has shown the return code in this case is OK.

Details

The functionality of the oosqlPrepare() routine is similar to that of the sq/ite37prepare7v22 SQLite
API.

Example:
This example creates a handle to a prepared statement and, if there is no error, executes it using
the oosqlStep function:

2 http://www.sqlite.org/c3ref/prepare.html

213


http://www.sqlite.org/c3ref/prepare.html
http://www.sqlite.org/c3ref/prepare.html

oosqlProfile

ret = oosqlPrepare(dbConn, "SELECT * FROM foods", 'stmt')
if ret == .oo0SQLite~OK & \ oosglIsHandleNull(stmt) then do
index = oosqlColumnIndex(stmt, 'name')

do while oosqglStep(stmt) == .ooSQLite~ROW
say oosglColumnText(stmt, index)
end
end

9.19. oosqlProfile

>>--o00sqlProfile(--+-------- ) R e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.20. oosqlProgressHandler

>>--00sqlProgressHandler(--+-------- B e ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

214



oosglReleaseMemory

Details
Additional details

Example:
This example ...

9.21. oosglReleaseMemory

>>--00sgqlReleaseMemory(--+-------- ) R e T L L LT T ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.22. oosqlReset

>>--00sqlReset(--+-------- ) e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

215



oosqlResetAutoExtension

Details
Additional details

Example:
This example ...

9.23. oos(lResetAutoExtension

>>--00sgqlResetAutoExtension(--+-------- Foo )

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.24. oosqlResultBlob

>>--00sqlResultBlob(--+-------- ) R e E L P P T

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

----------------------------- ><

--------------------- ><

216



oosqglResultDouble

Details
Additional details

Example:
This example ...

9.25. oosglResultDouble

>>--00sglResultDouble(--+-------- +--)
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.26. oosqlResultError

>>--00sqlResultError(--+-------- +--)-
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

--------------------------------------------- ><

-------------------------------------------- ><

217



oosqglResultErrorCode

Details
Additional details

Example:
This example ...

9.27. oosqlResultErrorCode

>>--00sqlResultErrorCode(--+-------- D LR EE LT T T

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.28. oosqlResultErrorNoMem

>>--00sqlResultErrorNoMem(--+-------- R R e e e

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

------------------------- ><

-------------------------- ><

218



oosqglResultErrorTooBig

Details
Additional details

Example:
This example ...

9.29. oosqlResultErrorTooBig

>>--00sqlResultErrorTooBig(--+-------- ) e e LT T ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.30. oosqlResultint

>>--00sqlResultInt(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

219



oosglResultint64

Details
Additional details

Example:
This example ...

9.31. oosqlResultint64

>>--00sqlResultInt64(--+-------- ) e R L T ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.32. oosqlResultNull

>>--00sqlResultNull(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

220



oosqglResultText

Details
Additional details

Example:
This example ...

9.33. oosqlResultText

>>--00sqlResultText(--+-------- S
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.34. oosglResultValue

>>--00sqlResultvalue(--+-------- ) R e

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

----------------- ><

------------------ ><

221



oosqlResultZeroBlob

Details
Additional details

Example:
This example ...

9.35. oosqlResultZeroBlob

>>--00sqlResultZeroBlob(--+-------- ) e T L T T ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

9.36. oosqlRollbackHook

>>--00sgqlRollbackHook(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

222



oosqlRollbackHook

Details
Additional details

Example:
This example ...

223



Chapter 10.

00SQLite Functions S - Z

10.1. oosqlSetAuthorizer

>>--o00sqlSetAuthorizer(--+-------- B R e T ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.2. oosqlSoftHeapLimit64

>>--00sqlSoftHeapLimit64(--+-------- B R e et ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

224



oosglSourcelD

10.3. oosqlSourcelD

>>--00sqlSourceID(--+-------- ) R e L ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.4. oosqlSql

>>--00sqlSql(--+-------- B e T ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

225



0osq|Status

10.5. oosqlStatus

>>--oo0sqlStatus(--+-------- ) R e L ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.6. oosqlStep

>>--o00sqlStep(--+-------- ) ><

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

226



00sqIStmtBusy

10.7. oosqiStmtBusy

>>--00sqlStmtBusy(--+-------- ) R e L ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.8. oosqlStmtReadonly

>>--00sglStmtReadonly(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

------------------ ><

227



00sqlStmtStatus

10.9. oosqlStmtStatus

>>--o0o0sqlStmtStatus(--+-------- SR e

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.10. oosqiStrGlob

----------------- ><

>>--00sqlStrGlob(--+-------- ) ><

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

228



oosglTableColumnMetadata

10.11. oosqglTableColumnMetadata

>>--o00sqlTableColumnMetadata(--+-------- ) e

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.12. oosqlThreadSafe

>>--00sqlThreadSafe(--+-------- )
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

----------------------------- ><

-------------------- ><

229



oosglTotalChanges

10.13. oosqlTotalChanges

>>--o00sqlTotalChanges(--+-------- ) e TR ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.14. oosqlTrace

>>--00sqlTrace(--+-------- ) ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

230



oosqglUpdateHook

10.15. oosqlUpdateHook

>>--o0o0sqlUpdateHook(--+-------- ) e ><

+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.16. oosqlValueBlob

>>--00sglvalueBlob(--+-------- ) ><

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

231



oosglValueBytes

10.17. oosqlValueBytes

>>--o00sqlvalueBytes(--+-------- ) e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.18. oosqlValueDouble

>>--00sglvalueDouble(--+-------- ) ><
+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

232



oosglValuelnt

10.19. oosqlValueint

>>--o0o0sgqlvalueInt(--+-------- ) e e ><

+--type--+
XX
Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

10.20. oosqlValueNumericType

>>--00sglvValueNumericType(--+-------- )

+--type--+

XX

Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

---------------------- ><

233



oosglValueText

10.21. oosqlValueText

>>--00sglvalueText(--+-------- ) e ><
+--type--+
XX
Arguments:
The arguments are:
TERM
XX
Return value:
XX
Remarks:
Additional comments.
Details
Additional details
Example:
This example ...
10.22. oosqlValueType
>>--00sqlvalueType(--+-------- ) ><
+--type--+
XX
Arguments:
The arguments are:
TERM

XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

234



oosqglVersion

10.23. oosqlVersion

>>--o0o0sqlversion(--+-------- ) R e ><
+--type--+

XX

Arguments:
The arguments are:
TERM
XX

Return value:
XX

Remarks:
Additional comments.

Details
Additional details

Example:
This example ...

235



Appendix A. Notices

Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

A.l. Trademarks

Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3

AlX

IBM

Lotus
0Ss/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

236



Source Code For This Document

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document

The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix B, Common Public
License Version 1.0. The source code is available at https://sourceforge.net/p/oorexx/code-0/HEAD/
tree/docs/.

The source code for this document is maintained in DocBook SGML/XML format.

Creztix DUCEE’GI{

with g Sowree for
Documerieiion

The railroad diagrams were generated with the help of "Railroad Diagram Generator" located at http:/
bottlecaps.de/rr/ui. Special thanks to Gunther Rademacher for creating and maintaining this tool.

\/
i

237


https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
http://bottlecaps.de/rr/ui
http://bottlecaps.de/rr/ui

Appendix B. Common Public License
Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions

"Contribution" means:

1. inthe case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. inthe case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution ‘originates’ from a Contributor if it was added to the Program

by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program” means the Contributions distributed in accordance with this Agreement.

"Recipient” means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

238



Requirements

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements

A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and
2. itslicense agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fithess for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. acopy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

B.4. Commercial Distribution

Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in

a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

239



No Warranty

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product

X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

B.5. No Warranty

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE

OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

B.7. General

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

240



General

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.

The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify

this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve

as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will

be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

241



Appendix C. Revision History

Revision 0-0  Tue Aug 7 2012 David Ashley
Initial creation of book by publican

242



Index
A

authorizerCallBack, 83
autoBuiltin, 121
autoCollation, 122
autoCollationNeeded, 122
autoFunction, 123
autoPackage, 123

B

backupDestination, 41
bindBlob, 99
bindDouble, 100
bindint, 100
bindInt64, 101
bindNull, 101
bindParameterCount, 102
bindParameterindex, 102
bindParameterName, 103
bindText, 103
bindValue, 104
bindZeroBlob, 104
blob
00SQLResult class, 136
00SQLValue class, 136
busyCallBack, 48
busyHandler, 46
busyTimeOut, 48

C

Callback Methods
authorizerCallBack, 83
busyCallBack, 48
commitHookCallBack, 51
execCallBack, 60
profileCallBack, 66
progressCallBack, 68
rollbackHookCallBack, 81
traceCallBack, 88
updateHookCallBack, 89

cancelAutoBuiltin, 124

changes, 49

Classic Rexx Interface, 162
online backup, 164
oosqlAutoExtension, 169
oosqlBackupFinish, 169
oosqlBackuplnit, 170
oosglBackupPageCount, 171
oosglBackupRemaining, 172
oosqlBackupStep, 173
oosqIBindBlob, 174
oosqIBindDouble, 174

oosqIBindInt, 175
oosqIBindInt64, 175
oosqIBindNull, 176
oosglBindParameterCount, 176
oosglBindParameterindex, 177
oosglBindParameterName, 177
oosqIBindText, 178
oosqIBindValue, 178
oosqIBindZeroBlob, 179
oosqlBusyHandler, 179
00sqIBusyTimeOut, 180
oosglCancelAutoBuiltin, 180
oosglChanges, 181
oosqlClearBindings, 181
oosqlClose, 182
oosglCollationNeeded, 190
oosqlColumnBlob, 182
oosqlColumnBytes, 183
oosqlColumnCount, 183
oosglColumnDatabaseName, 184
oosqlColumnDeclIType, 184
oosqlColumnDouble, 185
oosqlColumnindex, 185
oosglColumnint, 186
oosglColumnint64, 187
oosglColumnName, 187
oosqlColumnOriginName, 188
oosqlColumnTableName, 188
oosqlColumnText, 189
oosqlColumnType, 189
oosglColumnValue, 190
oosglCommitHook, 191
oosqlCompileOptionGet, 191
oosqlCompileOptionUsed, 192
oosqlComplete, 192
oosglCreateCollation, 193
oosglCreateFunction, 193
oosglDataCount, 194
oosqIDbFileName, 194
oosqlDbHandle, 195
oosqlDbMutex, 195
oos(IDbReadOnly, 196
oos(IDbReleaseMemory, 196
oosqIDbStatus, 197
oosglEnableLoadExtension, 197
oosqlErrCode, 198
oosqlErrMsg, 198

00s(qlErrStr, 199

oosglExec, 200
oosqlExtendedErrCode, 200
oosqlExtendedResultCodes, 201
oosglFinalize, 201
oosqlGetAutocommit, 203
oosqlinterrupt, 203

243



oosglisHandleNull, 204
00SQLiteEnquote, 165
ooSQLiteMerge, 166
00SQLiteRegisterBuiltin, 167
00SQLiteVersion, 167
oosglLastinsertRowID, 204
oosqlLibVersion, 205
oosglLibVersionNumber, 205
oosqlLimit, 206
oosglLoadExtension, 206
oosglMemoryHighWater, 207
oosglMemoryUsed, 207
oosqlMutexAlloc, 208
oosqlMutexEnter, 208
oosqlMutexFree, 209
oosqlMutexLeave, 209
oosqlMutexTry, 210
oosqINextStmt, 210
00sqlOpen, 211
oosqlPrepare, 212
oosqlProfile, 214
oosqlProgressHandler, 214
oosqlReleaseMemory, 215
oosqlReset, 215
oosqlResetAutoExtension, 216
oosqlResultBlob, 216
oosqlResultDouble, 217
oosqlResultError, 217
oosqlResultErrorCode, 218
oosqlResultErrorNoMem, 218
oosqlResultErrorTooBig, 219
oosglResultint, 219
oosqlResultint64, 220
oosqlResultNull, 220
oosqlResultText, 221
oosglResultValue, 221
oosqlResultZeroBlob, 222
oosglRollbackHook, 222
oosqlSetAuthorizer, 224
oosqlSoftHeapLimit64, 224
oosqlSourcelD, 225
00sqlSql, 225

0osq|Status, 226

00sqlStep, 226
00sqlStmtBusy, 227
oosqlStmtReadonly, 227
oosqlStmtStatus, 228
00s(qIStrGlob, 228
oosglTableColumnMetadata, 229
oosqlThreadSafe, 229
oosqlTotalChanges, 230
oosqlTrace, 230
oosqlUpdateHook, 231
oosqlValueBlob, 231

oosglValueBytes, 232
oosglValueDouble, 232
oosqglValuelnt, 233
oosqlValueNumericType, 233
oosqlValueText, 234
oosglValueType, 234
oosglVersion, 235
clearBindings, 105
close, 49
closed, 41, 91
columnBlob, 105
columnBytes, 106
columnCount, 106
columnDataBaseName, 107
columnDeclIType, 107
columnDouble, 108
columnindex, 108
columnint, 109
columnint64, 109
columnName, 110
columnOriginName, 110
columnTableName, 111
columnText, 111
columnType, 112
columnValue, 112
command line shell, 1
commitHook, 50
commitHookCallBack, 51
Common Public License, 238
compileOptionGet, 13
compileOptionUsed, 14
complete, 14
CPL, 238
createCollation, 52
createFunction, 52

D

dataCount, 113
dbFileName, 53
dbHandle, 113
dbMutex, 53
dbReadOnly, 54
dbReleaseMemory, 55
dbStatus, 55

E

enquote, 15
enter, 92
errCode, 57
errMsg, 57
errStr, 17

exec, 58
execCallBack, 60

244



extendedErrCode, 61
extendedResultCodes, 62

F
fileName, 42
finalize, 114
finalized, 96
finish, 35
finished, 30
free, 93

G

getAutocommit, 62
getCollation, 133
getCollationNeeded, 134
getDestConn, 36
getFunction, 134
getLibrary, 124
getPackage, 125

|

initCode, 30, 42, 95
interrupt, 63

isNull, 92

L

lastErrCode
00SQLExtensions class, 120
ooSQLiteBackup class, 31
00SQLiteConnection class, 43
00SQLiteStmt class, 96
00SQLLibrary class, 129
00SQLPackage class, 132

lastErrMsg
00SQLExtensions class, 121
o0oSQLiteBackup class, 32
00SQLiteConnection class, 44
00SQLiteStmt class, 97
00SQLLibrary class, 130
00SQLPackage class, 133

lastinsertRowlID, 63

leave, 93

libVersion, 18

libVersionNumber, 19

License, Common Public, 238

License, Open Object Rexx, 238

limit, 64

listBuiltins, 125

loadLibrary, 126

loadPackage, 126

M
memoryHighWater, 19

memoryUsed, 20

merge, 161
N
new, 39, 95

00SQLCollation class, 118

00SQLCollationNeeded class, 119

00SQLFunction class, 128
ooSQLiteBackup class, 28
00SQLiteMutex class, 91
00SQLLibrary class, 129
00SQLPackage class, 131

nextStmt, 65

Notices, 236

null, 10, 45, 98

o

Object Orientated Interface, 8

Primary Classes, 9

User Defined Extensions, 118
Object-orientated Interface

online backup, 27
online backup

Classic Rexx Interface, 164

Object-orientated Interface, 27
ooRexx License, 238
oosqlAutoExtension, 169
oosqlBackupFinish, 169
oosqlBackuplnit, 170
oosqlBackupPageCount, 171
oosglBackupRemaining, 172
oosqlBackupStep, 173
oosqIBindBlob, 174
oosqlBindDouble, 174
oosqIBindInt, 175
oosqIBindInt64, 175
oosqIBindNull, 176
oosglBindParameterCount, 176
oosglBindParameterindex, 177
oosgIBindParameterName, 177
oosqIBindText, 178
oosqIBindValue, 178
oosqIBindZeroBlob, 179
oosqlBusyHandler, 179
00sqIBusyTimeOut, 180
oosglCancelAutoBuiltin, 180
oosglChanges, 181
oosqlClearBindings, 181
oosglClose, 182
00SQLCollation class, 118

new, 118
oosglCollationNeeded, 190
00SQLCollationNeeded class, 119

245



new, 119 new, 128

oosglColumnBlob, 182 oosqlGetAutocommit, 203
oosglColumnBytes, 183 oosqlinterrupt, 203
oosqlColumnCount, 183 oosglisHandleNull, 204
oosglColumnDatabaseName, 184 00SQLite class, 9
oosqlColumnDeclIType, 184 compileOptionGet, 13
oosqlColumnDouble, 185 compileOptionUsed, 14
oosglColumnindex, 185 complete, 14
oosglColumnint, 186 enquote, 15
oosqlColumnint64, 187 errStr, 17
oosqlColumnName, 187 libVersion, 18
00s(l/ColumnOriginName, 188 libVersionNumber, 19
oosglColumnTableName, 188 memoryHighWater, 19
oosglColumnText, 189 memoryUsed, 20
0osqlColumnType, 189 null, 10
oosqlColumnValue, 190 recordFormat, 11
oosqglCommitHook, 191 releaseMemory, 20
o0os(lCompileOptionGet, 191 softHeapLimit64, 21
0o0s(lCompileOptionUsed, 192 sourcelD, 22
oosglComplete, 192 sglite3Version, 22
oosglCreateCollation, 193 status, 23
oosglCreateFunction, 193 threadSafe, 25
oosglDataCount, 194 version, 25
oosqIDbFileName, 194 00SQLite Constants, 138
oosqlDbHandle, 195 00SQLite package
oosqIDbMutex, 195 command line shell, 1
oos(gIDbReadOnly, 196 ooSQLiteBackup class, 27
oosqlDbReleaseMemory, 196 finish, 35
oosqIDbStatus, 197 finished, 30
oosglEnableLoadExtension, 197 getDestConn, 36
oosqlErrCode, 198 initCode, 30
oosqlErrMsg, 198 lastErrCode, 31
00sqlErrStr, 199 lastErrMsg, 32
oosqlExec, 200 new, 28
oosqlExtendedErrCode, 200 pageCount, 32
oosqlExtendedResultCodes, 201 remaining, 33
00SQLExtensions class, 119 saveDestConn, 34
autoBuiltin, 121 step, 36
autoCollation (Class method), 122 00SQLiteConnection class, 37
autoCollationNeeded, 122 backupDestination, 41
autoFunction (Class method), 123 busyHandler, 46
autoPackage (Class method), 123 busyTimeOut, 48
cancelAutoBuiltin, 124 changes, 49
getLibrary (Class method), 124 close, 49
getPackage (Class method), 125 closed, 41
lastErrCode, 120 commitHook, 50
lastErrMsg, 121 createCollation, 52
listBuiltins, 125 createFunction, 52
loadLibrary (Class method), 126 dbFileName, 53
loadPackage (Class method), 126 dbMutex, 53
registerBuiltin (Class method), 127 dbReadOnly, 54
resetAutoBuiltin (Class method), 127 dbReleaseMemory, 55
oosqlFinalize, 201 dbStatus, 55
00SQLFunction class, 128 errCode, 57

246



errMsg, 57

exec, 58

extendedErrCode, 61

extendedResultCodes, 62

fileName, 42

getAutocommit, 62

initCode, 42

interrupt, 63

lastErrCode, 43

lastErrMsg, 44

lastinsertRowID, 63

limit, 64

new, 39

nextStmt, 65

null, 45

pragma, 69

profile, 65

progressHandler, 67

recordFormat, 46

rollbackHook, 80

setAuthorizer, 81

tableColumnMetadata, 85

totalChanges, 86

trace, 87

updateHook, 88
00SQLiteConstant class

merge, 161
00SQLiteConstants class, 138
00SQLiteEnquote, 165
ooSQLiteMerge, 166
00SQLiteMutex class, 90

closed, 91

enter, 92

free, 93

isNull, 92

leave, 93

new, 91

try, 94
00SQLiteRegisterBuiltin, 167
00SQLiteStmt class, 94

bindBlob, 99

bindDouble, 100

bindInt, 100

bindInt64, 101

bindNull, 101

bindParameterCount, 102

bindParameterindex, 102

bindParameterName, 103

bindText, 103

bindValue, 104

bindZeroBlob, 104

clearBindings, 105

columnBlob, 105

columnBytes, 106

columnCount, 106

columnDataBaseName, 107

columnDeclIType, 107

columnDouble, 108

columnindex, 108

columnint, 109

columnint64, 109

columnName, 110

columnOriginName, 110

columnTableName, 111

columnText, 111

columnType, 112

columnValue, 112

dataCount, 113

dbHandle, 113

finalize, 114

finalized, 96

initCode, 95

lastErrCode, 96

lastErrMsg, 97

new, 95

null, 98

recordFormat, 99

reset, 114

step, 115

stmtBusy, 115

stmtReadonly, 116

stmtStatus, 116

value, 117
ooSQLiteVersion, 167
oosglLastinsertRowID, 204
00SQLLibrary class, 128

lastErrCode, 129

lastErrMsg, 130

new, 129
oosglLibVersion, 205
oosglLibVersionNumber, 205
oosqlLimit, 206
oosglLoadExtension, 206
oosglMemoryHighWater, 207
oosglMemoryUsed, 207
oosqlMutexAlloc, 208
oosqlMutexEnter, 208
oosqlMutexFree, 209
oosqlMutexLeave, 209
oosqIMutexTry, 210
oosqINextStmt, 210
00sqlOpen, 211
00SQLPackage class, 131

getCollation, 133

getCollationNeeded, 134

getFunction, 134

lastErrCode, 132

lastErrMsg, 133

247



new, 131

register, 135
oosqlPrepare, 212
oosqlProfile, 214
oosqlProgressHandler, 214
oosglReleaseMemory, 215
oosqlReset, 215
oos(lResetAutoExtension, 216
00SQLResult class, 135

blob, 136
oos(qlResultBlob, 216
oosqlResultDouble, 217
oosqlResultError, 217
oosqlResultErrorCode, 218
oosqlResultErrorNoMem, 218
oosqlResultErrorTooBig, 219
oosqlResultint, 219
oosglResultint64, 220
oosqlResultNull, 220
oosqlResultText, 221
oosqlResultValue, 221
oosqlResultZeroBlob, 222
oosqlRollbackHook, 222
oosqlSetAuthorizer, 224
oosqlSoftHeapLimit64, 224
oosqlSourcelD, 225
0osqlSql, 225
oosqlStatus, 226
0osqlStep, 226
0o0sqIStmtBusy, 227
oosqlStmtReadonly, 227
oosqlStmtStatus, 228
00s(qIStrGlob, 228
oos(glTableColumnMetadata, 229
oosqlThreadSafe, 229
oosqlTotalChanges, 230
oosqlTrace, 230
oosqlUpdateHook, 231
00SQLValue class, 136

blob, 136
oosqlValueBlob, 231
oosqlValueBytes, 232
oosglValueDouble, 232
oosglValuelnt, 233
oosqlValueNumericType, 233
oosqlValueText, 234
oosqlValueType, 234
oosglVersion, 235
Open Object Rexx License, 238
overview, 1

P

pageCount, 32
pragma, 69

profile, 65
profileCallBack, 66
progressCallBack, 68
progressHandler, 67

R

recordFormat, 11, 46, 99
register, 135
registerBuiltin, 127
releaseMemory, 20
remaining, 33

reset, 114
resetAutoBuiltin, 127
rollbackHook, 80
rollbackHookCallBack, 81

S

saveDestConn, 34
setAuthorizer, 81
softHeapLimit64, 21
sourcelD, 22
sqlite3Version, 22
status, 23

step, 36, 115
stmtBusy, 115
stmtReadonly, 116
stmtStatus, 116

T
tableColumnMetadata, 85
threadSafe, 25
totalChanges, 86

trace, 87

traceCallBack, 88

try, 94

U

updateHook, 88
updateHookCallBack, 89

Vv

value, 117
version, 25

248



	ooSQLite Reference
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Notes and Warnings

	2. Who Should Use This Book
	3. How This Book is Structured
	4. Related Information
	5. How to Read the Syntax Diagrams
	6. Getting Help and Submitting Feedback
	6.1. The Open Object Rexx SourceForge Site
	6.2. The Rexx Language Association Mailing List
	6.3. comp.lang.rexx Newsgroup


	Chapter 1. Brief Overview
	1.1. Getting Started
	1.1.1. Command Line Shell

	1.2. Definition of Terms
	1.2.1. Database Name
	1.2.2. Handle
	1.2.3. Threading Mode

	1.3. Common Concepts
	1.3.1. Embedded
	1.3.2. Database Engine

	1.4. SQLite Features

	Chapter 2. The Object Orientated Interface to SQLite
	Chapter 3. Primary ooSQLite Classes
	3.1. The ooSQLite Class
	3.1.1. Method Table
	3.1.2. null (Attribute)
	3.1.3. recordFormat (Attribute)
	3.1.4. compileOptionGet
	3.1.5. compileOptionUsed
	3.1.6. complete
	3.1.7. enquote
	3.1.8. errStr
	3.1.9. libVersion
	3.1.10. libVersionNumber
	3.1.11. memoryHighWater
	3.1.12. memoryUsed
	3.1.13. releaseMemory
	3.1.14. softHeapLimit64
	3.1.15. sourceID
	3.1.16. sqlite3Version
	3.1.17. status
	3.1.18. threadSafe
	3.1.19. version

	3.2. The ooSQLiteBackup Class
	3.2.1. Method Table
	3.2.2. new (Class method)
	3.2.3. finished (Attribute)
	3.2.4. initCode (Attribute)
	3.2.5. lastErrCode (Attribute)
	3.2.6. lastErrMsg (Attribute)
	3.2.7. pageCount (Attribute)
	3.2.8. remaining (Attribute)
	3.2.9. saveDestConn (Attribute)
	3.2.10. finish
	3.2.11. getDestConn
	3.2.12. step

	3.3. The ooSQLiteConnection Class
	3.3.1. Method Table
	3.3.2. new (Class method)
	3.3.3. backupDestination (Attribute)
	3.3.4. closed (Attribute)
	3.3.5. fileName (Attribute)
	3.3.6. initCode (Attribute)
	3.3.7. lastErrCode (Attribute)
	3.3.8. lastErrMsg (Attribute)
	3.3.9. null (Attribute)
	3.3.10. recordFormat (Attribute)
	3.3.11. busyHandler
	3.3.11.1. busyCallBack

	3.3.12. busyTimeOut
	3.3.13. changes
	3.3.14. close
	3.3.15. commitHook
	3.3.15.1. commitHookCallBack

	3.3.16. createCollation
	3.3.17. createFunction
	3.3.18. dbFileName
	3.3.19. dbMutex
	3.3.20. dbReadOnly
	3.3.21. dbReleaseMemory
	3.3.22. dbStatus
	3.3.23. errCode
	3.3.24. errMsg
	3.3.25. exec
	3.3.25.1. execCallBack

	3.3.26. extendedErrCode
	3.3.27. extendedResultCodes
	3.3.28. getAutocommit
	3.3.29. interrupt
	3.3.30. lastInsertRowID
	3.3.31. limit
	3.3.32. nextStmt
	3.3.33. profile
	3.3.33.1. profileCallBack

	3.3.34. progressHandler
	3.3.34.1. progressCallBack

	3.3.35. pragma
	3.3.36. rollbackHook
	3.3.36.1. rollbackHookCallBack

	3.3.37. setAuthorizer
	3.3.37.1. authorizerCallBack

	3.3.38. tableColumnMetadata
	3.3.39. totalChanges
	3.3.40. trace
	3.3.40.1. traceCallBack

	3.3.41. updateHook
	3.3.41.1. updateHookCallBack


	3.4. The ooSQLiteMutex Class
	3.4.1. Method Table
	3.4.2. new (Class method)
	3.4.3. closed (Attribute)
	3.4.4. isNull (Attribute)
	3.4.5. enter
	3.4.6. free
	3.4.7. leave
	3.4.8. try

	3.5. The ooSQLiteStmt Class
	3.5.1. Method Table
	3.5.2. new (Class method)
	3.5.3. initCode (Attribute)
	3.5.4. finalized (Attribute)
	3.5.5. lastErrCode (Attribute)
	3.5.6. lastErrMsg (Attribute)
	3.5.7. null (Attribute)
	3.5.8. recordFormat (Attribute)
	3.5.9. bindBlob
	3.5.10. bindDouble
	3.5.11. bindInt
	3.5.12. bindInt64
	3.5.13. bindNull
	3.5.14. bindParameterCount
	3.5.15. bindParameterIndex
	3.5.16. bindParameterName
	3.5.17. bindText
	3.5.18. bindValue
	3.5.19. bindZeroBlob
	3.5.20. clearBindings
	3.5.21. columnBlob
	3.5.22. columnBytes
	3.5.23. columnCount
	3.5.24. columnDataBaseName
	3.5.25. columnDeclType
	3.5.26. columnDouble
	3.5.27. columnIndex
	3.5.28. columnInt
	3.5.29. columnInt64
	3.5.30. columnName
	3.5.31. columnOriginName
	3.5.32. columnTableName
	3.5.33. columnText
	3.5.34. columnType
	3.5.35. columnValue
	3.5.36. dataCount
	3.5.37. dbHandle
	3.5.38. finalize
	3.5.39. reset
	3.5.40. step
	3.5.41. stmtBusy
	3.5.42. stmtReadonly
	3.5.43. stmtStatus
	3.5.44. value


	Chapter 4. User Defined Extension Classes
	4.1. The ooSQLCollation Class
	4.1.1. new (Class method)

	4.2. The ooSQLCollationNeeded Class
	4.2.1. new (Class method)

	4.3. The ooSQLExtensions Class
	4.3.1. Method Table
	4.3.2. lastErrCode (Attribute)
	4.3.3. lastErrMsg (Attribute)
	4.3.4. autoBuiltin (Class method)
	4.3.5. autoCollationNeeded (Class method)
	4.3.6. autoCollation
	4.3.7. autoFunction
	4.3.8. autoPackage
	4.3.9. cancelAutoBuiltin
	4.3.10. getLibrary
	4.3.11. getPackage
	4.3.12. listBuiltins
	4.3.13. loadLibrary
	4.3.14. loadPackage
	4.3.15. resetAutoBuiltin
	4.3.16. registerBuiltin

	4.4. The ooSQLFunction Class
	4.4.1. new (Class method)

	4.5. The ooSQLLibrary Class
	4.5.1. Method Table
	4.5.2. new (Class method)
	4.5.3. lastErrCode (Attribute)
	4.5.4. lastErrMsg (Attribute)

	4.6. The ooSQLPackage Class
	4.6.1. Method Table
	4.6.2. new (Class method)
	4.6.3. lastErrCode (Attribute)
	4.6.4. lastErrMsg (Attribute)
	4.6.5. getCollation
	4.6.6. getCollationNeeded
	4.6.7. getFunction
	4.6.8. register

	4.7. The ooSQLResult Class
	4.7.1. Method Table
	4.7.2. blob (Class method)

	4.8. The ooSQLValue Class
	4.8.1. Method Table
	4.8.2. blob (Class method)


	Chapter 5. The ooSQLite Constants
	5.1. All Constants Table
	5.2. Compile Time Version Constants
	5.3. ooSQLite Specific Constants
	5.4. ooSQLite Specific Result Code Constants
	5.5. Result Code Constants
	5.6. File Open Constants
	5.7. Authorizer Action Constants
	5.8. Authorizer Return Code Constants
	5.9. xAccess VFS Method Constants
	5.10. Checkpoint Operation Parameter Constants
	5.11. Configuration Option Constants
	5.12. DB Connection Configuration Constants
	5.13. DB Status Parameter Constants
	5.14. File Control Opcode Constants
	5.15. Fundamental Datatype Constants
	5.16. Device Characteristic Constants
	5.17. Run-Time Limit Constants
	5.18. File Locking Constants
	5.19. Mutex Type Constants
	5.20. xShmLock VFS Constants
	5.21. Destructor Behavior Constants
	5.22. Status Parameter Constants
	5.23. Status Parameter (stmt) Constants
	5.24. Synchronization Constants
	5.25. Text Encoding Constants
	5.26. Virtual Table Config Option Constants
	5.27. merge (Class method)

	Chapter 6. The Classic Rexx Interface to SQLite
	6.1. Online Backup Feature

	Chapter 7. ooSQLite Specific Functions
	7.1. ooSQLiteEnquote
	7.2. ooSQLiteMerge
	7.3. ooSQLiteRegisterBuiltin
	7.4. ooSQLiteVersion

	Chapter 8. ooSQLite Functions A - F
	8.1. oosqlAutoExtension
	8.2. oosqlBackupFinish
	8.3. oosqlBackupInit
	8.4. oosqlBackupPageCount
	8.5. oosqlBackupRemaining
	8.6. oosqlBackupStep
	8.7. oosqlBindBlob
	8.8. oosqlBindDouble
	8.9. oosqlBindInt
	8.10. oosqlBindInt64
	8.11. oosqlBindNull
	8.12. oosqlBindParameterCount
	8.13. oosqlBindParameterIndex
	8.14. oosqlBindParameterName
	8.15. oosqlBindText
	8.16. oosqlBindValue
	8.17. oosqlBindZeroBlob
	8.18. oosqlBusyHandler
	8.19. oosqlBusyTimeOut
	8.20. oosqlCancelAutoBuiltin
	8.21. oosqlChanges
	8.22. oosqlClearBindings
	8.23. oosqlClose
	8.24. oosqlColumnBlob
	8.25. oosqlColumnBytes
	8.26. oosqlColumnCount
	8.27. oosqlColumnDatabaseName
	8.28. oosqlColumnDeclType
	8.29. oosqlColumnDouble
	8.30. oosqlColumnIndex
	8.31. oosqlColumnInt
	8.32. oosqlColumnInt64
	8.33. oosqlColumnName
	8.34. oosqlColumnOriginName
	8.35. oosqlColumnTableName
	8.36. oosqlColumnText
	8.37. oosqlColumnType
	8.38. oosqlColumnValue
	8.39. oosqlCollationNeeded
	8.40. oosqlCommitHook
	8.41. oosqlCompileOptionGet
	8.42. oosqlCompileOptionUsed
	8.43. oosqlComplete
	8.44. oosqlCreateCollation
	8.45. oosqlCreateFunction
	8.46. oosqlDataCount
	8.47. oosqlDbFileName
	8.48. oosqlDbHandle
	8.49. oosqlDbMutex
	8.50. oosqlDbReadOnly
	8.51. oosqlDbReleaseMemory
	8.52. oosqlDbStatus
	8.53. oosqlEnableLoadExtension
	8.54. oosqlErrCode
	8.55. oosqlErrMsg
	8.56. oosqlErrStr
	8.57. oosqlExec
	8.58. oosqlExtendedErrCode
	8.59. oosqlExtendedResultCodes
	8.60. oosqlFinalize

	Chapter 9. ooSQLite Functions G - R
	9.1. oosqlGetAutocommit
	9.2. oosqlInterrupt
	9.3. oosqlIsHandleNull
	9.4. oosqlLastInsertRowID
	9.5. oosqlLibVersion
	9.6. oosqlLibVersionNumber
	9.7. oosqlLimit
	9.8. oosqlLoadExtension
	9.9. oosqlMemoryHighWater
	9.10. oosqlMemoryUsed
	9.11. oosqlMutexAlloc
	9.12. oosqlMutexEnter
	9.13. oosqlMutexFree
	9.14. oosqlMutexLeave
	9.15. oosqlMutexTry
	9.16. oosqlNextStmt
	9.17. oosqlOpen
	9.18. oosqlPrepare
	9.19. oosqlProfile
	9.20. oosqlProgressHandler
	9.21. oosqlReleaseMemory
	9.22. oosqlReset
	9.23. oosqlResetAutoExtension
	9.24. oosqlResultBlob
	9.25. oosqlResultDouble
	9.26. oosqlResultError
	9.27. oosqlResultErrorCode
	9.28. oosqlResultErrorNoMem
	9.29. oosqlResultErrorTooBig
	9.30. oosqlResultInt
	9.31. oosqlResultInt64
	9.32. oosqlResultNull
	9.33. oosqlResultText
	9.34. oosqlResultValue
	9.35. oosqlResultZeroBlob
	9.36. oosqlRollbackHook

	Chapter 10. ooSQLite Functions S - Z
	10.1. oosqlSetAuthorizer
	10.2. oosqlSoftHeapLimit64
	10.3. oosqlSourceID
	10.4. oosqlSql
	10.5. oosqlStatus
	10.6. oosqlStep
	10.7. oosqlStmtBusy
	10.8. oosqlStmtReadonly
	10.9. oosqlStmtStatus
	10.10. oosqlStrGlob
	10.11. oosqlTableColumnMetadata
	10.12. oosqlThreadSafe
	10.13. oosqlTotalChanges
	10.14. oosqlTrace
	10.15. oosqlUpdateHook
	10.16. oosqlValueBlob
	10.17. oosqlValueBytes
	10.18. oosqlValueDouble
	10.19. oosqlValueInt
	10.20. oosqlValueNumericType
	10.21. oosqlValueText
	10.22. oosqlValueType
	10.23. oosqlVersion

	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Appendix C. Revision History
	Index

